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Abstract

We study the Kodaira dimension of the compactified n-fold Kuga variety over the
moduli space of principally polarised abelian g-folds. We construct a suitable compact-
ification, which we call a Namikawa compactification, and show that in most cases it
has canonical singularities. We then use results about the slope of Siegel modular forms
to determine the Kodaira dimension for all g > 1 and n > 0.

1. Introduction

The universal family X(Γ) over a moduli space A(Γ) = Γ\Hg of abelian varieties associated with
a finite-index subgroup Γ of Sp(2g,Z) is known as the Kuga variety. Such families were first
studied systematically by Kuga, whose 1964 Chicago lecture notes on the subject [Kug18] have
been recently published. The construction is given in [Kug18] for Γ < Sp(2g,Z) a torsion-free
subgroup of finite index, but the restriction to torsion-free can be removed. However, if −1 ∈ Γ,
then the fibre of the family is no longer the abelian variety but instead the corresponding Kummer
variety. One could also allow Γ to be a subgroup of Sp(2g,Q) commensurable with Sp(2g,Z),
for example taking A(Γ) to be the moduli space of abelian varieties with some non-principal
polarisation, but we shall not pursue this here.

A natural generalisation is to consider the n-fold Kuga variety Xn(Γ), whose general fibre is
the n-fold direct product An of the corresponding abelian variety A or, if −1 ∈ Γ, the Kummer
variety An/ ± 1. Alternatively, one may consider the universal family Xn(Γ) over the stack
A(Γ) := [Γ\Hg]. In this case the fibre is an abelian variety in all cases, but if −1 ∈ Γ, then the
base has non-trivial stabilisers generically. This is the object that is studied in a particular case
in [FV16].

We shall be concerned with compactifications of the n-fold Kuga variety Xn
g = Xn(Sp(2g,Z))

associated with the coarse moduli space Ag of principally polarised abelian g-folds over C.
Thus X1

g = X(Sp(2g,Z)), and by convention X0
g = Ag.

The starting point for our work is Ma’s study [Ma21] of Xn
g (Γ). We construct a special com-

pactification, which we call a Namikawa compactification, of Xn
g , and this, together with recent
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and less recent results about the slope of Ag, allows us to determine the Kodaira dimension κ(Xn
g )

of Xn
g whenever g ⩾ 2 and n ⩾ 1.

Theorem 1. Suppose g ⩾ 2 and n ⩾ 1. Then the Kodaira dimension κ(Xn
g ) of X

n
g satisfies

• κ(Xn
g ) =

1
2g(g+1) = dimAg if g+n ⩾ 7, except for (g, n) ∈ {(4, 3), (3, 5), (3, 4), (2, 7), (2, 6),

(2, 5)};
• κ

(
X7

2

)
= κ

(
X5

3

)
= κ

(
X3

4

)
= 0; and

• κ(Xn
g ) = −∞ otherwise, that is, if g + n ⩽ 6 or (g, n) ∈ {(2, 6), (2, 5), (3, 4)}.

For completeness, we mention the case g = 1. We can identify Xn
1 with M1,n+1, the coarse

moduli space of genus 1 curves with n+1 (ordered) marked points: the case n = 0 is the familiar
identification of M1,1 with A1 via the j-invariant. The results of Belorousski [Bel98] then show
that Xn

1 is rational when n ⩽ 9, and from [BF06] we have κ
(
X10

1

)
= 0 and κ(Xn

1 ) = 1 for
n ⩾ 11.

In fact, Xn
2 for n ⩽ 6 and Xn

3 for n ⩽ 4 are all unirational. If g ⩽ 3, then, since Ag

is birationally equivalent to Mg and the gth symmetric power of a curve is birational to its
Jacobian, there is a dominating rational map Mg,gn 99K Xn

g . On the other hand, it is known
that M2,n and M3,n are unirational for n < 13 and n < 15, respectively; see [KT21, Table 1].

Moreover, X1
g is unirational for g ⩽ 5; see [Ver08] for g = 3 and g = 4 and [FV16] for g = 5.

Note that X1
g is the boundary of the Mumford partial compactification A′

g+1. One can therefore

compactify X1
g by taking its closure in any toroidal compactification of Ag+1 since these all

contain A′
g+1 as a dense open set, but it is not straightforward to control the singularities that

then arise.

For the cases g+ n ⩽ 6, our proof is based on the fact that the slope of Ag is greater than 7:
this was proved in [Sal92] for g = 3 and g = 4 and in [FGSV14] for g = 5. For the cases g+n ⩾ 7,
our main technical result concerns the existence of a sufficiently good compactification of Xn

g .
We will say that a compactification of Xn

g is a Namikawa compactification if it dominates a
toroidal compactification of Ag and boundary divisors are mapped to boundary divisors; see
Definition 2.1 for a full explanation and precise details. We prove the following (see Theorem 2.2
for the precise statement).

Theorem 2. Suppose g ⩾ 2 and n ⩾ 1. There exists a Namikawa compactification Xn
g with

canonical singularities as long as g + n ⩾ 6.

There is some overlap between our results and those of [Ma21]. The singularities of Xn
g are

studied in [Ma21, § 10], but the singularities at the boundary Xn
g are not considered there. That

is sufficient for computing the geometric genus but not other plurigenera; on the other hand, Ma’s
approach gives precise information about the geometric genus and therefore some information
about the Kodaira dimension.

Our original motivation came from the case g = 6 and n = 1 and the Kodaira dimen-
sion κ

(
X1

6

)
. As we have seen, X1

g is unirational for g < 6. On the other hand, for g ⩾ 7 we

have κ
(
X1

g

)
= κ(Ag) =

1
2g(g+1), since Iitaka’s conjecture holds by [Kaw85] and Ag is of general

type.

Similar questions arise in relation to the universal Jacobian varieties over Mg. A suitable
compactification was constructed by Caporaso [Cap94], and the question of Kodaira dimen-
sion is well studied; see for example [BFV12, CKV17, FV13], as well as [BF06] for the case
g = 1.
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2. Namikawa compactifications

Suppose throughout this section that g ⩾ 2. Let Ag ⊂ Ag be the inclusion of the coarse moduli
space Ag = Sp(2g,Z)\Hg of principally polarised abelian varieties of dimension g into a toroidal
compactification Ag. Denote by f : Xn

g =
(
Z2gn ⋉ Sp(2g,Z)

)
\(Cgn ×Hg) → Ag the n-fold Kuga

family, as in [Ma21].

Definition 2.1. A Namikawa compactification of Xn
g is an irreducible normal projective vari-

ety Xn
g containing Xn

g as an open subset, together with a projective toroidal compactification Ag

of Ag for which the following conditions hold:

(i) The morphism f : Xn
g → Ag extends to a projective morphism f : Xn

g → Ag.

(ii) Every irreducible component of ∆X := Xn
g ∖ Xn

g dominates an irreducible component

of ∆A := Ag ∖Ag.

Compactifications satisfying these conditions were first given by Namikawa [Nam79, Nam80],
for the case n = 1. There is little difficulty in extending Namikawa’s construction to arbitrary n,
and it is essentially done in [FC90, §VI.1]. The conditions in Definition 2.1 are the same as
in [Ma21, Theorem 1.2], but we also require Xn

g to be normal (rather than just smooth in
codimension 1) and projective. In fact, neither of these conditions presents any difficulty.

Theorem 2.2. Suppose g ⩾ 2 and n ⩾ 1. Then if g+ n ⩾ 6, there exists a Namikawa compacti-
fication Xn

g ⊃ Xn
g such that Xn

g has canonical singularities. In particular, Xn
g is Q-Gorenstein.

The proof will occupy the rest of this section. The first step is the following lemma. Although
similar statements are already known (see for example [AS16]), we give a proof here as we have
not found one elsewhere.

Suppose that a finite group G acts effectively on a variety X. A non-trivial element of G is
called a quasireflection if it preserves a divisor on X.

Lemma 2.3. Suppose that G is a finite group acting effectively and without quasireflections on
a variety X that has canonical singularities. Let f : X̂ → X be a G-equivariant resolution of
singularities, and suppose that X̂/G has canonical singularities. Then X/G also has canonical
singularities.

Proof. Since X has canonical singularities, it is in particular Q-Gorenstein (we do not require,
nor expect, X or X/G to be Q-factorial), and therefore X/G is also Q-Gorenstein. Suppose
that rKX/G is Cartier and σ ∈ O(rKX/G), so σ is a pluricanonical form on (X/G)reg. Therefore,
σ lifts to a G-invariant form g∗σ on an open G-invariant subset X0 ⊂ X, where g : X → X/G is
the quotient map.

The complement X∖X0 consists of the fixed loci of elements of G, together with the singular
locus of X; however, the fixed loci have codimension at least 2 by assumption, so g∗σ extends
G-invariantly to Xreg. Therefore, it lifts on X̂ to a form defined away from the exceptional locus
of f . AsX has canonical singularities, this extends to a G-invariant form σ̂ = f∗g∗σ on X̂ without
poles, which in turn descends to the smooth part (X̂/G)reg of X̂/G because ĝ : X̂ → X̂/G is étale
in codimension 1.

This form σ̂ agrees with f̄∗σ on the dense open set f̄−1((X/G)reg), where f̄ : X̂/G → X/G
is the map induced by f ; therefore, f̄∗σ extends to (X̂/G)reg.
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Now consider a resolution of singularities h : Y → X/G, and form the pullback ĥ : Ŷ → X̂/G
as in the diagram

X̂ X

X̂/G X/G .

Ŷ Y

f

ĝ g

f̄

ĥ h

f̂

This resolves the singularities of X̂/G, so ĥ∗f̄∗σ extends without poles to the whole of Ŷ . But
now if h∗σ has poles along a divisor E ⊂ Y , then f̂∗h∗σ = ĥ∗f̄∗σ has poles along f̂−1E, which
is impossible. Therefore, h∗σ is holomorphic, and hence X/G has canonical singularities.

Next, we construct Namikawa compactifications Xn
g . To do this we follow [Nam79] closely,

and, as far as possible, we have chosen our notation to be compatible with that paper. The no-
tation in [FC90] is different. Note that our compactifications are singular; both [Nam79, Propo-
sition 5.4(i)] and [FC90, Theorem VI.1.1(i)] mention smooth compactifications, but after a base
change in the first case and as stacks in the second (see [FC90, §VI.1, top of p. 195]).

We write Γ = Sp(2g,Z). For simplicity, and because it is enough for our purposes, we consider
only this case, but allowing Γ to be a finite-index subgroup of Sp(2g,Z) does not change the
argument. To fix notation, we choose a free Z-module W of rank 2g equipped with a Z-basis
e1, . . . , e2g, and fix a standard skew-symmetric form by requiring ⟨ei, ei+g⟩ = −1 for 1 ⩽ i ⩽ g
and ⟨ei, ej⟩ = 0 if |i − j| ̸= g, so that the matrix of the form with respect to the basis {ei} is(

0 −1g

1g 0

)
(we denote the r × r identity matrix by 1r throughout). Then

Sp(2g,Z) =
{
γ ∈ GL(2g,Z)

∣∣∣∣ tγ ( 0 −1g
1g 0

)
γ =

(
0 −1g
1g 0

)}
.

Choose a cusp Fg′ of rank g′ of Hg for some 0 ⩽ g′ < g, and put g′′ = g−g′. Recall that Hg is
the cone of symmetric g× g complex matrices M with positive-definite imaginary part: cusps of
rank g′ arise by allowing ImM to be semi-definite but requiring the radical radM to be defined
over Q and of dimension g′′. Such a cusp thus corresponds to a rank g′′ isotropic sublattice X
of W up to the action of Γ, but Γ = Sp(2g,Z) acts transitively on such lattices. Therefore,
without loss of generality, we may take Fg′ to have stabiliser

P (g′) =



A 0 B m′

m u n M
C 0 D n′

0 0 0 tu−1


∣∣∣∣∣∣∣∣
(
A B
C D

)
∈ Sp(2g′,R), u ∈ GL(g′′,R)


in Sp(2g,R), by choosing X = Zeg′+1 + · · ·+ Zeg ∼= Zg′′ .

Next we consider the integral affine symplectic group Γ̃n
g . It is given by

Γ̃n = Z2gn ⋉ Sp(2g,Z) < Γ̃n
R = R2gn ⋉ Sp(2g,R) < GL(n+ 2g,R)

826



Siegel cusp forms and Kuga varieties

and consists of elements γ̃ of the form

γ̃ =

1 a b
0 A0 B0

0 C0 D0

 , γ =

(
A0 B0

C0 D0

)
∈ Sp(2g,R) , a, b ∈ Mn×g(R) (2.1)

(cf. [Nam79, § 2.7]).
The integral affine symplectic group acts on Cgn × Hg, and the Kuga variety, cf. [Nam79,

equation (3.4.1)], is the quotient

Xn
g := Γ̃n\(Cgn ×Hg) .

It is the coarse moduli space of principally polarised abelian varieties together with a point on
the Kummer variety of the n-fold cartesian self-product.

The stabiliser of Fg′ in Γ̃n
R is (cf. [Nam79, Example (2.8)])

P̃ (g′) =




1n a′ a′′ b′ b′′

0 A 0 B m′

0 m u n M
0 C 0 D n′

0 0 0 0 tu−1


∣∣∣∣∣∣∣∣∣∣
γ′ =

(
A B
C D

)
∈ Sp(2g′,R),

u ∈ GL(g′′,R),
a′, b′ ∈ Mn×g′(R),
a′′, b′′ ∈ Mn×g′′(R)

 , (2.2)

where as before M , m and n, and m′ and n′ are subject to the symplecticity conditions, and its
unipotent radical has centre

Ũ(g′) = {u(b′′,M) | M = tM}, where u(b′′,M) =


1 0 0 0 b′′

0 1 0 0 0
0 0 1 0 M
0 0 0 1 0
0 0 0 0 1

 .

Intersecting with Γ̃n, we obtain the group

Υ̃n = Ũ(g′) ∩ P̃ (g′) = {u(b′′,M) | b′′ ∈ Zng′′ , M = tM ∈ Mg′′×g′′(Z)} ,

which is identified with Sym2(X∨) × (X∨)n. (This means a symmetric bilinear function on X
and n linear functions on X. In other words, Sym1(X∨) is X∨. It is what is called B(X)⊕ (X∗)n

in [FC90].)

To obtain the partial compactification at the cusp Fg′ , we first take the partial quotient

by Υ̃n. For this we use the Siegel domain realisation of Hg: for τ ∈ Hg, we write

τ =

(
τ ′ ω
tω τ ′′

)
with τ ′ ∈ Hg′ , ω ∈ Mg′×g′′(C) and τ ′′ ∈ M sym

g′′×g′′(C), and then

Hg
∼= Dg′ := {(τ ′, ω, τ ′′) | Im τ ′′ − (Im tω)(Im τ ′)−1(Imω) > 0} .

Then M ∈ Sym2(X) acts by translations in the imaginary directions in M sym
g′′×g′′(C), so near this

boundary, Xn
g is covered by

Dg′ × Cng′ × (C∗)ng
′′ ⊂ Hg′ × Cg′g′′ × (C∗)g

′′×g′′
sym ×

(
Cg′ × (C∗)g

′′)n
, (2.3)

where the term ((C∗)g
′′
)n is Cng′′/(X∨)n, given by b′′ acting by translations in the imaginary

directions in Cng′′ = X∨ ⊗ C.
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Now we compactify by replacing the torus part (C∗)g
′′×g′′

sym × ((C∗)g
′′
)n (that is, the quo-

tient C(g′′2+(2n+1)g′′)/2/Υ̃n) with a suitable torus embedding Temb(Σ(g′)) corresponding to a
fan Σ(g′) in (Sym2(X∨)× (X∨)n)⊗ R. We first define two (non-polyhedral) cones, in Sym2(X∨)
and Sym2(X∨)× (X∨)n, respectively, following [FC90].

The first cone is C(X) ⊂ Sym2(X∨ ⊗ R), which is defined to be the cone of positive semi-
definite symmetric bilinear forms b on X∨ ⊗ R with rational radical rad b. Equivalently, C(X) is
the cone generated by the rank 1 forms in Sym2(X∨⊗Q). To construct a toroidal compactification
of Ag, one must give decompositions of these cones for each gi < g into fans invariant under the
stabiliser in Γ of the cusp F (g′). There are many ways to do that, but using reduction theory of
quadratic forms (which guarantees the compatibility) supplies two important ones, the first and
second Voronoi decomposition.

The second cone is C̃(X) ⊂ (Sym2(X∨)⊕ (X∨)n)⊗ R, given by

C̃(X) =
{
(b, ℓ1, . . . , ℓn) ∈ Sym2

(
X∨ ⊗ R

)
⊕
(
X∨ ⊗ R

)n | ℓi|rad b = 0 for all i
}
,

as described in [FC90, Definition VI.1.3]. The number n does not change, so we suppress it in
the notation, but observe that C̃(X) implicitly depends on n whereas C(X) does not.

We then further decompose C̃(X) as in [FC90, Definition VI.1.3], for each g′, obtaining a col-
lection of fans Σ̃ =

{
Σ̃(g′) | 0 ⩽ g′ < g

}
. Provided that we choose the fans compatibly for different

cusps, we obtain, by the standard toroidal compactification procedure from [AMRT10], a com-

pactification Xn
g
Σ̃
that is analytically locally isomorphic to the product of a smooth space with

a quotient of Temb
(
Σ̃(g′)

)
by Γ̃n ∩P (g′). Ultimately, we shall choose Σ̃(g′) to be regular so that

Temb
(
Σ̃(g′)

)
is smooth. Singularities will then arise when we move beyond Υ̃n and take the

quotient by the rest of Γ̃n, which in our situation may have fixed points.

We need more, however, because we seek a Namikawa compactification. These are alluded
to in [FC90], but the equidimensional condition [FC90, Definition VI.1.3(v)], which is not used
and therefore not examined in detail there, is crucial for us. To be precise, we require a weaker
version of equidimensional, which we call equidimensional in codimension 1. For this, it is enough
if every ray in Σ̃(g′) maps onto a cone of the fans Σ that define Ag, whereas equidimensionality

requires this for every cone in Σ̃(g′) of any dimension.

These two conditions, smoothness and equidimensionality, are in general opposed to one
another. Choosing Σ̃ to give smooth covering spaces Temb

(
Σ̃(g′)

)
typically involves blowing up,

and thus instantly violates condition (ii) of Definition 2.1. Therefore, to construct an appropriate
Xn

g , we need a slightly more indirect approach. Instead of taking a regular decomposition straight

away, we first choose a decomposition Σ̃♭ such that Temb
(
Σ̃♭(g′)

)
itself has canonical singularities.

We do this by extending the perfect cone, or first Voronoi, compactification of Ag, which has
this property by construction.

Proposition 2.4. There exist a Γ-admissible collection Σ♭ of fans Σ♭(g′), for 0 ⩽ g′ ⩽ g, and
a Γ̃-admissible collection Σ̃♭ of fans Σ̃(g′) such that

(i)
∣∣Σ̃♭(g′)

∣∣ = C̃(X) and
∣∣Σ♭(g′)

∣∣ = C(X);

(ii) Σ̃♭(g′) is GL(X)⋉Xn-admissible relative to Σ♭(g′) for each g′;

(iii) Temb
(
Σ̃♭(g′)

)
has canonical singularities and Σ̃♭(g′) is equidimensional in codimension 1

over Σ♭(g′);

(iv) σ × {0} ∈ Σ̃♭(g′) for every σ ∈ Σ♭(g′).
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Remark. The uses of the word “admissible” in the preamble to Proposition 2.4 and in condi-
tion (ii) there are different. The term Γ-admissible refers to the property of a collections of fans,
one for each cusp, being compatible under restriction (see [AMRT10]), whereas GL(X) ⋉ Xn-
admissible is a property of compatibility at each cusp separately with the projection map
Xn

g → Ag, defined in [FC90, Definition VI.1.3].

Proof. We take Σ♭(g′) to be defined by the perfect cone decomposition of C(X). This is the
same as taking the cones of Σ♭(g′) to be the cones on the faces of the convex hull of the rank 1
forms in the closure of C with rational radical, by [BC75]. It is known to give an admissible
decomposition and a polyhedral fundamental domain for the action of GL(X); see, for example,
[Nam80, Chapter 8] and the references there.

We can extend this to a decomposition of C̃(X) by taking the convex hull of all (b, ℓ) in
C̃(X) ∩ Sym2(X) ⊕ (X∨)n with rank b = 1. From the description of the action of GL(X) ⋉ Xn,
given for example in [FC90, Theorem VI.1.1], it follows immediately that GL(X) ⋉ Xn acts on
the cone C̃(X) with a polyhedral fundamental domain.

If q = (b; ℓ1, . . . , ℓn) = (b; ℓj) ∈ C̃(X), then b ∈ C(X), so we can write b =
∑

λiri, where
ri = ξi

tξi is of rank 1, ξi ∈ X and λi ∈ R+. Since ℓj |rad b = 0, we may write ℓj = b(µj , •)
with µj ∈ rad b (notice that rad b ⊇

⋃
i rad ri, with equality if the ri are linearly independent).

Hence

q = (b; ℓj) = (b; b(µj , •)) =
(
b;
∑
i

λiri(µj , •)
)

=
∑
i

λi(ri; ri(µj , •)) ,

so the cone over the convex hull of the integral q with rank 1 quadratic part b is indeed C̃(X),
and every integral point of C̃(X) is in the convex hull.

The first of these conditions shows that the definition of Σ̃♭ does give an admissible collection
of fans. That is, it is Γ̃n-invariant, and chosen for different cusps Fg′ so as to be compatible
with restriction (Siegel Φ-operator) to adjacent cusps. This therefore yields a compactifica-

tion Xn
g
♭
. The second condition shows that the covering spaces Temb

(
Σ̃♭(g′)

)
have canonical

singularities. Finally, Xn
g
♭
is a Namikawa compactification because there are no rays of Σ̃♭(g′)

in the interior of C̃(X), and the ray spanned by q = (b; ℓj) projects onto the ray spanned
by b.

Shepherd-Barron showed in [She06] (see also the correction [AS16]) that the perfect cone
compactification of Ag has canonical singularities for g ⩾ 5. We are not constrained to use
a specific compactification; rather, we choose a suitable one, as in [Tai82, § 5]. We choose smooth
subdivisions Σ̃♯(g′) of the fans Σ̃♭(g′) (that is, toric resolutions of Temb

(
Σ̃♭(g′)

)
) in a Γ̃-equivariant

way and denote the resulting compactification by Xn
g
♯
. This is of course no longer a Namikawa

compactification, nor is it smooth in general since Γ̃ is not neat. However, we have the following
easy consequence of Lemma 2.3.

Corollary 2.5. Suppose that Xn
g
♯
has canonical singularities and that the action of P (g′) ∩ Γ̃

on Temb
(
Σ̃♯(g′)

)
has no quasireflections. Then Xn

g
♭
has canonical singularities.

Proof. It is enough to apply Lemma 2.3 to the resolutions Temb
(
Σ̃♯(g′)

)
→ Temb

(
Σ̃♭(g′)

)
for

each g′.
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3. Quotient singularities

In this section we shall verify the conditions of Corollary 2.5 for the values of g and n that
concern us.

Recall that any toroidal compactification Ag of Ag comes with a surjective map to the Satake
compactification A∗

g, and that the Satake compactification has a stratification

A∗
g = Ag ⊔ Ag−1 ⊔ · · · ⊔ A1 ⊔ A0 ,

where A0 is a point. Hence any compactification of Xn
g that dominates a Namikawa compactifi-

cation has a map to A∗
g, and in particular, there is a natural map π : Xn

g
♯ → A∗

g.

If p ∈ Xn
g
♯
is such that π(p) ∈ Ag′ ⊂ A∗

g, then near p the toroidal compactification is
a quotient of an invariant open subset

D♯ ⊂ Hg′ × Cg′g′′ × Cg′n × Temb
(
Σ̃♯

)
(3.1)

(where g′ + g′′ = g) by an action of P̃ (g′) ∩ Γ̃n that preserves the product structure, extending

the decomposition (2.3). To determine the singularity at p ∈ Xn
g
♯
, we therefore have to examine

the action of the stabiliser G of a preimage p̃ ∈ D♯ of p on the tangent space TD♯,p̃.

We recall some basic facts from [Tai82] and [Rei87]. Suppose that ρ : G → GL(m,C) is
a finite-dimensional representation of a finite group G, and suppose that h ∈ G and that ρ(h)
has order k > 1. If the eigenvalues of ρ(h) are ζa1 , . . . , ζam (where ζ = e2πi/k is a primitive kth
root of unity and 0 ⩽ ai < k), then the Reid–Tai sum of h, also called the age of h, is

RT(h) =

m∑
i=1

ai
k
.

The RST (Reid–Shepherd-Barron–Tai) criterion states that if ρ(G) has no quasireflections, then
the quotient Cm/ρ(G) has canonical singularities if and only if RT(h) ⩾ 1 for every h ∈ G. If
ρ(h) is a quasireflection, then exactly one of the ai is non-zero, so RT(h) < 1. It follows that in
any case if RT(h) ⩾ 1 for every h ∈ G, then the quotient has canonical singularities.

We apply this to the action of γ̃ ∈ P̃ (g′). We use the block decomposition given in (2.1)
and (2.2), and the notation for submatrices in the rest of this section is taken from there.

To check that the singularity at p is canonical, it is enough to verify that G contains no
quasireflection on the tangent space (which we need to do anyway in order to apply Lemma 2.3)
and that RT(γ̃) ⩾ 1 for any non-trivial γ̃ ∈ G.

Note that the decomposition (3.1) is G-invariant, so RT(γ̃) is the sum of the age of γ̃ restricted
to each factor.

Proposition 3.1. If g′′ = 0, then Xn
g has a canonical singularity at p and the stabiliser G of p̃

has no quasireflections unless g = 2 and n ⩽ 2, or g = 3 and n = 1.

Proof. Recall that we are assuming g ⩾ 2 anyway. If g′′ = 0, then the local cover in (3.1) be-
comes D♯ = Hg × Cgn, which is just the covering space of Xn

g . But X
n
g has canonical singularities

by [Ma21, Proposition 10.3], and there are no quasireflections by [Ma21, Lemma 7.1] for these
values of g and n.

In view of Proposition 3.1, we may assume g′′ > 0 for the rest of this section. In order to use
the results of [Tai82], we need to verify the condition that γ̃ should act trivially on each cone of
the fan (see [Tai82, § 5, p. 438]).
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Lemma 3.2. If γ̃ fixes a cusp, then it acts trivially on each cone of Σ̃♯(g′).

Proof. The eigenvectors in Sym2(V ) are the rank 1 forms fifj , where the fi ∈ X∨⊗R are the real

eigenvectors of u (if any), and thus there are no eigenvectors in the interior of the cone C̃. Now
the result follows: if γ̃ acts non-trivially on σ ∈ Σ̃♯(g′), then it acts on some subset {ρ1, . . . , ρk} of
the rays spanning σ by a free permutation, and then by the Brouwer fixed-point theorem, it has
an eigenvector in the closed cone spanned by {ρ1, . . . , ρk}; but this eigenvector is not a generator
of any of the ρi, so it is in the interior of C̃.

Proposition 3.3. Suppose that p ∈ Xn
g and π(p) ∈ Ag′ , and that γ̃ ̸= 1n+2g belongs to the

stabiliserG of p̃ ∈ D♯ in P̃ (g′)∩Γ̃n. Suppose that u ̸= ±1g′′ , or that u = −1g′′ and (g′′, n) ̸= (1, 1).
Then the action of γ̃ on TD♯,p̃ has RT(γ̃) ⩾ 1, and in particular, it is not a quasireflection.

Proof. For this, it is enough to look at the Temb
(
Σ̃♯

)
factor. This is a toric variety with torus T

whose lattice of 1-parameter subgroups (the dual of the character lattice) is Sym2(X∨)× (X∨)n.

If the eigenvalues of γ̃ on V = X∨⊗C, which are the eigenvalues of u, are µ1, . . . , µg′′ , then the
eigenvalues on Sym2(V )×V n are µiµj and n copies of each µi. The eigenvalues of γ̃ on the toric
boundary component containing p̃ include n copies of each µi and, as in [Tai82, Lemma 5.2], all
the µiµj that are different from 1. Since u ∈ GL(g′′,Z) is of finite order, its eigenvalues include
all the primitive dth roots of unity for some degree d, and that gives RT(γ̃|V ) ⩾ 1 unless d = 1
or d = 2.

If d = 1, then u = 1g′′ . If d = 2, then µi = ±1 and we may assume µ1 = −1. Then if
g′′ > 1, we either have µ2 = −1, so again RT(γ̃|V ) ⩾ 1, or µ2 = 1, and then the eigenvalue
µ1µ2 = −1 occurs on Sym2(V ). If g′′ = 1, then the eigenvalue µ1 = −1 occurs n times on V n, so
RT(γ̃|V n) ⩾ 1 unless g′′ = n = 1.

Next, we examine the action of γ̃ on the Cng′ factor. Because of Proposition 3.3, we may
assume u = ϵ1g′′ with ϵ = ±1.

For any r ⩽ g, we let Mr×g(C)∗ be the set of matrices of rank r in Mr×g(C). Then the Grass-
mannian Gr(r, g), of r-dimensional linear subspaces in Cg, is Mr×g(C)∗/GL(r,C), with GL(r,C)
acting by right multiplication. Since Cng is identified with Mn×g(C) by the choice of basis
e1, . . . , e2g, we may regard Hg ×Cng as a subset of Gr(g, n+ 2g) by sending an element (τ, Z) ∈
Hg × Cng to the equivalence class of block matricesZ

τ
1g

 ∈ M(n+2g)×g(C)/GL(g,C) .

Recall that, in this representation, a boundary component of Hg is a subset of the closure Hg

of Hg in Gr(g, 2g), so this description extends to the boundary. So the image of p̃ in Hg × Cng

may also be written in this way, with τ ∈ Fg′ ⊂ Hg given by τ =
(
τ ′ ω
tω τ ′′

)
, where τ ′ ∈ Hg′ ,

ω ∈ Mg′×g′′ and τ ′′ ∈ Sym2(X∨ ⊗ C) = M sym
g′′×g′′(C).

Then the action of γ̃ is given (notation from (2.1) and (2.2)) by

γ̃ ·

Z
τ
1g

 =


Z + aτ + b(

Aτ ′ +B Aw +m′

mτ ′ + ϵtw + n mw + ϵτ ′′ +M

)
(
Cτ ′ +D Cw + n′

0 1g′′

)
 .
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Because τ is preserved by γ, this simplifies to

γ̃ ·

Z
τ
1g

 =

(Z + aτ + b) ·N
τ
1g

 ,

where

N =

(
(Cτ ′ +D)−1 −(Cw + n′)(Cτ ′ +D)−1

0 1g′′

)
,

and therefore the action of γ̃ on the tangent space to Cng at Z is by right multiplication by N .

Lemma 3.4. The eigenvalues of γ̃ on Cng are exactly the eigenvalues of N , which are 1 and the
eigenvalues of (Cτ ′ +D)−1. Moreover, γ′ fixes τ ′; that is, (Aτ ′ +B)(Cτ ′ +D)−1 = τ ′.

Proof. This is immediate from the discussion above.

The next lemma and its corollaries apply to the usual action of Sp(2g,Z) on Hg, for arbi-

trary g. If γ =
(

Aγ Bγ

Cγ Dγ

)
∈ Sp(2g,Z), then denote the eigenvalues of γ by Λ = (λ1, . . . , λg) and

Λ = (λ̄1, . . . , λ̄g); we will regard such a sequence as a diagonal matrix.

Lemma 3.5. If γ fixes τ ∈ Hg, then γ is diagonalisable. Moreover, Cγτ + Dγ is diagonalisable
and has Λ̄ as sequence of eigenvalues.

Proof. For every β ∈ Sp(2g,R) and τ ∈ Hg, we set J(β, τ) = Cβτ + Dβ. Then J is a cocycle;
that is, J(β1β2, τ) = J(β1, β2τ)J(β2, τ) for every β1, β2 ∈ Sp(2g,R) and τ ∈ Hg.

It is well known, cf. [Tai82, Lemma 4.1], that there exists an α ∈ Sp(2g,R) such that

ατ = i1g and αγα−1 =

(
δ1 δ2
−δ2 δ1

)
with δ1, δ2 real diagonal matrices and δ1 + iδ2 ∈ U(g,C). Obviously, γ is diagonalisable, with
eigenvalues Λ = δ1 + iδ2 and Λ = δ1 − iδ2. Now using the cocycle property, we have

Λ = J
(
αγα−1, i1g

)
= J

(
α, γα−1, i1g

)
J
(
γα−1, i1g

)
= J(α, γ · τ)J(γ, τ)J

(
α−1, i1g

)
.

Now, since γ fixes τ and J(α−1, i1g) = J(α, τ)−1, we get that Λ and J(γ, τ) are conjugate.

We have the following immediate corollary.

Corollary 3.6. If γ ∈ Sp(2g,Z) is non-trivial and fixes τ ∈ Hg, then Cγτ+Dγ has an eigenvalue
that is not 1.

Now we return to the singularities of Xn
g .

Proposition 3.7. If g′′ ̸= 0, then Xn
g has a canonical singularity at p as long as g + n ⩾ 6.

Proof. As before, we take γ̃ ∈ P̃ (g′), fixing a point p̃, and write it using the block decomposition
given in (2.1) and (2.2). Again, because of Proposition 3.3, we may assume that u = ϵ1g′′ ,
where ϵ = ±1 and ϵ = 1 unless g′′ = n = 1.

For any g, if γ′ = 12g′ and u = 1g′′ , then γ̃ ∈ Ũ(g′) (see [Nam79, Example 2.8]) and γ̃ acts
trivially at the boundary Fg′ . In particular, this holds if g′ = 0 unless g′′ = n = 1, but then
g = 1, which is excluded.

If γ′ = −12g′ and ϵ = 1, or γ′ = 12g′ and ϵ = −1, then there are g − 1 eigenvalues λiϵ = −1
on the Cg′g′′ factor, giving RT(γ̃) > 1. If γ′ = −12g′ and ϵ = −1, then the eigenvalues on the
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Temb
(
Σ̃♯

)
factor include n copies of ϵ, and, by Corollary 3.6, there are also n copies of −1

occurring on the Cng factor. Even for n = 1, this gives RT(γ) ⩾ 1. Therefore, we may assume
that γ′ ̸= ±12g′ , and thus that γ′ does not act trivially on Hg′ .

If g′ ⩾ 5 and γ′ ̸= ±12g′ , then the contribution to RT(γ) from γ′ acting on the Hg′ factor
(the Fg′ factor) is already at least 1, and Ag′ itself has canonical singularities: this is [Tai82,
Lemma 4.5].

If g′ < 5, then the eigenvalues not coming from the action of γ′ on Hg′ include g
′′ copies of ϵλi

on the Cg′g′′ factor and, by Corollary 3.6, a further n copies of ϵλ±1
i on the Cng factor. If the

order of γ̃ on the tangent space at p̃ is d, then some λi is a non-trivial dth root of unity, and so
this gives a contribution of at least (n+ g′′)/d to RT(γ̃).

Moreover, according to [Tai82, Lemma 4.4] we may assume d ⩽ 6, and in each case the action
of γ′ contributes at least g′/d to RT(γ̃), so in any case we have RT(γ̃) ⩾ (g′ + n + g′′)/d ⩾
(n+ g)/6. So if n+ g ⩾ 6, we are done.

The condition n+ g ⩾ 6 cannot be strengthened: it is needed if g′ = 1 and d = 6.

Theorem 2.2 now follows immediately.

4. Slope of Ag

We assume g > 1 throughout since the case g = 1 can be reduced to the case of M1,n+1, which
is solved in [Bel98] and [BF06].

We shall construct differential forms by using Siegel modular forms, so we begin with some
elementary definitions concerning them.

Definition 4.1. A modular form of weight k is a holomorphic function f : Hg → C on the Siegel
upper half-plane Hg = {Z ∈ Mg×g(C) | Z = tZ, ImZ > 0} such that

f(γ · τ) = det(Cτ +D)kf(τ) for any γ ∈ Sp(2g,Z) .

Note that we need no extra condition at infinity when g > 1.

A Siegel modular form has a Fourier expansion

f(τ) =
∑
T

a(T ) exp(πi tr(Tτ)) ,

where the sum runs over all even integral symmetric matrices T .

Definition 4.2. If f is a Siegel modular form, the vanishing of f at the boundary is

b := 1
2 min

{
xtTx | a(T ) ̸= 0, x ∈ Zg ∖ {0}

}
.

If b > 0, that is, if a(T ) ̸= 0 implies T > 0, we say that f is a cusp form.

We recall, mainly from [Mum83a], some facts about Ag = Sp(2g,Z)\Hg and its compacti-
fications. Modular forms of weight 1 determine a Q-line bundle L, the Hodge line bundle. The
Satake compactification A∗

g is Proj of the ring of modular forms, and the Mumford partial com-
pactification A′

g is the blow-up of Ag ⊔ Ag−1 ⊂ A∗
g along Ag−1. Every toroidal compactification

of Ag dominates A∗
g and contains A′

g as a Zariski open subset: the toroidal compactifications
differ from one another only above the deeper strata Ag′ for g

′ < g − 1.

If g ⩾ 2, then Pic(A′
g) ⊗ Q = Qλ ⊕ Qδ, where λ is the class of L and δ is the class of

the boundary divisor ∆A′ , the proper transform of Ag−1 ⊂ A∗
g. This is proved in [Mum83a,
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Corollary 1.6] for g ⩾ 4, and for g = 2 and g = 3 it follows from the studies of the Chow ring in
[Mum83b] and [Fab90], respectively; see [Hul00].

Definition 4.3. The slope of an effective divisor E = aλ− bδ on A′
g with a, b > 0 is defined to

be s(E) = a/b. In particular, if E is the zero divisor of a cusp form f of weight k and vanishing
order b, then s(E) = k/b.

The Kodaira dimension of the Kuga varieties Xn
g is related to the transcendence degree of

the field generated by cusp forms of slope less than or equal to g+n+1; see for example [Ma21,
Theorem 1.3].

Definition 4.4. The minimal slope smin(g) is the infimum of the slopes of all effective divisors
on A′

g.

An upper bound smin(g) is provided in small genera by the Andreotti–Mayer divisor N0, the
locus of principally polarised abelian varieties with singular theta divisor [AM67]. The divisor N0

has two components: Θnull, the locus where the theta divisor has a singular point of order 2,
and N ′

0, the locus where the theta divisor has a singular point not of order 2. The classes
of Θnull, for g ⩾ 1, and N ′

0, for g ⩾ 4, are computed in [Mum83a]:

[Θnull] = 2g−2(2g + 1)λ− 22g−5δ ,

[N ′
0] =

(
(g + 1)!

4
+

g!

2
− 2g−3(2g + 1)

)
λ−

(
(g + 1)!

24
− 22g−6

)
δ .

For g ⩽ 3 the minimal slope is achieved at [Θnull], giving the values smin(1) = 12, smin(2) = 10
and smin(3) = 9. For g = 4 we have smin(4) = 8, achieved by s([N ′

0]), and for g = 5, we have
smin(5) = 54/7, also achieved by s([N ′

0]); see [Sal92] and [FGSV14], respectively. For 2 ⩽ g ⩽ 4
the divisors that minimise the slope are rigid. For g = 6 we have smin(6) ⩽ 7; see [DSS21].
However, the fact that smin(6) ⩽ s([N ′

0]) = 550/73 < 8 will suffice for our purposes. For g ⩾ 7
we have smin(g) < g + 1 by [Tai82] and [Mum83a].

Theorem 4.5. Suppose g ⩾ 2 and that Xn
g is a Namikawa compactification of Xn

g with canonical
singularities. Then

(i) κ(Xn
g ) =

1
2g(g + 1) if smin(g) < g + n+ 1;

(ii) κ(Xn
g ) = 0 if smin(g) = s(D) = g + n+ 1 and D is rigid;

(iii) κ(Xn
g ) = −∞ if smin(g) > g + n+ 1 (even if the singularities are not canonical ).

Proof. The first case (what one might call relatively general type) follows easily from [Ma21,

Proposition 9.2]. Pulling back along f : Xn
g
♯ → Ag, this implies kKX ⩾ f∗(k(g+n+1)L−k∆A)

for sufficiently divisible k. So it is enough to show that the Q-divisor (g + n+ 1)L−∆A is big;
however, since it has slope strictly greater than smin(g), it is in the interior of the effective cone
and can therefore be written as the sum of an effective divisor and an ample divisor.

In the second case, the same argument shows that KX is effective since it dominates the
pullback of the effective divisor (g+ n+1)L−∆A. Therefore, κ(X

n
g ) ⩾ 0. On the other hand, if

some multiple of KX moves, then so does some multiple of (g + n + 1)L −∆A, which is to say
that some multiple of D moves, but D is rigid.

In the third case, if KX ⩾ 0, then f∗(KX) ⩾ 0, but s(f∗(KX)) = g+ n+1 < smin(g). So KX

is not effective, and κ(Xn
g ) = −∞.

Theorem 1 follows immediately from this.
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