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Abstract

We prove the Harder–Siegel formula for the Euler characteristic of Ag via the inter-
section theory of Mg and a vanishing result for lambda classes on the boundary of
the toroidal compactifications of Ag, recently proven by Canning, Molcho, Oprea and
Pandharipande.

1. Introduction

The moduli space of principally polarized abelian varieties of dimension g is a smooth Deligne–
Mumford (DM for short) stack of dimension

(
g+1
2

)
, usually denoted by Ag. Over the complex

numbers, this is the same as saying that Ag is an orbifold, and it can be identified with the
stack quotient of the Siegel upper half-space by the group of symplectic matrices with integer
coefficients:

Ag
∼= [Hg/ Sp(2g,Z)] . (1.1)

The Gauss–Bonnet formula of Harder [Har71] shows that the Euler characteristic of Ag can be
obtained from the volume of a fundamental domain for the action of Sp(2g,Z) on Hg, which was
known to Siegel [Sie36].

Theorem 1.1. The Euler characteristic of Ag is

χ(Ag) = ζ(−1) · · · ζ(1− 2g) . (1.2)

We employ the logarithmic Gauss–Bonnet formula to reduce the calculation of the Euler
characteristic of Ag to an intersection-theoretic problem on the toroidal compactifications of Ag,
which is solved via Hodge integrals and the Torelli map

On every toroidal compactification of Ag, there is a universal semiabelian scheme π : Gg → Ag

with a zero section s. The Hodge bundle is a vector bundle of rank g defined by Eg = s∗Ωπ; its
Chern classes are denoted by λi = ci(Eg). Let Mg,n denote the moduli space of stable curves of
genus g with n markings, and let

π : Cg,n −→ Mg,n

be the universal curve, with sections s1, . . . , sn corresponding to the markings. It is a smooth
DM stack of dimension 3g− 3+ n, and it has a Hodge bundle, defined by Eg = π∗ωπ. We denote
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A. Iribar López

its Chern classes by λi as well. On some toroidal compactifications, there is a Torelli morphism

Tor: Mg,n −→ Ag ,

as shown in [Ale04, Nam76], and Tor∗ Eg = Eg. Esnault and Viehweg proved in [EV02] that
the λ-classes satisfy Mumford’s relation

(1 + λ1 + · · ·+ λg)
(
1− λ1 + · · ·+ (−1)gλg

)
= c
(
Eg ⊕ E∨

g

)
= 1 in CH∗(Ag

)
. (1.3)

On Mg,n there are also line bundles Li = s∗iωπ representing the cotangent space at the ith
marking; the first Chern class of Li is ψi. The ψ-classes and λ-classes are part of the tautological
ring of Mg,n (see [FP13, Pan18] for the definition). Integrals of the form∫

Mg,n

λa11 · · ·λagg ψb1
1 · · ·ψbn

n

are Hodge integrals; they appear naturally in Gromov–Witten theory.

We will consider the locus Bg of semiabelian varieties that are trivial extensions of an abelian
variety by a torus. The class λg is proportional to the class [Bg] when we restrict ourselves to
an open subset of Ag given by degenerations of torus rank at most 1; see [vdG99, EvdG05].
Then we compute the proportionality factor in two ways. The first is through the isomorphism
Bg

∼= Ag−1×BZ/2Z, and the second one is by pulling back via the Torelli map. We will see that
the formula for the Euler characteristic (1.2) follows from the evaluation of the Hodge integrals∫

Mg

λgλg−1λg−2 and

∫
Mg,1

λgλg−1c
(
E∨
g

)
1− ψ

,

which have been computed by Faber and Pandharipande [FP00a, FP00b].

With a polarization on an abelian variety of dimension g, we can associate a list of numbers
δ = (d1, . . . , dg), where di | di+1 and there is a moduli stack of abelian varieties of dimension g
together with a polarization of type δ, denoted by Ag,δ. When di = 1 for all i, we recover Ag.
These moduli spaces are part of a tower of étale maps. By the degree calculations of [Iri24], the
Euler characteristics of all the moduli spaces Ag,δ are determined.

Theorem 1.2. For a list of positive integers δ = (d1, . . . , dg) such that di | di+1 for all i,

χ(Ag,δ) =

d2g−2
g d2g−6

g−1 · · · d−2g+2
1

∏
1⩽i<j⩽g

∏
p|dj/di

(
1− p−2(j−i+1)

)(
1− p−2(j−i)

)
χ(Ag) ,

where the second product is over primes p.

We will prove in Corollary 7.1 that the non-vanishing of χ(Ag) implies the non-vanishing
of λg−1 · · ·λ1 on CH∗(Ag). This result was first established in [vdG99, Corollary 1.3] using the
geometry of Ag over fields of positive characteristic.

Further directions

The main geometric input for this formula is that λg is proportional to [Bg] on A⩽1
g , which

follows from a residue calculation in [EvdG05] to express λg in terms of boundary strata of the
toroidal compactifications of Ag. Improvements of this result for the locus given by degenerations
of abelian varieties of torus rank at most k for small k would lead to more connections to the
intersection theory of Mg. Johannes Schmitt has checked that [B2] is not proportional to λ2
on A2, so a deeper understanding is needed for torus rank at least 2.
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The Euler characteristic of Ag via Hodge integrals

Note that Bg is one of the two components of the closure of the product locus A1 × Ag−1

in A⩽1
g . In [COP24], the authors compute Tor∗([A1 ×Ag−1]) and prove that it is a tautological1

class on Mct
g . Given our presentation of the fibered product M⩽1

g ×Ag Bg in Lemma 5.1, which
has the same form as the fibered product Mct

g ×Ag (A1 ×Ag−1) in [COP24], we think that it is
reasonable to expect the following.

Conjecture 1.3. The class Tor∗
(
[A1 ×Ag−1]

)
lies in the tautological ring R∗(M⩽1

g

)
.

2. Logarithmic Euler characteristic

If Y is a smooth DM stack of dimension n with a smooth compactification Y such that the
complement D of Y is a normal crossing divisor, then the sheaf of meromorphic differentials
having at most log poles along D is a vector bundle of rank n, denoted by ΩY(logD). It is well
known that

χ(Y) = (−1)n
∫
Y
cn(ΩY(logD)) ,

where χ is the Euler characteristic (see [CMZ22, Section 2] for a proof when Y is a scheme,
which generalizes step by step to smooth DM stacks). When Y is Ag and Y is one of its smooth
toroidal compactifications (constructed in [AMRT10] over the complex numbers and in [CF90]
over the integers), ΩAg

(logD) is the canonical extension of ΩAg (see [CF90, Examples VI.4.1]

for details), so we have the following:

ΩAg
(logD) = Sym2 Eg .

The top Chern class of Sym2 Eg can be computed by the Giambelli formula [Ful84, Exam-
ple 14.5.1] and equals

2g

∣∣∣∣∣∣∣∣∣∣∣

λg 0 0 . . . 0
λg−2 λg−1 λg . . . 0
λg−4 λg−3 λg−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ1

∣∣∣∣∣∣∣∣∣∣∣
= 2g

(
λgλg−1 · · ·λ1 +

g−1∑
k=0

λg · · ·λg−k+1λ
2
g−k︸ ︷︷ ︸

=0 by Mumford’s
relation (1.3)

pk(λ1, . . . , λg)

)
,

so

χ(Ag) = (−1)(
g+1
2 )2g

∫
Ag

λ1 · · ·λg . (2.1)

In particular, the integral on the right-hand side does not depend on the toroidal com-
pactification, although more generally any integral of λ-classes is independent of the toroidal
compactification since any two such compactifications are dominated by a third one, see [CF90,
Definition IV.2.4], and the pullbacks of the Hodge bundles agree since they are the canonical
extension of the Hodge bundle on the interior. Note that these integrals also make sense on
non-smooth toroidal compactifications considering Chern classes as operational Chow classes.

An abelian variety of dimension 1 is an elliptic curve, so

χ(A1) = −2

∫
A1

λ1 = −2

∫
M1,1

ψ = ζ(−1) . (2.2)

1The tautological ring of Mct
g , and, more generally, of any open subset M ⊆ Mg,n, is defined by restriction.
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3. λg−k-evaluations

Any toroidal compactification of Ag has a canonical map to the Satake compactification

β : Ag −→ ASat
g = Ag ⊔ Ag−1 ⊔ · · · ⊔ A0 ,

and we can obtain partial compactifications A⩽k
g = β−1(Ag ⊔ · · ·⊔Ag−k) of semiabelian varieties

of torus rank at most k. It is shown in [CMOP24] that λg−k|Ag∖A⩽k
g

= 0.

This result guarantees that the natural integration maps

ϵA⩽k
g

: CH(g+1
2 )+k−g

(
A⩽k

g

)
−→ Q , α 7−→

∫
Ag

αλg−k ,

where α is any extension of α to Ag, are well defined.

On the moduli space of curves, we consider the open subsets M⩽k
g of curves whose dual graph

has Betti number less than or equal to k. Since the Torelli map can be extended to some toroidal
compactification of Ag, see [Nam76, Ale04], and satisfies

Tor
(
Mg \M⩽k

g

)
⊆ Ag \ A⩽k

g ,

we see that λg−k vanishes outside of M⩽k
g . We can construct integration maps

ϵM⩽k
g

: CH2g−3+k
(
M⩽k

g

)
−→ Q

analogously.

When the Torelli morphism extends to Ag and
[
J ⩽k
g

]
is the pushforward of 1 under this

Torelli morphism to A⩽k
g , the integration maps are related by the identity

ϵM⩽k
g
(Tor∗(α)) = ϵA⩽k

g

(
α ·
[
J ⩽k
g

])
. (3.1)

4. The locus Bg

There is a natural map j : Ag−1 → ∂A⩽1
g sending A to the semiabelian variety A × Gm; we

denote its image by Bg. It is isomorphic to Ag−1 × BZ/2Z because of the extra automorphism
of Gm. The map j extends to toroidal compactifications of Ag−1 and satisfies j∗Eg = Eg−1 ⊕O.
Therefore, the normal bundle to j is

Nj = Sym2
(
E∨
g−1 ⊕OAg−1

)
− Sym2

(
E∨
g−1

)
= E∨

g−1 ⊕OAg−1 .

We have the following result, first proven in cohomology2 [vdG99, Proposition 1.10] and then
in the Chow groups [EvdG05, Theorem 1.1].

Theorem 4.1. In the Chow ring of A⩽1
g , the following holds:

λg =
|B2g|
2g

[Bg] ,

where B2g is the gth even Bernoulli number.

We will give a new proof of the proportionality factor under the assumption that the two
cycles are proportional. Let τ(g) ∈ Q be such that λg = τ(g)[Bg].

2In fact, the result in cohomology is enough for our calculation since the λg−k-evaluation maps factor through the
cycle class map.
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5. Pullback of Bg to M⩽1
g

Consider the Cartesian diagram

Z M⩽1
g

Bg A⩽1
g ,

Tor

j

(5.1)

where j is a regular embedding.

Lemma 5.1. For a partition µ = (g1, . . . , gl) of g−1 with g1 ⩽ · · · ⩽ gl, let Mcycle
1,l be the substack

of M1,l given by curves without rational tails and whose normalization is a union of rational
curves, and consider the gluing map

ξµ : Mct
g1,1 × · · · ×Mct

gl,1
×Mcycle

1,l −→ M⩽1
g

that attaches the marked point of the ith moduli space of compact type to the ith marked point
of Mcycle

1,l . The images of the morphisms ξµ when µ runs through all the partitions of g − 1 are
disjoint and cover Z.

Proof. This follows from the results of [CV11], but we give a direct proof here.

We first recall the structure of semiabelian varieties of torus rank 1. For every line bundle L
on an abelian variety A, the Theta group is an algebraic group G(L) sitting in an exact sequence

0 −→ Gm −→ G(L) −→ K(L) −→ 0 .

If L ∈ A∨, then K(L) = A, and so G(L) is a semiabelian variety. This defines a morphism

A∨ −→ Ext1ab(A,Gm)

that is in fact an isomorphism [Oor66, Proposition 17.6].

Consider a prestable curve D of genus h whose dual graph is a cycle of length k. Denote by
D1, . . . , Dk the irreducible components of D̃, and consider points pi, qi ∈ Di such that qi and pi+1

are identified in C. Let Dpart be the partial normalization of D at the edge p1 = qk. Then, since
a line bundle on D is equivalent to a line bundle L on Dpart and an isomorphism Lp1

∼= Lqk ,
we have a short exact sequence

0 −→ Gm −→ Jac(D) −→ Jac(Dpart) −→ 0 .

By the above discussion, this corresponds to a unique line bundle M ∈ Jac(Dpart)∨, which
we can identify by pullback along the Abel–Jacobi map

aj : Dpart −→ Jac(Dpart) ,

x ∈ Di 7−→ (OD1(p1 − q1), . . . ,ODi(x− qi), . . . ,ODk
(pk − qk)) .

We assume k = 1 for simplicity. In this case, Dpart is a smooth curve, and aj∗(M) is the line
bundle over the Dpart bundle whose fiber over a point x is the space of isomorphisms

O(x− p)p ∼= O(x− p)q ,

which is O(p− q). When k ⩾ 1, the line bundle aj∗(M) is

(OD1(p1 − q1), . . . ,ODk
(pk − qk)) ∈ Jac(Dpart) .

Therefore, the semiabelian variety Jac(D) lies in Bh if and only if ODi(pi − qi) = ODi , that
is, if and only if all the Di are rational.
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Now consider a general stable curve C of genus g whose dual graph ΓC has Betti number 1.
There is a subgraph of ΓC that is minimal among all the subgraphs that have Betti number 1;
let D ⊂ C be the curve that corresponds to such a graph. Then C ∖D is a disjoint union of l
curves Ci of compact type, and by stability g(Ci) > 0. Moreover,

Jac(C) = Jac(D)×
∏

Jac(Ci) ,

so Jac(C) lies in Bg if and only if Jac(D) lies in Bg, which happens if and only if D̃ is a union
of rational curves (and in particular g(D) = 1), so C lies in the image of ξµ for the partition
µ = (g(C1), . . . , g(Cl)).

0

00

1

3

1

4

1

0

10

Figure 1. Two examples of the dual graph of a curve of genus 11 in Z. They correspond to the
partitions (1, 2, 3, 4) and (10).

Remark 5.2. Note that

dim
(
Mct

g1,1 × · · · ×Mct
gl,1

×Mcycle
1,l

)
=

l∑
i=1

(3(gi − 1) + 1) + (l − 1) = dim
(
M⩽1

g

)
− (l + 1)

and that Mcycle
1,l is not proper except in the case l = 1, where it is isomorphic to BZ/2Z. In

particular,
∫
Mcycle

1,1
1 = 1

2 .

When µ = (g − 1), the image of ξµ is defined to be the principal locus.

Lemma 5.3. The principal locus is closed in Z.

Proof. If µ = (g1, . . . , gl), then the dual graph of a curve in the image of ξµ is a stable cycle
with l markings and a collection of rooted trees together with an assignment of a tree to each
marking on the cycle. There are five types of edges:

– edges belonging to the cycle, when it has length at least 2,

– edges belonging to the tree,

– edges between a vertex of the cycle and the root of the associated tree, when the genus of
the root is not 0,

– edges between a vertex of the cycle and the root of the tree, when the genus of the root is 0,

– the edge of the cycle, when it has length 1.
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The Euler characteristic of Ag via Hodge integrals

If we contract an edge of the first two types, the curve stays in ξµ. If we contract an edge of the
third type, the new curve lies in the image of ξµ′ , where µ′ is a refinement of µ, and the last two
contractions take the curve outside of Z. The partition (g− 1) is not the refinement of any other
partition, so Z\ im(ξ(g−1)) is closed under generalization, and so the principal locus is closed.

In particular, ξ(g−1) is proper. Let Z ′ be the closure of the complement of the principal locus
in Z.

Lemma 5.4. The class λg−2 ∈ CHg−2
(
M⩽1

g

)
vanishes when restricted to Z ′.

Proof. From the discussion in Lemma 5.3, the points in ξ(g−1)

(
Mg−1,1 ×Mcycle

1,1

)
cannot be in

Z ′, so the normalization of any curve in Z ′ has to be a union of rational curves and curves of
genus g1, . . . , gl with

∑
gi = g − 1 and l ⩾ 2, but note that

cg−2

(⊕
Egi

)
=

l∑
i=1

cgi−1(Egi) ·
∏

j=1,...,l
j ̸=i

cgj (Egj ) ,

which vanishes because the domain of all the morphisms ξµ is a space of curves of compact
type and λh|Mct

h
= 0. Note that the products on the right-hand side of the equation are over

a non-empty set because l ⩾ 2.

The map ξ(g−1) is a regular embedding with normal bundle L∨⊞OMcycle
1,1

, where L is the cotan-

gent line, and therefore the excess class for the principal component in the diagram (5.1) is

ctop
(
Nj −Nξ(g−1)

)
= cg−2

(
E∨
g−1 − L∨) .

By the residual intersection formula [Ful84, Corollary 9.2.3],

j!([Bg]) = ξ(g−1),∗

[c(E∨
g−1

)
1− ψ

]
g−2

+R ,

where R is the residual class supported on Z ′. By Lemma 5.4, the class λg−2j
!([Bg]) has a natural

extension to Mg, namely,

λg−2

[
ξ(g−1),∗

(
c
(
E∨
g−1

)
1− ψ

)]
g

∈ CH2g−2
(
Mg

)
,

where ξ(g−1) : Mg−1,1 ×Mcycle
1,1 → Mg is the gluing map.

Proof of Theorem 4.1. Using equation (3.1), we obtain

ϵA⩽1
g

(
λg−2[Bg] ·

[
J ⩽1
g

])
=

(∫
Mcycle

1,1

1

)(∫
Mg−1,1

λg−1λg−2c
(
E∨
g−1

)
1− ψ

)
=

1

2

1

(2g − 2)!

|B2g−2|
2g − 2

,

by [FP00b, Theorem 3]. In [FP00a, Theorem 4], the authors also showed that

ϵA⩽1
g

(
λg−2λg ·

[
J ⩽1
g

])
=

∫
Mg

λgλg−1λg−2 =
1

2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g

.

Dividing the last two equations, we obtain the value of τ(g).
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6. The Euler characteristic of Ag,δ

First, we see that the evaluation of τ(g) for all g is equivalent to the knowledge of the Euler
characteristic of Ag.

Proof of Theorem 1.1. Since j∗Eg = Eg−1 ⊕O, where j : Ag−1 → A⩽1
g , we see that∫

Ag

λg · · ·λ1 = ϵA⩽1
g
([τ(g)[Bg]λg−1 · · ·λ1]) =

τ(g)

2

∫
Ag−1

λg−1 · · ·λ1 ,

and so, by the logarithmic Gauss–Bonnet formula (2.1), we see that χ(Ag) = (−1)gτ(g)χ(Ag−1),
and by Theorem 4.1, we have (−1)gτ(g) = (−1)g|B2g|/2g = ζ(1− 2g).

Proof of Theorem 1.2. We want to compute the Euler characteristic of Ag,δ from that of Ag. In
order to compare the two moduli spaces, we introduce a level structure. Let θ be a polarization
on an abelian variety. Then

ker(θ) ∼= (Z/d1Z× · · · × Z/dgZ)2

as symplectic groups, where (d1, . . . , dg) is the type of θ. The moduli space of triplets (A, θ, F ),
where (A, θ) ∈ Ag,δ and F is a symplectic basis of ker(θ), is denoted by Alev

g,δ and has étale
morphisms

Alev
g,δ

Ag,δ Ag ,

πδ φδ

where πδ forgets the symplectic basis and φδ sends an abelian variety X to its quotient by
a Lagrangian subgroup of ker(θ); see [Iri24, Section 2] for details.

It follows that χ(Ag,δ) = (deg(φδ)/deg(πδ))χ(Ag). The equality

deg(φδ)

deg(πδ)
= d2g−2

g d2g−6
g−1 · · · d−2g+2

1

∏
1⩽i<j⩽g

∏
p|dj/di

(
1− p−2(j−i+1)

)(
1− p−2(j−i)

)
was computed in [Iri24, Propositions 26 and 27]. This proves Theorem 1.2.

7. The Hirzebruch–Mumford proportionality theorem

Consider the Lagrangian Grassmanian LGg, which parametrizes Lagrangian subspaces of dimen-
sion g inside a symplectic vector space of dimension 2g. It is a smooth projective variety of
dimension

(
g+1
2

)
. The universal Lagrangian subspace Sg → LGg defines a vector bundle of rank

g, with Chern classes xi = ci(Sg), and Sym2(Sg) is the cotangent bundle to LGg. Mumford shows
in [Mum77] that there is a constant K(g) such that for any ai ∈ N,∫

Ag

λa11 · · ·λaig = K(g)

∫
LGg

xa11 · · ·xann .

This constant has been determined in [vdG99, Theorem 1.13] by the Gauss–Bonnet formula:

χ(Ag) = K(g)χ(LGg) .

An approach to prove the formula for χ(Ag) could be to determine K(g) in an alternative way.
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Van der Geer also shows that the assignment λi 7→ xi defines an isomorphism between
the subring of CH∗(Ag) generated by the classes λ1, . . . , λg−1 (also known as the tautological
ring) and the cohomology ring of LGg−1. One of the steps of the proof given there relies on
a characteristic p argument and the ampleness of λ1. We give a different proof, which was also
known by Dragos Oprea.

Corollary 7.1 ([vdG99, Corollary 1.4]). We have λ1 · · ·λg−1 ̸= 0 in CHg(Ag).

Proof. If the product is 0, then

0 = ϵAg(λ1 · · ·λg−1) =

∫
Ag

λ1 · · ·λg = (−1)(
g+1
2 )2−gχ(Ag) ,

and we have a contradiction.
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