N Algebraic Geometry 12 (6) (2025) 813-822
doi:10.14231/AG-2025-023

The Euler characteristic of A, via Hodge integrals
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Dedicated to Gerard van der Geer on the occasion of his 75th birthday

ABSTRACT

We prove the Harder-Siegel formula for the Euler characteristic of A, via the inter-
section theory of M, and a vanishing result for lambda classes on the boundary of
the toroidal compactifications of Ay, recently proven by Canning, Molcho, Oprea and
Pandharipande.

1. Introduction

The moduli space of principally polarized abelian varieties of dimension g is a smooth Deligne—
Mumford (DM for short) stack of dimension (g;rl), usually denoted by A,. Over the complex
numbers, this is the same as saying that .4, is an orbifold, and it can be identified with the
stack quotient of the Siegel upper half-space by the group of symplectic matrices with integer
coefficients:

Ag = [Hy/Sp(29,2)] . (1.1)
The Gauss-Bonnet formula of Harder [Har71] shows that the Euler characteristic of A, can be

obtained from the volume of a fundamental domain for the action of Sp(2¢,Z) on #H,, which was
known to Siegel [Sie36].

THEOREM 1.1. The Euler characteristic of Ag is
X(Ag) =((=1)---¢(1—2g). (1.2)

We employ the logarithmic Gauss—Bonnet formula to reduce the calculation of the Euler
characteristic of A, to an intersection-theoretic problem on the toroidal compactifications of A,
which is solved via Hodge integrals and the Torelli map

On every toroidal compactification of Ay, there is a universal semiabelian scheme 7: G, — Zg
with a zero section s. The Hodge bundle is a vector bundle of rank g defined by E, = s*(;; its
Chern classes are denoted by A\; = ¢;(Eg). Let Hg,n denote the moduli space of stable curves of
genus g with n markings, and let

7 Cyn — Myn
be the universal curve, with sections si,...,s, corresponding to the markings. It is a smooth
DM stack of dimension 3g — 3 +n, and it has a Hodge bundle, defined by E, = m,w,. We denote
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A. IRIBAR LOPEZ

its Chern classes by \; as well. On some toroidal compactifications, there is a Torelli morphism
Tor: Mg,n — Zg ,

as shown in [Ale04, Nam76], and Tor*E, = E,. Esnault and Viehweg proved in [EV02] that
the A-classes satisfy Mumford’s relation

(T+M+ )T =M+ + (1)) =c(Eg@E)) =1 in CH*(A,). (1.3)

On ﬂg,n there are also line bundles IL; = s}w, representing the cotangent space at the ith
marking; the first Chern class of L; is t;. The t)-classes and A-classes are part of the tautological
ring of Mgy, (see [FP13, Panl8] for the definition). Integrals of the form

/ )\?1...)\‘;9¢f1’1...¢2n
M

gn
are Hodge integrals; they appear naturally in Gromov—Witten theory.

We will consider the locus B, of semiabelian varieties that are trivial extensions of an abelian
variety by a torus. The class A, is proportional to the class [B,] when we restrict ourselves to
an open subset of A, given by degenerations of torus rank at most 1; see [vdG99, EvdG05].
Then we compute the proportionality factor in two ways. The first is through the isomorphism
By = Ay—1 x BZ/27Z, and the second one is by pulling back via the Torelli map. We will see that
the formula for the Euler characteristic (1.2) follows from the evaluation of the Hodge integrals

AgAg_1c(EY
/ AAg_1Ag_2 and / g‘iliif’)

My Mg
which have been computed by Faber and Pandharipande [FP00a, FP0OOb].

With a polarization on an abelian variety of dimension g, we can associate a list of numbers
d = (dy,...,dg), where d; | d;iy1 and there is a moduli stack of abelian varieties of dimension g
together with a polarization of type d, denoted by A, ;. When d; = 1 for all i, we recover A,.
These moduli spaces are part of a tower of étale maps. By the degree calculations of [Iri24], the
Euler characteristics of all the moduli spaces A, s are determined.

THEOREM 1.2. For a list of positive integers 6 = (di,...,dy) such that d; | di1 for all 4,

1 _p—2(j—i+1))
(1 N p72(j7i)) X(-Ag) )

(g = @2 a T T

1<i<j<g pld; /d;

where the second product is over primes p.

We will prove in Corollary 7.1 that the non-vanishing of x(Ay) implies the non-vanishing
of Ag—1--- A1 on CH*(Ay). This result was first established in [vdG99, Corollary 1.3] using the
geometry of A, over fields of positive characteristic.

Further directions

The main geometric input for this formula is that A\, is proportional to [B,] on Ag@, which
follows from a residue calculation in [EvdGO05] to express ), in terms of boundary strata of the
toroidal compactifications of A,. Improvements of this result for the locus given by degenerations
of abelian varieties of torus rank at most k for small & would lead to more connections to the
intersection theory of M,. Johannes Schmitt has checked that [Bs] is not proportional to Mg

on As, so a deeper understanding is needed for torus rank at least 2.

814



THE EULER CHARACTERISTIC OF Ay VIA HODGE INTEGRALS

Note that B, is one of the two components of the closure of the product locus A; x Ay_1
in AS'. In [COP24], the authors compute Tor*([A; x Ay_1]) and prove that it is a tautological'
class on ./\/l;t. Given our presentation of the fibered product Mjl X 4, By in Lemma 5.1, which
has the same form as the fibered product Mg x 4, (A1 x Ay—1) in [COP24], we think that it is
reasonable to expect the following.

CONJECTURE 1.3. The class Tor* ([A; x Ay_1]) lies in the tautological ring R* (M3?').

2. Logarithmic Euler characteristic

If YV is a smooth DM stack of dimension n with a smooth compactification Y such that the
complement D of ) is a normal crossing divisor, then the sheaf of meromorphic differentials
having at most log poles along D is a vector bundle of rank n, denoted by Qy(log D). It is well
known that

W=

Yy

where x is the Euler characteristic (see [CMZ22, Section 2] for a proof when ) is a scheme,
which generalizes step by step to smooth DM stacks). When ) is A, and Y is one of its smooth
toroidal compactifications (constructed in [AMRT10] over the complex numbers and in [CF90]
over the integers), Q7 (log D) is the canonical extension of Qu, (see [CF90, Examples VI.4.1]

ea(Q5(log D))

for details), so we have the following:

Q7, (log D) = Sym*E, .

The top Chern class of Sym? E; can be computed by the Giambelli formula [Ful84, Exam-
ple 14.5.1] and equals

Ag 0 0 0
Ag=2 Ag-1 Ay 0 g-1
29 | Ag—4 Ag—3 Ag—2 ... 0| =299 <)\g)\g_1 ce A ZAQ SEP VINNED LAY YOS ,Ag)>,
- k=0 =0 by l\7[rumford’s
0 0 0 R ¥ relation (1.3)
o)
X(Ag) = (—1)3D29 [ x-oony. (2.1)

Ag

In particular, the integral on the right-hand side does not depend on the toroidal com-
pactification, although more generally any integral of A-classes is independent of the toroidal
compactification since any two such compactifications are dominated by a third one, see [CF90,
Definition I1V.2.4], and the pullbacks of the Hodge bundles agree since they are the canonical
extension of the Hodge bundle on the interior. Note that these integrals also make sense on
non-smooth toroidal compactifications considering Chern classes as operational Chow classes.

An abelian variety of dimension 1 is an elliptic curve, so

X(A)=-2 ] A =-2 Y =((-1). (2.2)

Ay M

ct

!The tautological ring of M ¢, and, more generally, of any open subset M C My, is defined by restriction.
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3. Ag_g-evaluations
Any toroidal compactification of A, has a canonical map to the Satake compactification
— —S
B: Ay — A = AgU Ay U U A,

and we can obtain partial compactifications Ag<k =B (A U UAgy—r) of semiabelian varieties
of torus rank at most k. It is shown in [CMOP24] that A 0

g_kljg\./‘lggC :
This result guarantees that the natural integration maps

€ ysk: cu(’z') kg (Aggk) —Q, « r—>/ aAg_p
S _
Ag

where @ is any extension of « to Ay, are well defined.

On the moduli space of curves, we consider the open subsets M;k of curves whose dual graph
has Betti number less than or equal to k. Since the Torelli map can be extended to some toroidal
compactification of Ay, see [Nam76, Ale04], and satisfies

Tor (M, \ Mjk) C Ay \ Aik )
we see that \y_j vanishes outside of Mggk. We can construct integration maps

€M§k : CH29—3+k (Mggk) — Q

analogously.
When the Torelli morphism extends to Xg and [jggk] is the pushforward of 1 under this
Torelli morphism to Aggk , the integration maps are related by the identity

€ psh (Tor* () = € 45k (o [jggk]) . (3.1)

4. The locus B,

There is a natural map j: A;—1 — 8A§1 sending A to the semiabelian variety A x G,,; we
denote its image by By. It is isomorphic to Ay—1 x BZ/2Z because of the extra automorphism
of Gy,. The map j extends to toroidal compactifications of A,_; and satisfies j*E, = E4_; @ O.
Therefore, the normal bundle to j is

N; =Sym*(E;_, ® O, ,) — Sym*(Ey_,) =EJ ;& Oy, -

We have the following result, first proven in cohomology? [vdG99, Proposition 1.10] and then
in the Chow groups [EvdG05, Theorem 1.1].

THEOREM 4.1. In the Chow ring of AS', the following holds:
_ ’BQQ‘

Ag %

Byl

where By, is the gth even Bernoulli number.

We will give a new proof of the proportionality factor under the assumption that the two
cycles are proportional. Let 7(g) € Q be such that A\; = 7(g)[Bg].

2In fact, the result in cohomology is enough for our calculation since the Ag—k-evaluation maps factor through the
cycle class map.
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5. Pullback of B, to M?

Consider the Cartesian diagram

zZ —— M5!

l [ (5.1)

By —— A5,
where j is a regular embedding.

LEMMA 5.1. For a partition p = (g1,...,q1) of g—1 with g1 < --- < gy, let M?flde be the substack

of Ml,l given by curves without rational tails and whose normalization is a union of rational
curves, and consider the gluing map

. ct . ct cycle <1
Eu: Mg1,1 X X Mgl,l X Ml,l — ./\/lg

that attaches the marked point of the ith moduli space of compact type to the ith marked point
of Mif’lde. The images of the morphisms §,, when p runs through all the partitions of g — 1 are
disjoint and cover Z.

Proof. This follows from the results of [CV11], but we give a direct proof here.

We first recall the structure of semiabelian varieties of torus rank 1. For every line bundle £
on an abelian variety A, the Theta group is an algebraic group G(L£) sitting in an exact sequence

0— G, —GL)— K(L) —0.
If L€ AV, then K(£) = A, and so G(£) is a semiabelian variety. This defines a morphism
A\/ — EXt(lzb(A, Gm)

that is in fact an isomorphism [Oor66, Proposition 17.6].

Consider a prestable curve D of genus h whose dual graph is a cycle of length k. Denote by
D+, ..., Dy the irreducible components of l~?, and consider points p;, ¢; € D; such that ¢; and p;41
are identified in C. Let DP¥* be the partial normalization of D at the edge p; = qi. Then, since
a line bundle on D is equivalent to a line bundle £ on DP** and an isomorphism £, = L,,,
we have a short exact sequence

0 — G, — Jac(D) — Jac(DP*") — 0.

By the above discussion, this corresponds to a unique line bundle M € Jac(DP**)V, which
we can identify by pullback along the Abel-Jacobi map

aj: DP** — Jac(DP*")
T e Dz — (0D1(p1 - q1)7 cee 70Di($ - ql)? s 70Dk(pk - Qk)) .

We assume k = 1 for simplicity. In this case, DP?'* is a smooth curve, and aj*(M) is the line
bundle over the DP¥* bundle whose fiber over a point z is the space of isomorphisms

O(x —p)p = O(x — p)y,
which is O(p — q). When & > 1, the line bundle aj*(M) is
(Op,(p1 —q1); - -+, ODk(pk —qr)) € JaC<Dpart) .

Therefore, the semiabelian variety Jac(D) lies in By, if and only if Op,(p; — ¢;) = Op,, that
is, if and only if all the D; are rational.
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Now consider a general stable curve C of genus g whose dual graph I'c has Betti number 1.
There is a subgraph of I'c that is minimal among all the subgraphs that have Betti number 1;
let D C C be the curve that corresponds to such a graph. Then C' \ D is a disjoint union of [
curves C; of compact type, and by stability g(C;) > 0. Moreover,

Jac(C) = Jac(D) x [ [ Jac(Ci) ,

so Jac(C') lies in By if and only if Jac(D) lies in By, which happens if and only if D is a union
of rational curves (and in particular g(D) = 1), so C lies in the image of £, for the partition
= (9(C1),- .., 9(Cy)). O

FIGURE 1. Two examples of the dual graph of a curve of genus 11 in Z. They correspond to the
partitions (1,2,3,4) and (10).

Remark 5.2. Note that
l
dim (M} > x ME L x MPT) =3 (B(gi— 1) + 1) + (1 - 1) = dim(M1) — (1+1)
i=1
and that /\/liylCle is not proper except in the case [ = 1, where it is isomorphic to BZ/2Z. In
particular, [ M 1=1

When p = (g — 1), the image of &, is defined to be the principal locus.
LEMMA 5.3. The principal locus is closed in Z.

Proof. If = (g1,...,q1), then the dual graph of a curve in the image of &, is a stable cycle
with [ markings and a collection of rooted trees together with an assignment of a tree to each
marking on the cycle. There are five types of edges:

— edges belonging to the cycle, when it has length at least 2,

— edges belonging to the tree,

— edges between a vertex of the cycle and the root of the associated tree, when the genus of
the root is not 0,

— edges between a vertex of the cycle and the root of the tree, when the genus of the root is 0,

— the edge of the cycle, when it has length 1.
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If we contract an edge of the first two types, the curve stays in &,. If we contract an edge of the
third type, the new curve lies in the image of {,/, where ' is a refinement of x, and the last two
contractions take the curve outside of Z. The partition (¢ — 1) is not the refinement of any other
partition, so Z \im(f(g,l)) is closed under generalization, and so the principal locus is closed. [

In particular, £, 1) is proper. Let Z' be the closure of the complement of the principal locus
in Z.
LEMMA 5.4. The class \y—2 € CHY 2 (M;l) vanishes when restricted to Z'.
Proof. From the discussion in Lemma 5.3, the points in 5(9—1)(/\/1971,1 X Miyfle) cannot be in

Z'  so the normalization of any curve in Z’ has to be a union of rational curves and curves of
genus ¢, ...,g with Y g; =g —1 and [ > 2, but note that

l
Cg—2 (@ Egz-) = Z Cgi—l(Egi) : H Cg; (Egj) )
i=1 i

which vanishes because the domain of all the morphisms &, is a space of curves of compact
type and Ap| Met = 0. Note that the products on the right-hand side of the equation are over
a non-empty set because [ > 2. O

The map §(,_1) is a regular embedding with normal bundle LYEBO vevele, where L is the cotan-
1,1

gent line, and therefore the excess class for the principal component in the diagram (5.1) is
Ctop (Nj — Nﬁ(gﬂ)) =cCy2 (E;/—l — ]Lv) .
By the residual intersection formula [Ful84, Corollary 9.2.3],

c(Ey_y)

B = g | | T

+R,

g—2

where R is the residual class supported on Z’. By Lemma 5.4, the class A\;,_25'([B,]) has a natural
extension to My, namely,

_ EY .
Ag—2 lf(g_l),* (Cg_g_wl)ﬂ € CH22(M,),
g

where E(g_l): Mg_11 x ./\/l?:fle — M, is the gluing map.

Proof of Theorem 4.1. Using equation (3.1), we obtain

Ag—1Ag—2¢(EY_) 1 1 | Bag—2|
lB,] - [751) = 1 / e e ) = :
€45t (\g—2[By] - [7;]) </M§yfle > < s 11— 2(2g—2)l 292

by [FP00b, Theorem 3]. In [FP00a, Theorem 4], the authors also showed that

1 | Bag—a| | Bag|

C[7<1)y = =
5A§1()‘g—2)‘g [jg ]) /Mg)‘g)‘g_l)‘g_Q 229 —2)!'29g—2 2¢g

Dividing the last two equations, we obtain the value of 7(g). ]
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6. The Euler characteristic of Ay 5

First, we see that the evaluation of 7(g) for all g is equivalent to the knowledge of the Euler
characteristic of A,.

Proof of Theorem 1.1. Since j*E; = E,_1 © O, where j: Ag_1 — .Aggl, we see that

[;A¢~A1:9¢thﬂﬁﬁx4-~hb=78”/;lkwr-*h

and so, by the logarithmic Gauss-Bonnet formula (2.1), we see that x(Ay) = (—1)97(g)x(Ag-1),
and by Theorem 4.1, we have (—1)97(g) = (—1)7|Bay|/2g = ¢(1 — 29). O

Proof of Theorem 1.2. We want to compute the Euler characteristic of A, s from that of A,. In
order to compare the two moduli spaces, we introduce a level structure. Let 6 be a polarization
on an abelian variety. Then

ker(0) = (Z/d1Z x - -- x 7.]dyZ)*

as symplectic groups, where (di,...,dy) is the type of §. The moduli space of triplets (A, 8, F),
where (A,0) € A,5 and F' is a symplectic basis of ker(6), is denoted by A'gf‘(’; and has étale
morphisms

lev
"49,5
2N
é

where 75 forgets the symplectic basis and ¢s sends an abelian variety X to its quotient by
a Lagrangian subgroup of ker(6); see [Iri24, Section 2| for details.

It follows that x(Ags) = (deg(ys)/deg(ms))x(Ag). The equality

g

deg(s) I A | H pY” ZH))
deg(m;) 1<i<j<g p|d;/d; 26~ Z))
was computed in [Iri24, Propositions 26 and 27]. This proves Theorem 1.2. O

7. The Hirzebruch—Mumford proportionality theorem

Consider the Lagrangian Grassmanian LG, which parametrizes Lagrangian subspaces of dimen-
sion ¢ inside a symplectic vector space of dimension 2g. It is a smooth projective variety of
dimension (g;rl). The universal Lagrangian subspace S; — LG, defines a vector bundle of rank
g, with Chern classes z; = ¢;(S,), and Sym?(S,) is the cotangent bundle to LG,. Mumford shows
in [Mum?77] that there is a constant K (g) such that for any a; € N,

[y =Ko [ ara
A, LG,

This constant has been determined in [vdG99, Theorem 1.13] by the Gauss—Bonnet formula:
xX(Ag) = K(g9)x(LGy).

An approach to prove the formula for x(Ay) could be to determine K(g) in an alternative way.
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Van der Geer also shows that the assignment A; — z; defines an isomorphism between
the subring of CH*(A,) generated by the classes Ai,...,A\;—1 (also known as the tautological
ring) and the cohomology ring of LGy_i. One of the steps of the proof given there relies on
a characteristic p argument and the ampleness of A1. We give a different proof, which was also
known by Dragos Oprea.

COROLLARY 7.1 ([vdG99, Corollary 1.4]). We have A1 ---Ag—1 # 0 in CHy(Ay).
Proof. If the product is 0, then

0=rea, (A1 Ag—1) = /A AL Ag = (_1)( 2 )QigX(-Ag)a

g9

and we have a contradiction. O
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