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Unimodular hunting

Gaëtan Chenevier

To Gerard van der Geer, with admiration

Abstract

We develop a method initiated by Bacher and Venkov, and based on a study of the
Kneser neighbors of the standard lattice Zn, which allows us to classify the integral
unimodular Euclidean lattices of rank n. As an application, of computational flavor,
we determine the isometry classes of unimodular lattices of rank 26 and 27.

1. Introduction

1.1 The classification of unimodular lattices

Consider the standard Euclidean space Rn, with inner product x · y =
∑

i xiyi. Recall that
a lattice L ⊂ Rn is called integral if we have x · y ∈ Z for all x, y ∈ L, and unimodular if its
covolume is 1 (see Section 2 for the basics on integral lattices). We denote by Ln the set of all
integral unimodular lattices in Rn and by Xn the (finite) set of isometry classes of such lattices.
The most trivial element of Ln, which will nevertheless play a major role here, is the standard
or square lattice:

In := Zn . (1.1)

For n ⩽ 7, the isometry class of In is the unique element of Xn, a well-known fact with famous
contributions from Lagrange, Gauss, Hermite and Minkowski. For n = 8, there is also the E8

lattice, which is the unique other isometry class in X8 by Mordell, and the first example of an
even unimodular lattice. Thanks to the works of many authors, including Witt, Kneser, Niemeier,
Conway–Sloane and Borcherds, see for example [Kne57, Nie73, CS99, Bor00], representatives
of Xn have been determined up to n = 25 before this work.

n 1–7 8–11 12–13 14 15 16 17 18 19 20 21 22 23 24 25

|Xn| 1 2 3 4 5 8 9 13 16 28 40 68 117 297 665

Table 1. The size of Xn for n ⩽ 25.

The subset X∅
n ⊂ Xn of classes of lattices with no non-zero vector of norm (following a

standard abuse of language, the norm of an element v is defined as v · v) at most 2 is especially
interesting. By the aforementioned classifications, we know |X∅

n| = 0 for n < 23 or n = 25,
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|X∅
23| = 1 (shorter Leech lattice), |X∅

24| = 2 (Leech and odd Leech lattices). Moreover, Borcherds
showed |X∅

26| = 1 in [Bor00, Theorem 3.6], and Bacher and Venkov proved |X∅
27| = 3 and

|X∅
28| = 38 in [BV01]. Our first main result in this paper is the following.

Theorem 1.1. We have |X26| = 2566 and |X27| = 17059.

Let us mention that general lower bounds on |Xn| may be obtained using the Minkowski–
Siegel–Smith mass formula, although they are very bad for “small” n as in our range. Much
better lower bounds have been obtained by King in [Kin03] in the case n ⩽ 32. He proved in
particular |X26| ⩾ 2307 and |X27| ⩾ 14179. Our computations show that King’s estimate were
not too far from the actual values. As we will see later, King’s computations also played an
important role in our search. See Section 12 for a brief analysis of the isometry groups of the
lattices of Theorem 1.1.

1.2 The cyclic d-neighbors of In

Our goal in proving Theorem 1.1 is actually not only to classify all the aforementioned lattices,
but also to provide constructions of all of them as cyclic neighbors of the simplest lattice of
all, namely of In. The cyclic d-neighbors of a unimodular lattice L ∈ Ln are the unimodular
lattices N ∈ Ln with L/(N ∩ L) ≃ Z/d. This is a fairly classical variant of Kneser’s original
definition of neighbor lattices [Kne57, Bac97, BV01, Sch09, CL19, Voi23]; see Section 3 for some
background on this notion.1 From now on, we usually omit the adjective cyclic and just talk
about d-neighbors. We now recall the concrete construction of the d-neighbors of In.

Fix an integer d ⩾ 1 and an x = (xi) in In with gcd(d, x1, . . . , xn) = 1. Then the image of x
in In ⊗ Z/d generates a line, that is, a cyclic subgroup l := l(x) of order d. The orthogonal of
this subgroup in In is the lattice

Md(x) := Md(l) :=

{
v ∈ In |

n∑
i=1

xivi ≡ 0 mod d

}
; (1.2)

it satisfies In/Md(x) ≃ Z/d. Any subgroup M ⊂ In with In/M ≃ Z/d has the form M = Md(l)
for a unique line l ⊂ In ⊗ Z/d. Set e = 1 if d is odd and e = 2 otherwise. We say that x (or l) is
d-isotropic if we have

n∑
i=1

x2i ≡ 0 mod ed . (1.3)

It is a fact that there is an N ∈ Ln with N ∩ In = Md(x) if, and only if, x is d-isotropic, and
if so, there are exactly e such N . The following formula, in which we choose x′ ∈ In arbitrarily
with x′ ≡ x mod d and x′ · x′ ≡ 0 mod d2, defines the one or two possible unimodular lattices N
with N ∩ In = Md(x):

Nd(x
′) = Md(x) + Z

x′

d
. (1.4)

It is easily checked that formula (1.4) indeed defines an integral unimodular lattice. For d odd, the
lattice Nd(x

′) does not depend on the choice of x′ as above, and we simply denote it by Nd(x).
For d even, we temporarily denote by Nd(x)

± the two possibilities for Nd(x
′), postponing to

Section 3.5 the discussion of how to distinguish them. The lattices Nd(x)
+ and Nd(x)

− are not
isometric in general, but they are isometric if we have xi ≡ d/2 mod d for some i.

1For our purposes, it will be important to allow d to be an arbitrary integer. Many references only treat in detail
the case where d is odd, or assume the lattices to be even for d even.
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1.3 Theoretical exhaustion

Before giving examples, we mention a key fact, proved by Hsia and Jöchner in [HJ97, Corol-
lary 4.1], asserting that given any (say) odd L,L′ ∈ Ln, there are infinitely many primes p
such that L′ is isometric to a p-neighbor of L. In the companion paper [Che22], we proved sev-
eral quantitative variants of this result (by very different methods). We give here yet another
variant of these results. Assume d odd to simplify. Then any odd element in Ln has the same
(explicit) number cn(d) of d-neighbors, and for n > 2, we have cn(d) ∼ dn−2 for d → +∞.
If L is a Euclidean lattice, we denote by O(L) its (finite) isometry group and define its mass by
mass(L) = 1/|O(L)|. Also, we denote by modd

n the mass of the genus of odd unimodular lattices
of rank n (see Section 6.2).

Theorem 1.2. Let L,L′ ∈ Ln be any odd unimodular lattices of rank n. For an integer d ⩾ 1,
denote by nd(L,L

′) the number of d-neighbors of L which are isometric to L′. Then we have

nd(L,L
′)

cn(d)
−→ mass(L′)

modd
n

for d odd and d → +∞ .

In particular, for odd d → ∞, any odd L′ ∈ Ln appears as a d-neighbor of In with a probability
proportional to its mass mass(L′). Theorem 1.2 follows from [Che22, Theorem A] if one assumes d
prime in its statement; see Section 13 for the general case. Let us stress that this result, however,
does not say anything about the smallest integer d such that a given L ∈ Ln is isometric to
a d-neighbor of In. This quantity is one of the most difficult to predict, and deserves a definition.

Definition 1.3. For L ∈ Ln, the farness of L, denoted by far(L), is the smallest integer d ⩾ 1
such that L is isometric to a (cylic) d-neighbor of In.

1.4 First examples

We now give a few interesting examples. The element 1n = (1, 1, . . . , 1) of In is 2-isotropic for
n ≡ 0 mod 4, so we have a unimodular lattice N2(1

n)± for such an n. We must have N2(1
4)± ≃ I4

and recognize that we have N2(1
8)± ≃ E8. Also, N2(1

12)± is the unique rank 12 unimodular
lattice with no vector of norm 1, and for n ≡ 0 mod 8 and n > 8, the lattice N2(1

n)± is even
with root system Dn and is sometimes denoted by En or D+

n in the literature. The Leech lattice
also has the following beautiful description due to Thompson (see [CS99, Preface, p. lvi]) as a
94-neighbor of I24:

Leech ≃ N94(x)
± , x = (1, 3, 5, 7, . . . , 47) ∈ Z24 . (1.5)

In the same vein, we have 12+22+ · · ·+n2 = 1
6n(n+1)(2n+1) ≡ 0 mod 2n+1 for n ̸≡ 1 mod 3,

hence a unimodular lattice

N2n+1(1, 2, 3, . . . , n) ∈ Ln , n ̸≡ 1 mod 3 . (1.6)

It may be shown that this lattice has no non-zero vector of norm less than or equal to 2 for
n ⩾ 23 (see Section 8 for a study of those lattices). For n = 23, 24 and 26, we recover this way,
respectively, the shorter Leech lattice, the odd Leech lattice and Borcherds’ lattice in X∅

n. It is
hard to think of a simpler definition for these lattices than those. All of our lattices will be given
in this form.

Theorem 1.4. A list2 of (d, x) such that the Nd(x
′) are representatives for all the unimodular

lattices of Theorem 1.1 is given in [Che20b].

2See http://gaetan.chenevier.perso.math.cnrs.fr/unimodular_lattices/unimodular_lattices.gp.
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This extends previous work by Bacher [Bac97] in the case n ⩽ 24, as well as the study of X∅
n

for n ⩽ 28 in [BV01]. This (partially aesthetic) wish of giving all of our lattices in the form Nd(x
′)

added in practice a number of extra difficulties and forced us to find neighbor constructions of
some lattices more naturally defined in other ways (see for example Sections 9 and 11).

Remark 1.5. A further question is to determine, for each lattice L = Nd(x
′) given in our list,

the farness of L. We obviously have farL ⩽ d, and a neighbor form (d, x′) will be called optimal
if we have far(Nd(x

′)) = d. As an example, it is easy to see that we have far(Leech) ⩾ 94 (see
Example 1.9), so that Thompson’s construction (1.5) is optimal. Many neighbor forms in our
lists are actually optimal, but certainly not all, and we leave determining optimal forms for all
of them as an open question.

1.5 The general method

The basic strategy we follow to prove Theorem 1.1, which of course heavily relies on computer
calculations,3 is well known: If we are able to produce non-isometric lattices L1, . . . , Lh in Ln

such that
∑h

i=1mass(Li) coincides with the total mass of Ln, whose exact value is known thanks
to the mass formulae (see for example [CS99, § 16.2]), then L1, . . . , Lh must be representatives
of Xn. This strategy requires at least three ingredients:

(M1) Mass computations. We use the Plesken–Souvignier algorithm [PS97], which efficiently
computes |O(L)| from a given Gram matrix of L with small diagonal. This algorithm turned out
to work well for unimodular lattices of rank at most 27, which tend to be generated by vectors of
norm at most 3, especially when combined with root system arguments introduced in [Che20a];
see Remark 4.4 for a discussion about this point.

(M2) Finding invariants. Although the Plesken–Souvignier algorithm also allows us to check
whether two lattices are isometric or not, it is unrealistic to rely on such an isometry test in
situations like ours where millions of lattices will have to be compared. Instead, we define a
few ad hoc (and easy enough to compute) invariants, and we count in our search on them being
enough to distinguish the elements in Xn for our specific n. The most obvious invariants of a
lattice L are its configuration of vectors of norm i or at most i

Ri(L) = {v ∈ L | v · v = i} and R⩽i(L) = {v ∈ L | v · v ⩽ i} , (1.7)

say viewed as finite (Euclidean) metric spaces (see Section 4). For later use, we also set ri(L) :=
|Ri(L)|. As is well known, for any integral lattice L, there is a unique decomposition

L = A ⊥ B with A ≃ Im and r1(B) = 0 (1.8)

(and we have 2m = r1(L)). So we may and do restrict to classifying the lattices L ∈ Ln with
r1(L) = 0. The Euclidean set R2(L) is called the root system of L, and is a disjoint union
of classical ADE root systems (see Section 4.2). It is very easy to determine in practice (see
Remark 4.2).

A well-known but curious fact about unimodular lattices of rank at most 23 and about
Niemeier lattices is that they are uniquely determined by their R⩽2. This is, however, only
obtained as a by-product of the classification in these cases. It does not hold anymore for X24,
which contains for instance two odd lattices with empty R1 and same root system 8A1 4A3. It
is natural to study R⩽3 to go further. It turns out that most lattices in our range are indeed
spanned (over Z) by vectors of norm 3. The main difficulty is that contrary to the case R⩽2, we

3In all this work, we heavily used the open-source computer algebra system PARI/GP; see [PAR14].
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are not aware of any existing study or classification of configurations of vectors of norm at most 3.
We refer to Section 4.3, as well as the companion paper [AC24], for a few invariants of R⩽3 that
proved useful in our situations. As a by-product of Theorem 1.1, we obtain the following result.

Corollary 1.6. Let L,L′ ∈ Ln with n ⩽ 27. Then L and L′ are isometric if, and only if, the
Euclidean sets R⩽3(L) and R⩽3(L

′) are isometric.

(M3) Neighbors enumeration. The basic idea is to enumerate, with the computer, and for
increasing integers d = 2, 3, 4, . . . , all the d-isotropic vectors x in In and study their associated
lattices Nd(x

′), by computing their invariants and, if they are new, their mass, and so on until
the total mass of Ln is exhausted. In order to exclude trivial isometries between neighbors
induced by O(In) (permutations and sign changes of the coordinates of x), we may restrict the
enumeration to d-isotropic vectors x ∈ Zn satisfying4

0 ⩽ x1 ⩽ x2 ⩽ · · · ⩽ xd ⩽ d/2 . (1.9)

As two d-isotropic vectors generating the same Z/d-line give rise to the same neighbor, we also
usually further assume x1 = 1 and that x1 has the maximal multiplicity among the xi (this is
not a restriction at all for d prime).

1.6 The splitting root system by root system

Most of the computation time in the algorithm (M3) above is spent computing our invariants
for the lattices Nd(x

′) found in the enumeration. Computing these invariants always includes the
much faster computation of the root system of Nd(x

′). Also, as will be clear later when discussing
the visible root system, the algorithm starts by finding the lattices with the biggest root systems
(and, often, quickly finds all of them). It is thus highly desirable to split our search root system
by root system and not to compute the full invariants when all the lattices with a given root
system have already been found.

This is fortunately permitted by the aforementioned work [Kin03]. Indeed, as explained there,
although the main computation concerns even unimodular lattices of rank 32, it allows us to
determine, for any n ⩽ 30 and any root system of rank n, the mass of the subset of Ln consisting
of lattices with root system isomorphic to R. The details of this step are not fully given in [Kin03];
we give another point of view on it in Section 6 and explain as well how to deduce similar results
for several other genera of interest. The table below compares the number of possible root systems
given by King to the actual number of lattices in known cases (Table 1 and Theorem 1.1) in
dimension n ⩽ 30.

Remark 1.7 (Reduced mass). Assume that we are interested in the collection G of unimodular
lattices L having a given rank and root system R. For each such L, the order |W(R)| divides
|O(L)|, where W(R) denotes the Weyl group of R. Thus it is often more natural to multiply the
mass of L (and of G, see Section 6.2) by |W(R)|; we call this the reduced mass of L or G (see
Section 4.2).

4This simple way of dealing with the orbits, already observed in [Bac97], gives a clear advantage to this method
compared to Kneser’s original one, consisting of computing successive 2-neighbors until exhaustion. Another im-
portant advantage is that In has both a large root system and a large automorphism group, which will allow us
to efficiently bias our search.
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n 12 14–17 18 19 20 21 22 23 24 25 26 27 28 29 30

rs 1 1 4 3 12 12 28 49 149 327 1086 2797 4722 11 085 18 220

min 1 1 4 3 12 12 28 49 156 360 1626 11 671 312 287 37 604 456 20 131 670 647

♯ 1 1 4 3 12 12 28 49 156 368 1901 14 493 ? ? ?

Table 2. Number rs of isometry classes of root systems of unimodular lattices in Ln with no
norm 1 vectors [Kin03], lower bound min for the number of such classes by the method in [Kin03],
compared to the actual number ♯ of isometry classes.

1.7 The visible part of a d-neighbor of In

Although this search root system by root system is necessary, it is still by far not enough to
find all unimodular lattices. Indeed, the number of O(In)-orbits of d-isotropic lines in In is at
least dn−2/n!2n−1, and in practice it is very lengthy to run over all d-isotropic lines already for d
about 30 in our range, whereas the farness of many unimodular lattices is much bigger than 30. In
any case, it would be ridiculous to enumerate naively all isotropic lines! Indeed, certain “visible”
properties of the neighbors, in the sense that they can be directly read off from the isotropic lines
defining them, substantially bias our search and suggest more clever choices of isotropic lines.
This is one of the main topics of this paper.

For i ⩾ 1 and N a d-neighbor of In, there is usually a part of mystery in the Euclidean
set Ri(N), but what we do control is its subset Ri(M) = Ri(In) ∩ Ri(N). We have M = Md(x)
for some (d-isotropic) x ∈ Zn by formula (1.2), and in the canonical basis ε1, . . . , εn of Rn, we have

R1(In) = {±εi, 1 ⩽ i ⩽ n} ,
R2(In) = {±εi ± εj , 1 ⩽ i < j ⩽ n} ≃ Dn .

(1.10)

For instance, we see R1(Md(x)) = {±εi | xi ≡ 0 mod d}. In particular, we have r1(Md(x)) = 0
if, and only if, xi ̸≡ 0 mod d for all i,5 an assumption that we will always make since we are
only interested in neighbors N with r1(N) = 0. The root system R2(Md(x)) is also visible, in
the sense that it follows immediately from an inspection of the (i, j) with 1 ⩽ i ⩽ j ⩽ n and
xj ≡ ±xi mod d; see Section 5. It has the form

R2(M) ≃ An1−1An2−1 · · ·Ans−1Dm , with n = n1 + n2 + · · ·+ ns +m. (1.11)

Definition 1.8. For L ∈ Ln and a d-neighbor N of L, the visible root system of N is R2(M)
with M = L ∩N . It is a sub–root system of R2(N), namely R2(N) ∩ L.

We will study the visible root system in detail in Section 5, and especially how it compares
to the actual root system of the neighbor. Other visible objects will be studied in this paper
and play important roles, such as visible isometries in Section 7 and visible exceptional vectors in
Section 9. We stress that in these three sections, it will be crucial for us to consider d-neighbors
of In for not-necessarily prime integers d, and in fact, many lattices in our final lists, especially
the most complicated ones to find, are such neighbors. This is a notable difference between our
work and [Bac97, BV01], where all given odd lattices are p-neighbors of In with p an odd prime.6

5If x is d-ordered, that is, as in (1.9), this is equivalent to x1 ⩾ 1.
6Actually, Bacher and Venkov do not explain which methods they used to find the neighbor forms of the lattices
in their tables. In particular, they do not emphasize the notion of visible root system, although it is clear from
their tables that it was known to them.
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Example 1.9 (Empty root system). As a trivial example, consider the problem of searching for
d-neighbors N = Nd(x

′) of In with R⩽2(N) = ∅. For such an N , the visible root system of course
has to be empty, which forces xi ̸= 0 and xi ̸= ±xj mod d for all 1 ⩽ i < j ⩽ n. In particular,
we have d ⩾ 2n+1. Better, this shows that for d = 2n+1, the unique possibility up to isometry
is the lattice N2n+1(1, 2, . . . , n) for n ̸≡ 1 mod 3 already introduced in (1.6). A similar reasoning,
taking into account that for Nd(x

′) to be even, we must have d even and all coordinates of x
odd, immediately leads to Thompson’s construction of the Leech lattice.

1.8 The biased neighbor enumeration algorithm

Now consider the problem of searching for unimodular lattices in Ln with a given (arbitrary)
root system R. The basic idea would be to restrict the enumeration (M3) to d-isotropic lines x
such that the visible root system of Nd(x

′) is R. However, this cannot work in general for at least
two different reasons.

– First of all, R may not be of the form of the right-hand side of (1.11) at all. This happens
either if it contains some component of type E or several components of type D, or if the total
rank of the union of its A-components is too large. For instance, in dimension n, there is no
visible root system of type kA1 with k > n/2 + 1, although of course there may be unimodular
lattices with such a root system.

– Worse, even if R may occur as a visible root system in dimension n, it may be the case that
certain unimodular lattices of rank n and root system R cannot be obtained as a neighbor with
visible root system R. One reason for this is that the visible root system of N = Nd(x

′) is always
saturated in In, hence close to being so in N . More precisely, the visible root system of N is a
d-kernel of R2(N) in our terminology; see Section 5.2. For this strategy, it becomes important
to classify all d-kernels of ADE root systems. We do so in Section 5.4 using properties of affine
Weyl groups.

The good news is that the two obstacles above are essentially the only constraints. Indeed,
this is a special case of [Che22, Theorem 7.1], which extends Theorem 1.2, and which we now try
to state in its simplest form. For a root system R and L′ ∈ Ln, we denote by emb(R,L′) the set
of isometric embeddings7 Q(R) → L′ with saturated image and odd orthogonal complement. We
also define modd

n (R) as the mass of the groupoid of pairs (L, ι) with L ∈ Ln and ι ∈ emb(R,L)
(see Section 6.1). Theorem 1.10 follows from the special case A = Q(R) of [Che22, Theorem 7.10],
as well as [Che22, Corollary 7.12].

Theorem 1.10. Let L, L′ be odd unimodular lattices of rank n. Assume that R ⊂ R2(L) is
a rank r saturated sub–root system whose orthogonal complement in L contains a sublattice
isometric to I3. For a prime p, let np(L,L

′, R) be the number of p-neighbors of L isometric to L′

and with visible root system containing R. Then we have

np(L,L
′, R)

pn−r−2
−→ |emb(R,L′)|mass(L′)

modd
n (R)

when p → +∞ .

In other words, by prescribing the visible root system to contain R, we bias the statistics
of Theorem 1.2 exactly by the factor |emb(R,L′)|. We apply this result to L = In. Prescribing
the visible root system in the enumeration is then immediate: It just amounts to restricting to
d-isotropic lines having certain equal coordinates. In practice, this method is extremely efficient
and allows us in only a few seconds to find a unimodular lattice with given root system, and

7We denote by Q(R) the root lattice generated by R.

775



G. Chenevier

often even all of those lattices L′ having the largest possible |emb(R,L′)|mass(L′). As an example,
it allows us to reproduce the full list of all unimodular lattices of rank at most 25 in just a few
minutes. It is sometimes delicate to understand which visible root system is the best to use in
our search; see Sections 5.3 and 5.4 for this question, which often boils down to exercises in root
systems and coding theory.

We give a concrete example of application of this biased neighbor enumeration algorithm in
dimension 26 in the next section and others in Section 10. We also refer to Section 5 of the
companion paper [AC24] for a more formal exposition of this algorithm, and to Section 6 of that
paper for several other examples.

1.9 An example: The root system 10A1 in X26

Let us consider the problem of finding all unimodular lattices of rank 26 with root system 10A1

(and with no norm 1 element; we will not repeat this condition). By King [Kin03], the reduced
mass of this collection of lattices is 4424507/116121600 (see Remark 1.7). Moreover, we may show
that any lattice with root system 10A1 contains a saturated 8A1 (see Section 5.3 and especially
Example 5.11), so it looks safe to search for our lattices with such a visible root system. This
means that we restrict to enumerating d-isotropic x ∈ Z26 satisfying (1.9) and with exactly eight
pairs of equal coordinates modulo d. In particular, this forces d ⩾ 2 · (8 + 10) = 36.

For d = 36, we do instantly find 108 such isotropic lines, and 49 of them happen to lead to
a neighbor with root system 10A1 (and no norm 1 element). This high ratio 49/108 attests that
our bias is successful; we chose the visible root system very well. Those 49 lattices happen to
contain 4 different isometry classes, with respective reduced mass 1/64, 1/96, 1/96 and 1/640;
see Table 3 for representatives.

For d = 37 and 38, the ratios of d-neighbors with root system 10A1 are, respectively, 41/73
and 458/1095, but no new lattices are found. For d = 39, the ratio is 820/1821, and we find
the fifth lattice in Table 3, with reduced mass 1/12288; this later finding fits the fact that the
probability to find this lattice was smaller, as so is its mass, by Theorem 1.10.

Unfortunately, for 40 ⩽ d ⩽ 49, a systematic enumeration of more than 2 million isotropic
lines does not lead to any new lattice. This is not a surprise, as the remaining reduced mass is

4424507/116121600− 1/64− 1/96− 1/96− 1/640− 1/12288 = 17/116121600 .

This is only about 4 · 10−6 of the initial mass, hence extremely small, so unless we have at
our disposal many cores (and time and electricity to waste), it is not reasonable to search for
the remaining lattices just by pursuing the enumeration in the “coupon collector” style (see
Section 1.10). It is thus highly desirable to have other methods to find the remaining lattices.
We propose two methods here: one that we call the adding Dm method, and that we will explain
in detail in Section 11 (see especially Proposition 11.4 and Remark 11.5), and another one based
on visible isometries, studied in Section 7.

The first idea is to observe that if L is a rank 26 unimodular lattice with root system 10A1

and no norm 1 vector, then the orthogonal of any 2A1 in L has root system 8A1, rank 24 and
index 2 in some unimodular lattice. For our L of interest, this lattice has a presumably high
farness, and we do see in rank 24 an odd unimodular lattice L0 with root system 8A1 appearing
at the end of our lists. It has reduced mass 1/20643840, which is close enough to 1/116121600
since the quotient is 45/8, so this is promising. Actually, we can immediately discover this lattice
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using the visible root system 7A1 in rank 24: We have for example L0 ≃ N35(x) for

x = (1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17) ∈ Z24 .

(We underlined the seven pairs of equal coordinates, responsible for the visible root system 7A1.)
This suggests that one should look at the 2-neighbors of L0 ⊕ I2, which are specific 70-neighbors
of I26. By restricting to those with same visible root system 7A1, there are now only 216 lines to
check. We find 16384 isotropic lines, 1816 leading to a neighbor with root system 10A1. Among
those, two lattices are found, with reduced masses 1/7372800 and 1/92897280, respectively, which
fulfill the mass; see Table 3 below.

d x ∈ Z26 reduced mass |emb(8A1,−)|

36 (1, 1, 2, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 17, 18) 1/64 45

36 (1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 18, 18) 1/96 45

36 (1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 17, 18, 18) 1/96 45

36 (1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18) 1/640 45

39 (1, 1, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 19, 19) 1/12288 45

70 (1, 1, 33, 3, 4, 4, 5, 29, 7, 7, 27, 9, 9, 25, 11, 12, 12, 13, 21, 15, 15, 19, 18, 18, 35, 35) 1/7372800 25

70 (1, 1, 33, 3, 4, 4, 5, 29, 7, 7, 27, 9, 9, 25, 11, 23, 23, 13, 21, 15, 15, 19, 17, 17, 35, 35) 1/92897280 9

Table 3. The seven lattices with no norm 1 elements and root system 10A1 in X26.

Another way to find the last lattices in Table 3 amounts to using the theory of visible isome-
tries. Indeed, we have 116121600 = 213 34 52 7, so we knew for instance that some lattice has
an order 7 automorphism (namely, the last in Table 3). Applying the method of Section 7 for
searching for elements of X26 with root system 10A1 and a visible automorphism with charac-
teristic polynomial Φ3

7Φ
8
1 immediately leads to many constructions of this lattice, such as one8

for d = 29 · 27 = 783. Here 29 is the prime congruent to 1 mod 7.

1.10 A coupon collector’s problem and choices of invariants

Assume that we want to find all unimodular lattices of given rank n by running through all
isotropic lines in In ⊗ Z/d, with d = 2, 3, . . . . Theorem 1.2 shows that we are in the situation of
a coupon collector’s problem (or “Panini album”). Indeed, studying a new line (which costs the
computer some time) corresponds to buying a new box (of cereal, each containing one coupon),
and the mass of a lattice is proportional to the probability of finding it in a box. Recall that
in a uniform situation with N coupons, on average we need to buy N logN boxes to collect all
coupons (see for example [MU17, § 2.4.1]). In our non-uniform situation, this can be much worse
since certain lattices have much smaller masses than others. By Theorem 1.10, the idea of fixing
the visible root system substantially helps in reducing this non-uniformity, and it does work in
most cases. Sometimes, however, it is not enough, as shown by the example in Section 1.9, and
it is preferable to use other methods to find the lattices with smallest mass.

A bit surprisingly, those statistic arguments have also been very helpful in order to discover
that some invariants were not fine enough. Indeed, when searching for lattices with a given
root system using a certain invariant, if we start finding new lattices with very small mass
compared to the remaining mass for this root system, that is a strong indication that we missed

8The corresponding x ∈ Z26 is congruent to (114, 37, 4, 8, 9, 10, 11) mod 27 and to (1, 16, 24, 7, 25, 23, 20, 1, 16, 24, 7,
25, 23, 20, 1, 16, 24, 7, 25, 23, 20, 05) mod 29.
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the most likely ones: Our chosen invariant is not fine enough. See the discussion of the case
R ≃ 2A1 2A2 2A3 2A4 in dimension 26 in Section 10 for an example of such a situation.

1.11 Proofs of Theorems 1.1 and 1.4: The full lists

Although most of the lattices in the lists of Theorem 1.4 have been found by applying the
naive algorithm described in (M3) of Section 1.5, the main work was to deal with the remaining
ones. A large part of them were found by using the biased algorithm of Section 1.8, using for
each remaining root system clever choices of visible root systems as explained in Section 5. The
most resisting (and interesting!) lattices were then dealt with using more specific methods, some
of them already encountered in the introduction: for example, enumeration of the 2-neighbors
of well-chosen lattices, the “addition of Dm” method (see Section 11), the separate study of
exceptional lattices (see Section 9).9

The whole computation required so many case-by-case considerations that it would be not be
reasonable to list them here. For instance, several hundreds of the 2797 possible root systems in
dimension 27 had to be treated separately (as in Section 1.9). Instead, our expository choice in
this paper is to explain the theoretical aspects underlying each method that we used, and to only
provide a few detailed examples as illustrations. We refer to the companion paper [AC24] for more
examples of our method, including some emphasis (and improvements) on some computational
aspects only briefly discussed in this paper. We mention that all of our computations have
been made using PARI/GP, see [PAR14], and a processor Intel(R) Xeon(R) CPU E5-2650 v4 @

2.20GHz with 65 GB of memory; the total CPU time was about 1 month in dimension 26 and 1
year in dimension 27.

Actually, if our goal is just to prove Theorems 1.1 and 1.4, rather than understanding the
mathematical ideas involved, it is not really necessary to explain how our lists in [Che20b] were
discovered! Indeed, it may be checked independently and a posteriori that these lists are complete:
It is enough to check that all the given lattices have distinct invariants and that the sum of their
masses equals the mass formula. See [Che20b] for the relevant PARI/GP source code for this check.
This is of course much shorter: It only requires 5 hours in dimension 26, and 40 hours in dimen-
sion 27. As a consequence, this also provides an independent verification of King’s computations.

In the companion paper [AC24], in collaboration with Bill Allombert, we pursue the ideas of
this paper and determine in particular X28 and X∅

29.

2. General conventions and notation

In this paper, group actions will be on the left. We denote by |X| the cardinality of the set X.
For an integer n ⩾ 1, we denote by Sn the symmetric group on {1, . . . , n}, by Altn ⊂ Sn the
alternating subgroup, and we denote by Z/n the cyclic group Z/nZ.

(i) If V is a Euclidean space, we usually denote its inner product by x · y. A lattice in V is
a subgroup generated by a basis of V , or equivalently, a discrete subgroup L with finite covolume,
denoted by covolL. Its dual lattice is the lattice L♯ defined as {v ∈ V | v ·x ∈ Z, ∀x ∈ L}. Recall
that L is integral if we have L ⊂ L♯. An integral lattice is called even if we have x · x ∈ 2Z for
all x ∈ L, odd otherwise. The orthogonal group of V is denoted by O(V ), and we also denote by

9Actually, when we first made these computations in 2020, we had not yet discovered the theory of visible isometries
explained in Section 7, and mostly used instead the ideas of Section 7.5 to construct lattices with small reduced
mass. Many such lattices can also be found faster using the arguments of Section 7 (although with a worse farness!).
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O(L) = {γ ∈ O(V ), γ(L) = L} the isometry group of L (a finite group).

(ii) Assume that L ⊂ V is an integral lattice. The finite abelian group resL := L♯/L (sometimes
called the discriminant group [Nik79], the glue group [CS99] or the residue [CL19]) is equipped
with a non-degenerate Q/Z-valued symmetric bilinear form, defined by (x, y) 7→ x · y mod Z.
We have (covolL)2 = |resL|. This integer, also denoted by detL, is also the determinant of the
Gram matrix Gram(e) = (ei · ej)1⩽i,j⩽n of any Z-basis e = (e1, . . . , en) of L.

(iii) A subgroup I ⊂ resL is called isotropic if we have x·y ≡ 0 for all x, y ∈ I, and a Lagrangian
if we have furthermore |I|2 = |resL|. The map βL : M 7→ M/L defines a bijection between the
set of integral lattices containing L and the set of isotropic subgroups of resL. In this bijection,
M/L is a Lagrangian if and only if M is unimodular. If I is finite abelian group, we denote
by H(I) the hyperbolic symmetric bilinear space I ⊕ I∗, with I∗ = Hom(I,Q/Z), defined by
(x+ ϕ) · (x′ + ϕ′) = ϕ(x′) + ϕ′(x).

(iv) Assume furthermore that L is an even lattice. Then the finite symmetric bilinear space resL
has a canonical quadratic form q: resL → Q/Z such that q(x+y)−q(x)−q(y) ≡ x·y, defined by
q(x) = 1

2(x · x) mod Z. In the bijection βL above, the even lattices M correspond to the quadratic
isotropic subspace I ⊂ resL, that is, with q(I) = 0. We also denote by qm: resL → Q⩾0 the
Venkov map, defined by qm(x) = Miny∈x+L

1
2(y · y); see [Ven80]. It satisfies qm(x) ≡ q(x) mod Z,

qm(x) = qm(−x) and qm(x) > 0 for x ̸≡ 0.

(v) (Standard lattices) Here Rn denotes the standard Euclidean space, for n ⩾ 0, with canonical
basis ε1, . . . , εn. We set Dn = {x ∈ Zn |

∑
i xi ≡ 0 mod 2} and An = {x ∈ Zn+1 |

∑
i xi = 0}.

The E8 lattice is D8+Ze with e = 1
2

∑8
i=1 εi, the E7 (respectively, E6) lattice is the orthogonal of

ε7+ε8 (respectively, of ε7−ε6 and ε7+ε8) in E8. All these lattices are even. Their Venkovs maps
are well known (theory of minuscule weights), with non-zero values given in Table 4 below. In the
case L = An, there is a group isomorphism ϕ : Z/(n + 1) ∼−→ resAn with qm(ϕ(i mod n + 1)) =
i(n+ 1− i)/2(n+ 1) for 1 ⩽ i ⩽ n.

L An Dn, n > 0 even Dn, n odd E6 E7 E8

resL Z/(n+ 1) Z/2× Z/2 Z/4 Z/3 Z/2 0

qm i(n+1−i)
2(n+1) with 1 ⩽ i ⩽ n n

8 ,
1
2 ,

n
8

2
3 ,

2
3

3
4

Table 4. The non-zero values of qm on resL (with multiplicities).

(vi) A subgroup A of a lattice L is called saturated if the abelian group L/A is torsion-free, or
equivalently, if A is a direct summand of L as Z-module. The saturation of A in L, defined as
SatL(A) = L ∩ (A⊗Q), is the smallest saturated subgroup S of L containing A.

3. Cyclic Kneser neighbors of unimodular lattices

3.1 Definitions and notation

Let V be a Euclidean space, L a unimodular integral lattice in V and d ⩾ 1 an integer.
A d-neighbor of L is a unimodular integral lattice N ⊂ V such that we have a group isomorphism

L/(L ∩N) ≃ Z/d .

Such lattices N are sometimes called cyclic d-neighbors of L, but from now on we will omit the
adjective cyclic for short. A few remarks are in order:
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(Na) If N is a d-neighbor of L, then L is a d-neighbor of N . Indeed, if we setM = L∩N , then we
have M ♯ = N ♯+L♯ = N +L, and thus resM = N/M ⊕L/M with N/M and L/M Lagrangians.
As a consequence, the pairing of resM identifies N/M with Hom(L/M,Q/Z) ≃ Z/d.
(Nb) As L is unimodular, the subgroups M ⊂ L with L/M ≃ Z/d are the

Md(L;x) := {m ∈ L | m · x ≡ 0 mod d} ,

where x ∈ L is a d-primitive vector. By this, we mean that x is an element of L whose image in
L/dL generates a subgroup of order d. For d-primitive x, x′ ∈ L, we have Md(L;x) = Md(L;x

′)
if and only if x and x′ generate the same subgroup in L/dL. We thus denote by Md(L; ℓ) as well
the lattice Md(L;x) if ℓ ≃ Z/d is the subgroup in L/dL generated by x.

Proposition-Definition 3.1. Let L be a unimodular integral lattice in V , d ⩾ 1 an integer
and x ∈ L a d-primitive element. Set M = Md(L;x), and let e = 1 for d odd and e = 2 for d
even.

(i) If x · x ≡ 0 mod ed, there are exactly e cyclic d-neighbors N of L with N ∩ L = M , and
none otherwise. These d-neighbors are the

M + Z
x̃

d
, (3.1)

where x̃ is any element of L with x̃ ≡ x mod dL and x̃ · x̃ ≡ 0 mod d2.

(ii) For d odd, the lattice (3.1) does not depend on the choice of x̃, and we denote it by Nd(L;x).
For d even, it only depends on the element ϵ ∈ Z/2 defined by x̃ ·x ≡ 1

2x · x+ϵ d2/2 mod d2,
and we denote it by Nd(L;x; ϵ).

Proof. As x is d-primitive and L is unimodular, we may and do choose a y ∈ L with y · x ≡
1 mod d. We clearly have L ⊂ M ♯ and x/d ∈ M ♯. Using L/M = (Z/d)y, |resM | = d2 and
x · y ≡ 1 mod d, we obtain resM = (Z/d)y ⊕ (Z/d)(x/d).

The d-neighbors N of L with L ∩ N = M are in bijection with the Lagrangians I ⊂ resM
that are transversal to L/M , that is, with I ∩ (L/M) = {0}. As |I| = d, each such Lagrangian
is necessarily isomorphic to Z/d and generated by a unique element of the form x/d − ry with
r ∈ Z/d. But such an element is isotropic if, and only if, we have (x · x)/d ≡ 2r mod dZ. For d
odd, there is a unique possibility for r, and for d even, there are none if x · x ̸≡ 0 mod 2d, and
exactly two otherwise, namely the rϵ = (x · x)/2d+ ϵ d/2 mod d with ϵ ∈ Z/2. In the latter case,
note that we have

x · (x/d− rϵy) ≡
x · x
d

− rϵ ≡
x · x
2d

+ ϵ
d

2
mod dZ .

This proves the first assertion of part (i), as well as the second once we observe that for any
x̃ ∈ x + dL, we have x̃/d ∈ M ♯, and thus x̃ · x̃ ≡ 0 mod d2 if and only if x̃/d is isotropic in
resM .

Remark 3.2. (i) By the proof above, we may define Nd(L, x) (respectively, Nd(L;x; ϵ)) by taking
x̃ = x + rdy in (3.1) with r = ((d+ 1)/2d)x · x (respectively, r = −(x · x)/2d + ϵ d/2). Here y
denotes any element of L with x · y ≡ 1 mod d; it is unique modulo M , so those lattices do not
depend on this choice of y.

(ii) For d odd, the lattice Nd(L;x) only depends on M , hence on the Z/d-line ℓ of L/dL
generated by x, so we may also denote it by Nd(L; ℓ). This fails for d even. Indeed, if we set
x′ = x + dv with v ∈ L, a simple computation using for example the formula given in part (i)
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shows Nd(L;x
′; ϵ) = Nd(L;x; ϵ + v · v). In the case where L is even, and only in this case, the

lattice Nd(L;x; ϵ) only depends on (L; ℓ; ϵ) (see Proposition 3.5(ii)).

We denote by Nd(L) the set of all d-neighbors of L. As the sublattice L∩N , for N ∈ Nd(L),
plays an important role in this paper, we give it a name.

Definition 3.3. If N is a d-neighbor of L, we call the lattice M = L ∩N the visible part of N .
By (Na), this is an integral lattice with resM ≃ H(Z/d).

3.2 The quadric CL

Fix L ∈ Ln and d ⩾ 1, and again set e = 1 if d is odd and e = 2 otherwise. Consider the finite
quadric

CL(Z/d) = {ℓ ⊂ L⊗ Z/d | ℓ ≃ Z/d and ℓ · ℓ ≡ 0 mod ed} . (3.2)

For N in Nd(L), we denote by l(N) the unique ℓ ∈ CL(Z/d) satisfying Md(ℓ) = N ∩L. Alterna-
tively, we have10 l(N) = (dN + dL)/dL. The map

l : Nd(L) −→ CL(Z/d) , N 7−→ l(N) (3.3)

will be called the line map. Proposition 3.1(i) asserts the following.

Corollary 3.4. The line map is e : 1 and surjective.

It is easy to give a closed formula for |CL(Z/d)|, hence for |Nd(L)|.

3.3 Parity of a d-neighbor

We now discuss the parity of a neighbor and the related notion of characteristic vectors. Recall
that an integral lattice L is called even if we have v · v ∈ 2Z for all v ∈ L, and odd otherwise. If L
is unimodular, the map L → Z/2, v 7→ v · v mod 2 is Z-linear, hence of the form v 7→ ξ · v mod 2
for some vector ξ ∈ L uniquely determined modulo 2L. Such vectors ξ ∈ L are called the
characteristic vectors of L; they form a coset in L/2L that we will denote by Char(L). As an
example, we have

Char(In) = {(ξ1, . . . , ξn) ∈ Zn | ξi ≡ 1 mod 2, 1 ⩽ i ⩽ n} . (3.4)

We have Char(L) = 2L if and only if L is even, and if L is odd and ξ is in Char(L), then M2(L; ξ)
coincides with the largest even sublattice of L. It is clear that if L and L′ are d-neighbors with d
odd, then L is even if and only if L′ is even. The case d even is more interesting.

Proposition 3.5. Assume that L is an integral unimodular lattice, d is even and x ∈ L is
d-primitive with x · x ≡ 0 mod 2d.

(i) If L is odd, the d-neighbor Nd(L;x; ϵ) is even if, and only if, x is a characteristic vector of
L and satisfies (x · x)/2d ≡ (1 + d/2)ϵ mod 2.

(ii) If L is even, then Nd(L;x; ϵ) is even if and only if ϵ = 0.

Proof. By definition, Nd(L;x; ϵ) = M + Z(x̃/d) is even if and only if the lattice M = Md(L;x)
and the integer x̃ · x̃/d2 are even, with x̃ as in Remark 3.2(i).

First assume that L is odd. As L/M is cyclic of even order, there exists a unique lattice
M ⊂ H ⊂ L with L/H = Z/2, namely H = M2(L;x). It follows that M is even if and only if

10Indeed, the image ℓ′ of dN in L/dL is isomorphic to N/(N ∩L) ≃ Z/d and satisfies dN ·dN ≡ 0 mod edZ, so we
have ℓ′ ∈ CL(Z/d). But we have dN ·M ≡ 0 mod dZ and thus M = M(ℓ) ⊂ M(ℓ′), hence an equality and ℓ = ℓ′.
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M2(L;x) is the largest even sublattice of L, that is, if x is a characteristic vector of L. A trivial
computation, using y · y ≡ x · y ≡ 1 mod 2, then shows (x̃ · x̃)/d2 ≡ (x · x)/2d+(1+ d/2)ϵ mod 2
and concludes the proof of part (i).

If L is even, a simple computation shows x̃ · x̃/d2 ≡ ϵ mod 2, hence part (ii).

3.4 Orbits

As emphasized in the introduction, it is a difficult question in general to understand the isometry
classes of the d-neighbors of a given L. A standard observation though is that the isometry
group O(L) of L naturally acts on Nd(L), and so two neighbors in a same orbit are isometric.
This group also acts on CL(Z/d), and we have the following obvious proposition.

Proposition 3.6. The line map (3.3) is O(L)-equivariant.

Equivalently, we have g(Md(x)) = Md(g(x)) for all x ∈ L and g ∈ O(L). For d odd, the
isometry class of a neighbor N thus depends only on the O(L)-orbit of its line l(N). For d even,
the same holds up to the ϵ-ambiguity; more precisely, by assertion (i) of Remark 3.2, we have
for all g ∈ O(L), all d-primitive x ∈ L with x · x ≡ 0 mod 2d and all ϵ ∈ Z/2, the equation

g(Nd(L;x; ϵ)) = Nd(L; g(x); ϵ) . (3.5)

3.5 d-neighbors of In

We finally specify the previous considerations for the standard odd unimodular lattice L = In
and relate the general definitions in this case to the notation already introduced in Section 1.2.
Fix d ⩾ 1. The finite bilinear space In ⊗ Z/d is just the standard Z/d-valued inner product on
the space (Z/d)n, and we set Cn(Z/d) = CIn(Z/d). The element x ∈ Zn is d-primitive if, and
only if, we have gcd(x1, . . . , xn, d) = 1. The line l(x) ⊂ In ⊗ Z/d it generates is in Cn(Z/d) if,
and only if, formula (1.3) holds, that is, x is d-isotropic. We ease the notation by denoting by

Md(x) , Md(ℓ) , Nd(x) , Nd(ℓ) , Nd(x; ϵ)

the lattices Md(In;x), Md(In; ℓ), Nd(In;x), Nd(In; ℓ), Nd(In;x; ϵ). For d even, we also denote by
Nd(x)

± the lattices Nd(x; ϵ) in the introduction. A characteristic vector of In is 1n, so Proposi-
tion 3.5 reads as follows.

Corollary 3.7. The lattice Nd(x; ϵ) is even if and only if d is even, xi is odd for each i and we
have

∑
i x

2
i ≡ d(2 + d)ϵ mod 4d (which forces n ≡ 0 mod 8).

The isometry group O(In) is unusually large: This is the group {±1}n⋊Sn acting on Zn by all
possible permutations and sign changes of coordinates. The O(In)-orbits on Cn(Z/d), which are
of great interest by Proposition 3.6, will thus be in manageable quantity for small d and n. An
element x ∈ Zn will be called d-ordered if it satisfies (1.9), that is, 0 ⩽ x1 ⩽ x2 ⩽ · · · ⩽ xd ⩽ d/2.

Fact 3.8. For any O(In)-orbit Ω ⊂ (Z/dZ)n, there is a unique d-ordered element x ∈ Zn with
x mod d ∈ Ω.

This obvious fact explains why we always choose our d-isotropic elements x to be d-ordered in
our lists. Note however that two distinct d-isotropic and d-ordered elements of Zn may generate
the same line in (Z/d)n, hence give birth to the same d-neighbors (see [AC24, Remark 5.5] for
more about this).
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Remark 3.9. Assume that x ∈ Zn is d-isotropic, d is even and g ∈ O(In). We have g(Nd(x; ϵ)) =
Nd(g(x); ϵ) by (3.5). Beware however that, by assertion (ii) of Remark 3.2, if we choose some i
and define x′ ∈ Zn by x′j = xj for j ̸= i and x′i = xi ± d, then x′ obviously generates the same
line as x in (Z/d)n, but we have Nd(x

′; ϵ) = Nd(x; ϵ+ 1).

Corollary 3.10. Assume that x ∈ Zn is d-isotropic, with d even and xi ≡ d/2 mod d for some
i ∈ {1, . . . , n}. Then we have Nd(x; 0) ≃ Nd(x; 1).

Proof. Set x′ = x−2xiεi. Using formula (3.5) for g ∈ O(In) defined by g(εi) = −εi and g(εj) = εj
for j ̸= i, we deduce Nd(x; 0) ≃ Nd(x

′; 0). By Remark 3.9 and the relation 2xi ≡ d mod 2d, we also
have Nd(x

′; 0) = Nd(x; 1).

4. Some lattice invariants

4.1 Configuration of vectors of given norm

Define an Euclidean set as a set X equipped with an injection X
j
↪→ V into some Euclidean

space V . We then denote by RX the Euclidean subspace of V generated by j(X). Euclidean
sets form a category if we define a morphism (X, j) → (X ′, j′) as a map f : X → X ′ induced
by a linear isometric embedding f̃ : RX → RX ′, that is, verifying11 f̃ ◦ j = j′ ◦ f . Note that it
makes sense to talk about the scalar product x · y of two elements x, y of a Euclidean set (X, j)
(namely x · y = j(x) · j(y)), about the rank of X (that is, dimVectR(j(X))), about the lattice
generated by X (that is, Z j(X)), . . .

Let L be an integral lattice in V . The configuration of vectors of norm i of L, already
introduced in (1.7), is the Euclidean set

Ri(L) = {v ∈ L | v · v = i} (4.1)

with understood embedding Ri(L) ⊂ V . Its isomorphism class is an invariant of the isometry
class of L. Recall the notation ri(L) := |Ri(L)|. A natural variant of Ri(L) is the Euclidean set
R⩽i(L) defined by replacing v · v = i with v · v ⩽ i in (4.1). It is obvious that for two integral
Euclidean lattices L and L′, if we choose i big enough so that R⩽i(L) and R⩽i(L

′) generate L
and L′, then L is isometric to L′ if and only if R⩽i(L) isomorphic to R⩽i(L

′).

For i = 1, the isomorphism class of R1(L) is obviously nothing more than the even inte-
ger r1(L) since we have w · v = 0 for v ̸= ±w and w, v ∈ R1(L). For i = 2, this is the same as
the ADE root system of L, an important invariant that we review in Section 4.2 below. We are
not aware of any general study or classification for the possible isomorphism classes of Ri(L) for
i ⩾ 3. This question for i = 3 is of great importance here, as experiments show that the uni-
modular lattices of dimension n in our range are almost always generated over Z by their R⩽3;
see Table 5 for the a posteriori statistics. This fact explains much of Corollary 1.6.

Remark 4.1 (Computation of the set R⩽i(L)). If L is an integral Euclidean lattice (given by
a Gram matrix G), we use the Fincke–Pohst algorithm [FP85] to compute the sets R⩽i(L) (func-
tion qfminim(G, i) in PARI/GP). As an indication, the average CPU time in ms on our machine to
compute R⩽i(L), when L is our list of 17059 odd unimodular lattices of rank 27, is about 2.3 ms

for i = 1, 2.8 ms for i = 2 and 20 ms for i = 3. For comparison, computing a Gram matrix for
such a lattice in neighbor form takes about 0.4 ms.

11Note that given f , such an f̃ is unique if it exists.
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n \ d 1 2 3 4 ⩾ 5

26 1857 38 2 4 0

27 14425 64 1 3 0

Table 5. The number of isometry classes of rank n unimodular lattices L such that R⩽3(L)
generates a sublattice of index d in L (including d = ∞).

4.2 ADE root systems and root lattices

By a root in a Euclidean space V , we mean an element α in V with α · α = 2. The orthogonal
symmetry about a root α is given by sα(v) = v − (v · α)α. An ADE root system is a finite
Euclidean set R consisting of roots such that for all α, β in R, we have α ·β ∈ Z and sα(R) = R.
In other words, R is a root system in RR in the sense of [Bou81, Chapitre VI] satisfying α∨ = α
for all α ∈ R. Any such R generates an even Euclidean lattice, called the associated root lattice,
and denoted by Q(R) following Bourbaki. We also set resR = resQ(R). A morphism R → R′ of
root systems, also called an embedding, is a morphism of Euclidean sets. We talk about sub–root
systems for embeddings defined by an inclusion.

For any integral Euclidean lattice L, the set R := R2(L) trivially is an ADE root system,
called the root system of L. We say that L is a root lattice if we have Q(R) = L. The (non-
obvious but true) general equality R = R2(Q(R)) shows that the functors R 7→ Q(R) and
L 7→ R2(L) define inverse equivalences between the category of ADE root systems and that of
root lattices (for linear isometries). We trivially have R2(L1 ⊥ L2) = R2(L1)

∐
R2(L2), where

∐
denotes the orthogonal disjoint union of Euclidean sets and Q(R1

∐
R2) = Q(R1) ⊥ Q(R2).

In particular, irreducible root systems correspond to indecomposable root lattices. Recall the
standard lattices An (n ⩾ 0), Dn (n ⩾ 0) and En (6 ⩽ n ⩽ 8) from Section 2(v). All but D1 are
root lattices, and all but D2 are indecomposable for n ⩾ 1. We denote their root systems by An,
Dn and En, respectively. By the ADE classification, any irreducible root system is isomorphic
to such a root system, and the unique coincidences between them are A0 = D0 = D1 = ∅,
D2 ≃ A1

∐
A1 and D3 ≃ A3.

Remark 4.2 (An algorithm for computing root systems). If L is an integral lattice in the Euclidean
space V , the structure of its root system R2(L) may be efficiently computed as follows. First
determine the set R = R2(L) as in Remark 4.1, choose a linear form φ on V with 0 ̸∈ φ(R), and
set R+ = {α ∈ R | φ(α) > 0} (positive roots). (Actually, PARI’s qfminim(G,2) function directly
returns such an R+ rather than R). Then compute the Weyl vector ρ = 1

2

∑
α∈R+ α and the

basis B = {α ∈ R+ | ρ · α = 1} of R associated with R+. Compute the scalar products b · b′ for
b, b′ ∈ B, and view B as the vertices of the undirected graph with an edge between b and b′ if
and only if b ̸= b′ and b · b′ ̸= 0 (Dynkin diagram of R). The connected (irreducible) components
of this union of trees are easily computed recursively and identified as of type An, Dn or En by
simply looking at their unique vertex x with valence greater than 2 (if it exists) and the sum of
the valences of the three neighbors of x. See [Che20b] for our concrete implementation. As an
indication, the average CPU time for computing the isomorphism class of the root system of a
unimodular lattice of rank 27 in our list is 5.9 ms. As |B| ⩽ dimV is very small in practice,
naive graphs algorithms are perfectly suitable for the last part above: 99.8% of the CPU time is
used for the computation of the sets R+ and B.

Let L be an integral Euclidean lattice with ADE root system R := R2(L). For each α ∈ R, the

784



Unimodular hunting

orthogonal reflection sα(x) = x−(x ·α)α lies in O(L). The Weyl group of L is the subgroup W(L)
of O(L) generated by those sα with α ∈ R. This is a normal subgroup of O(L) isomorphic to
W(R) := W(Q(R)). Moreover, if we choose a positive root system R+ of R and denote by ρ the
associated Weyl vector as in Remark 4.2, we have another subgroup

O(L; ρ) := {γ ∈ O(L) | γ(ρ) = ρ} . (4.2)

As is well known, W(L) acts simply transitively on the set of Weyl vectors of L (and on the set
of positive root systems). We thus have

O(L) = W(L)⋊O(L; ρ) . (4.3)

Also, for w ∈ W(L), we obviously have O(L;w(ρ)) = wO(L; ρ)w−1. It follows that the W(L)-
conjugacy class of the subgroup O(L; ρ) in O(L) is canonical and does not depend on the choice
of ρ. Moreover, each O(L; ρ) is naturally isomorphic to O(L)/W(R).

Definition 4.3. Let L be integral Euclidean lattice L with root system R. Define the reduced
isometry group of L as the group O(L)red = O(L)/W(R), and the reduced mass of L by the
formula rmass(L) := 1/|O(L)red|.

A first important application of this notion is the following remark. As the structure of W(R)
is well known, it follows that in order to determine generators of O(L), or simply its order, it is
enough to do so for O(L; ρ).

Remark 4.4 (Computation of the reduced isometry group). Let L be an integral Euclidean lattice.
Choose a Weyl vector ρ of L as in Remark 4.2. As was already observed and used in [Che20a], it
turns out that the Plesken–Souvignier algorithm [PS97] directly allows one to compute generators
and the order of O(L; ρ). Indeed, is enough to apply it to a pair consisting of a Gram matrix
of L and a Gram matrix of the bilinear form (x, y) 7→ 4(ρ · x)(ρ · y), in a same basis. This
actually returns the order and generators for ±O(L; ρ), but the similar information for O(L; ρ)
easily follows.12 This computation of O(L; ρ) is usually much faster than that of O(L) (the bigger
R2(L) is, the faster). As an indication, the average CPU time for the computation of O(L) for
our 14493 rank 27 unimodular lattices with no norm 1 vector using this method (and PARI’s
qfauto) is 8.9 s.

We end this section with a few more definitions, for a later use.

– An embedding f : R′ ↪→ R is called saturated if the subgroup f(Q(R′)) is saturated in Q(R)
(see Section 2(vi)). The saturated sub–root systems of an ADE root system R ⊂ V are those
obtained by intersecting R with a subspace of V ; they are sometimes called parabolic, and their
Dynkin diagrams are obtained from that of R by removing a finite set of vertices.

– We denote by RS the set of isomorphism classes of ADE root systems. We often write
n1R1 n2R2 · · ·nkRk for the orthogonal disjoint union of ni copies of Ri, for i = 1, . . . , k.

4.3 Vectors of norm at most 3

We start with some information on the number of vectors of norm 3 of the lattices we are
interested in. The statement of the following proposition uses the notation Exc(L) for L ∈ Ln,
which will only be introduced in Section 9.1 when discussing exceptional lattices.

12Souvignier’s code is available in PARI/GP as qfauto(G) with G a Gram matrix of L. For all of the computations
of O(L; ρ) in this paper, we use the LLL-algorithm (PARI’s qflllgram) to find a suitable G. See [AC24, § 4] for
more clever choices of bases that substantially speed up these computations.
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Proposition 4.5. For all L ∈ Ln with 24 ⩽ n ⩽ 28 and r1(L) = 0, we have

r3(L) =
4
3n(n

2 − 69n+ 1208) + 2(n− 24)r2(L)− 236−n|Exc(L)| .

Proof. First assume that we have L ∈ L28 (and possibly norm 1 vectors), and let M denote the
even part of L. A simple computation of the coefficient in q of the theta series of M ♯, following
the arguments in [BV01, § 4] (or [CS99, § 4.4]), shows the relation 256r1(M

♯) = −r3(L)+8r2(L)+
468r1(L) + 2240. Since 28 ≡ 4 mod 8, we also have r1(M

♯) = r1(L) + |Exc(L)| by formula (9.2).
Now choose an L0 ∈ Ln with n ⩽ 28 and r1(L) = 0. We apply the above relation to L = L0 ⊥ Im
withm = 28−n. We conclude the equality of the statement (for L0) by the equalities r1(L) = 2m,
r2(L) = r2(L0) + 22

(
m
2

)
, r3(L) = r3(L0) + 2mr2(L0) + 23

(
m
3

)
and |Exc(L)| = 2m|Exc(L0)| for

n ⩾ 24.

Example 4.6. We deduce r3(L) = 3120 + 4r2(L)− 1024|Exc(L)| in the case n = 26 and r3(L) =
2664 + 6r2(L)− 512|Exc(L)| for n = 27. In both cases, we have |Exc(L)| = 2 if L is exceptional,
and |Exc(L)| = 0 otherwise, by Proposition 9.4.

Our aim now is to discuss a few invariants of R⩽3 that we have used during our simultaneous
proofs of Theorem 1.1 and Corollary 1.6. We sincerely apologize for the fact that what follows is
mostly empirical. We mostly relate facts (namely, Propositions 4.8 and 4.10) that we observed
during our search and only proved by case-by-case computations. In each case, it is an open
problem to find conceptual explanations for our computations.

A component of size s of a root system R is a union of s distinct irreducible components of R.
We denote by R ∈ RS the isomorphism class of R.

Definition 4.7. For an integral Euclidean lattice L and an integer s ⩾ 0, we denote by δs(L) ∈
Z[RS×N] the sum of (C,m) of RS×Z⩾0 where C runs among the components of size s of R2(L)
and m = |R3(C

⊥ ∩ L)|.

The invariant δ0(L) is just r3(L), weak information by Example 4.6. The invariants δk(L)
have already been used for instance by Megarbané in his study of the rank 26 even lattices of
determinant 3; see [Még18] (see also Example 9.10). As an example, let us consider again the seven
isometry classes of unimodular lattices of rank 26 with root system 10A1, listed in Table 3. The
invariants δ1 and δ2 of these lattices (ordered as in that table) are given by Table 6. In particular,
all those lattices are distinguished by δ2 (but not by δ1). It follows from our computations that
this is a general fact in rank 26.

Proposition 4.8. Two unimodular lattices of rank 26 are isometric if, and only if, they have
the same root system and the same invariants δ1 and δ2.

The invariants δs are, however, not strong enough in dimension 27. We now discuss a second
invariant of R⩽3.

Definition 4.9. For a Euclidean integral lattice L, we define G(L) as the undirected graph
with vertices the non-zero pairs {±x} with x ∈ R⩽3(L) and with |x · y| arrows between {±x}
and {±y}.

Of course, we have |x · y| ⩽ 3 for all x, y ∈ R⩽3(L). The isomorphism class of this graph
G(L) only depends on that of R⩽3(L). In Table 7 below, we give the a posteriori information
on the number of vertices of G(L) for L in Ln with r1(L) = 0 for n = 26, 27 (agreeing with
Example 4.6).
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δ1 δ2

10(A1, 2578) 4(2A1, 1968) + 6(2A1, 2000) + 20(2A, 2032)}+ 15(2A1, 2064)

10(A1, 2578) 13(2A1, 2000) + 16(2A1, 2032) + 16(2A, 2064)}

10(A1, 2578) 11(2A1, 2000) + 24(2A1, 2032) + 10(2A, 2064)}

10(A1, 2578) 20(2A1, 2000) + 25(2A1, 2064)

10(A1, 2578) 4(2A1, 1936) + 16(2A1, 2000) + 25(2A, 2064)}

10(A1, 2578) 20(2A1, 1936) + 25(2A1, 2064)

(A1, 18) + 9(A1, 1042) 9(2A1, 16) + 36(2A1, 912)

Table 6. The invariants δ1 and δ2 of the seven lattices of Table 3.

n min max average

26 556 2850 ≃ 1776

27 820 3277 ≃ 1573

Table 7. The minimum, maximum and average number of vertices of the graph G(L) for L ∈ L′
n.

Any of graph invariants can be applied to study G(L). From a computational point of view,
an especially simple one that we can consider is the rank hp(G) of the adjacency matrix mod p
of a graph G. Here p is any given prime. So for s ⩾ 0 and a prime p, we can define a variant

δs,p(L) ∈ Z[RS× N× N]

of δs by replacing each (C,m) in Definition 4.7 by (C,m, r) with r = hp(G(C⊥ ∩ L)). It turns
out that these δs,p do suffice to distinguish all unimodular lattices in rank 27. More precisely,
our computations show the following.

Proposition 4.10. Two unimodular lattices of rank 27 are isometric if and only if they have
the same root system and the same invariants δs,p with s ⩽ 3 and p = 5 unless their root system
is in the following list:

3A1 , 6A1 , 7A1 , 3A1A2 , 5A1A2 , 7A1A2 , 4A12A2 , 6A12A2 , 8A12A2 , 5A13A2 .

For such root systems, we need the invariants δs,p for s ⩽ 7 and p = 5, 7.

We will not insist much on these invariants δs,p here, but rather refer to the companion work
[AC24, § 3] in which we will define another invariant of G(L) (inspired by the work of Bacher
and Venkov [BV01]) that will turn out to be fine enough to distinguish all unimodular lattices
of rank at most 28.

5. The visible root system of a d-neighbor of In

5.1 The root system

Let x ∈ Zn be d-isotropic, and let N = Nd(x
′) be an associated d-neighbor of In. Recall that

In∩N = Md(x). In this section, we study the visible root system ofN in the sense of Definition 1.8,
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namely the sub–root system R2(Md(x)) of R2(N). The term visible reflects the fact that this root
system is immediately seen on the shape of x. The recipe is as follows.

For any x ∈ Zn and d ⩾ 1, we have an equivalence relation ∼ on {1, . . . , n} defined by

i ∼ j ⇐⇒ xi ≡ ±xj mod d . (5.1)

There are two distinguished subsetsD andD′, defined respectively as the subsets of i ∈ {1, . . . , n}
with xi ≡ d/2 mod d or xi ≡ 0 mod d (so D = ∅ for d odd). We set m(x) = |D| and m′(x) = |D′|,
and we denote by a(x) the integer partition a1(x) ⩾ a2(x) ⩾ · · · of n−m(x)−m′(x) defined by
the sizes of the equivalence classes of ∼ different from D and D′. The relation ∼, a(x), the ai(x),
m(x) and m′(x) all only depend on the line ℓ = l(x) ⊂ (Z/d)n generated by x, and we also use
the notation ∼ℓ, a(ℓ), ai(ℓ), m(ℓ) and m′(ℓ) for them.

Proposition 5.1. For all x in Zn and d ⩾ 1, we have an isomorphism

R2(Md(x)) ≃ Dm(x)Dm′(x)Aa1(x)−1Aa2(x)−1 · · · .

Proof. Recall that R2(In) = {±εi ± εj | 1 ⩽ i < j ⩽ n} from (1.10). By the definition of
Md(x), the root εi − εj (respectively, εi + εj) of In belongs to Md(x) if and only xi ≡ xj mod d
(respectively, xi ≡ −xj mod d). Up to applying an element of O(In) if necessary, we may assume
that x is d-ordered. In this case, the equivalence classes of the relation ∼ clearly are intervals.
Also, the visible roots are the εi−εj whenever xi = xj , and for d even the ±(εi+εj) whenever xi ≡
xj ≡ 0 mod d/2 (with i ̸= j in both cases). We recognize the root system of the statement.

5.2 Saturation properties

As noticed in Section 1.7, we will usually assume xi ̸= 0 mod d for all i, or equivalently m′(x) = 0,
in order to have r1(Md(x)) = 0. Our aim until the end of this Section 5 is to discuss the relations
between the visible root system Rv and the actual root system of a d-neighbor N of In, as well
as the constraints on the embedding Rv ↪→ N .

Lemma 5.2. Let x ∈ Zn and d ⩾ 1 with xi ̸≡ 0 mod d for each i. Set M = Md(x) and Rv =
R2(M). Then Q(Rv) is saturated is M .

Proof. Applying an element of O(In) if necessary, we may assume that x is d-ordered. As observed
in Proposition 5.1, the classes I of the equivalence relation∼ on {1, . . . , n} associated with x and d
are intervals in this case and simply determine Rv: Each I ̸= D gives rise to an A|I|−1-component
(note that xi ̸≡ 0 mod d for i ∈ I), and I = D to a D|I|-component. For each class I, define
an abelian group ∆I as follows: Set ∆I = Z unless I = D, |D| ⩾ 2 and ∆I = Z/2. Also define
φI : Zn → ∆I by φI(v) ≡

∑
i∈I vi. We have a surjective linear map φ =

∏
I φI : Zn →

∏
I ∆I ,

where I runs among the equivalence classes of ∼. We clearly have

φ(M) =

{
(wI) ∈

∏
I

∆I |
∑
I

xIwI ≡ 0 mod d

}
,

where xI ∈ Z/d denotes the common class of the xi for i ∈ I. (Note that if D ̸= ∅, the product
xDwD is well defined in Z/d as d is even and xD ≡ d/2.) The description of Rv recalled above
shows kerφ = Q(Rv), hence φ(M) ≃ M/Q(Rv). The group

∏
I ∆I is torsion-free, hence so is

its subgroup φ(M) unless d is even and |D| ⩾ 2. In this case, the unique torsion element (wI)
is defined by wI ≡ 0 for I ̸= D and wD ≡ 1. But this element does not belong to φ(M) as
xD ≡ d/2 ̸= 0 mod d.
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Definition 5.3. Let L be an integral Euclidean lattice, R = R2(L) and R′ a sub–root system
of R. We say that R′ is a d-kernel of L if there is a surjective linear map φ : L → Z/d with
R2(kerφ) = R′. In the case L = Q(R), we also say that R′ is a d-kernel of R.

In other words, the d-kernels of L are the R′ = R2(M) for M a sublattice of L satisfying
L/M ≃ Z/d. In such a situation, and if we set R = R2(L), we also have Im(Q(R) → L/M) ≃ Z/d′
for some d′ | d; hence R′ is a d′-kernel of R.

Corollary 5.4. Assume that x ∈ Zn is d-isotropic with xi ̸≡ 0 mod d for each i. SetM = Md(x)
and Rv = R2(M), and let N be a d-neighbor of In with line l(x). Then Rv is a d-kernel of N . If
furthermore d is prime to ai(x) for all i, and odd in the case m(x) > 1, then Q(Rv) is saturated
in N .

Proof. The first assertion is clear. As Q(Rv) is saturated in M by Lemma 5.2, the saturation S
of Q(Rv) in N satisfies S ∩M = Q(Rv). The isotropic subgroup S/Q(Rv) of resRv thus embeds
in Z/d. So its order s satisfies13 s | d and s | |resRv|. We conclude as by Proposition 5.1 and
Table 4, we have | resRv| = f

∏
i ai(x) with f = 4 (case m(x) > 1) or f = 1 (otherwise).

Remark 5.5. As a consequence, if d is a sufficiently big prime, then Q(Rv) is saturated in N ,
which is a strong constraint. Theorem 1.10 shows that generically this is actually the only con-
straint.

Of course, there are many examples of unimodular lattices N with root system R such that
if S denotes the saturation of Q(R) in L, then S/Q(R) is not a cyclic group. We will thus often
have Rv ⊊ R2(N) in practice. By the remark following Definition 5.3, and still in the notation of
Corollary 5.4, the visible root system Rv is also a d′-kernel of R2(N) for some d′ | d. We postpone
to Section 5.4 the description of all the d-kernels of a given root system. We content ourselves
here with the following simple observation (see Remark 5.15 for a more precise statement).

Proposition 5.6. Let R′ be a saturated sub–root system of the ADE root system R with
rkR′ < rkR. Then R′ is a d-kernel of R for all d big enough.

Proof. We have an abelian group decomposition Q(R) = Q(R′) ⊕ P with P ≃ Zr and r =
rkR−rkR′ > 0. As R is finite, we may find a surjective linear map φ : Q(R) → Z with φ(R′) = 0
and φ(r) ̸= 0 for r ̸∈ R′. We conclude by using φ⊗ Z/d with d > φ(r) for all r ∈ R.

5.3 An example: The safe case

For the purpose of unimodular hunting, we are led to the following definition.

Definition 5.7. Let R and S be ADE root systems. We say that (R,S) is safe if for any integral
lattice L with R⩽2(L) = R, there is an isometric embedding Q(S) → L whose image is saturated
in L.

By definition, if (R,S) is safe, then S is isometric to a saturated sub–root system of R.
Moreover, (R,S′) is also safe for any saturated sub–root system S′ of S. Also note that if L is
an integral lattice with root system R, and if V is the Euclidean space generated by R, then
L ∩ V is saturated in L, so we may actually assume L ⊂ V in the definition above. In this
case, L ⊂ Q(R)♯ is uniquely determined by the isotropic subspace I = L/Q(R) of resR, by

13We even have s2 | |resRv|. Indeed, for any isotropic subgroup I of a finite bilinear abelian group A, we have
|A| = |A/I⊥| · |I⊥/I| · |I| and A/I⊥ ≃ Hom(I,Q/Z) ≃ I.
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Section 2(iii). In terms of the Venkov map recalled in Section 2(iv), the assumption R⩽2(L) ≃ R
is equivalent to qm(x) ̸= 1

2 , 1 for all x ∈ I.

Definition 5.8. We call an ADE root system S detecting if for all integral lattices L with
Q(S) ⊊ L ⊂ Q(S)♯, we have S ⊊ R⩽2(L). Equivalently, S is detecting if for all x in resS with
qm(x) ∈ 1

2Z, we have qm(x) ⩽ 1.

The interest of this notion for us is the following proposition.

Proposition 5.9. Assume that R is the orthogonal disjoint union of its sub–root systems S
and T . If S is detecting, then (R,S) is safe.

Proof. Write R = S
∐

T , and let L be an integral lattice with R⩽2(L) = R. The saturation L′

of Q(S) in L is orthogonal to T , so we must have R2(L
′) = S. We also have R1(L

′) ⊂ R1(L) = ∅.
As S is detecting, we deduce L′ = Q(S).

Here are a few examples of detecting root systems. For instance, it follows from Table 4
that Am is detecting if, and only if, there is no integer 1 ⩽ i ⩽ m such that m + 1 | i2 and
i(m + 1 − i) > 2(m + 1). This holds in particular if m + 1 is square-free and for all m ⩽ 10.
Similarly, Dm is detecting unless we have m ≡ 4 mod 8 and m ̸= 4, and Em is detecting for
6 ⩽ m ⩽ 8. Here is another example.

Example 5.10. The root system mA1 nA2 is detecting if, and only if, we have 0 ⩽ m,n ⩽ 5 and
(m,n) ̸= (2, 3), (4, 3). Indeed, the only non-zero value of qm on resA1 (respectively, resA2) is

1
4

(respectively, 1
3).

For a given R, we will often have to find a subsystem S ⊂ R as large as possible such that
(R,S) is safe, which usually reduces to a problem in coding theory. For instance, for R ≃ nA1,
it amounts to asking for the maximal integer m such that for any even linear binary code I in
(Z/2)n with minimal distance at least 6, there is a partition {1, . . . , n} = S

∐
T with |S| = m

and such that the natural projection (Z/2)n → (Z/2)T is injective on I. We leave it as an exercise
to the reader to check the following assertion.

Example 5.11. Assume either n ⩽ 8 and m ⩽ n− 1, or n ⩽ 10 and m ⩽ n− 2; then (nA1,mA1)
is safe.

5.4 Classification of the d-kernels of ADE root systems

We first reduce to the irreducible case.

Lemma 5.12. Let R be an ADE root system, R =
∐

iRi its irreducible decomposition, d ⩾ 1
an integer, S a sub–root system of R and Si := S ∩Ri. Then S is a d-kernel of R if, and only if,
there are divisors di of d with lcm{di}i∈I = d and such that Si is a di-kernel of Ri for each i.

Proof. Just use R =
∐

iRi and Q(R) =
⊕

iQ(Ri).

Lemma 5.1 can be viewed as a classification of the d-kernels of In. It is easy to classify the
d-kernels of An and Dn using a similar method; see Remark 5.17 for the result. We follow a
different approach, which works in all cases including type E, inspired by classical works of
Borel–de Siebenthal and Dynkin.

Fix an irreducible ADE root system R of rank n ⩾ 1. Choose a positive root system R+ ⊂ R,
with associated basis {αi}1⩽i⩽n and dual basis {ϖi}1⩽i⩽n in the weight latticeQ(R)♯ (fundamental
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weights). In all examples below, we choose the same numbering of simple roots as [Bou81] to fix
ideas. For each 1 ⩽ i ⩽ n, set hi = max{ϖi · α | α ∈ R}. Recall that α̃ =

∑n
i=1 hiαi is in R+

(highest root). We also set α0 = −α̃, h0 = 1, ϖ0 = 0 and I = {0, 1, . . . , n}. For each subset
J ⊂ I, we define a sub–root system RJ ⊂ R by the formulas

QJ =
∑

i∈I−J

Zαi and RJ = R2(QJ) . (5.2)

As QJ is a subgroup of Q(R) generated by roots, we have QJ = Q(RJ).

Lemma 5.13. Assume that we have J ⊂ I with J ̸= ∅. Then {αi | i ∈ I − J} is a basis of the
root system RJ , and we have

RJ = {α ∈ R | ∃n ∈ {−1, 0, 1} such that ∀i ∈ J, ϖi · α = nhi} . (5.3)

Proof. The sum in (5.2) is direct since J ̸= ∅. Note that for α ∈ R and n ∈ Z, the condition
ϖi · α = nhi for all i ∈ J implies n ∈ {−1, 0, 1}, and even n = 0 in the case 0 ∈ J , by the
definition of the hi. All assertions are then simple consequences of the fact that for any α ∈ R+,
both α and α̃− α are finite sums of αi for i ̸= 0.

The Dynkin diagram of RJ is thus obtained from the affine Dynkin diagram of R by removing
each αj for j ∈ J . Familiar cases include the parabolic case 0 ∈ J and the case |J | = 1 (see [Bou81,
§ IV.4, Exercice 4]).

Proposition 5.14. For d ⩾ 1, the d-kernels of R are the w(RJ) with w ∈ W(R) and J ⊂ I such
that there exist integers xj > 0 for all j ∈ J with

∑
j∈J xjhj = d and gcd(d, {xj | j ∈ J}) = 1.

Proof. Any linear form φ : Q(R) → Z/d has the form φ(x) = ξ · x mod d for some ξ ∈ Q(R)♯.
We also have φ(w(x)) = (w−1ξ) · x mod d for w ∈ W(R). Applying the affine Weyl group
Q(R)⋊W(R) to ξ/d, we may assume that ξ is in the closed alcove defined by 0 ⩽ ξ · α ⩽ d for
all α ∈ R+. In particular,

R′ := R2(kerφ) = {α ∈ R | ξ · α ∈ {−d, 0, d}} . (5.4)

On the other hand, we may write ξ =
∑

i∈I xiϖi in a unique way such that
∑

i∈I xihi = d, namely
xi = ξ · αi ∈ Z for i ̸= 0 and x0 = d −

∑n
i=1 xihi (Kac coordinates). The alcove inequalities are

equivalent to xi ⩾ 0 for all i ∈ I. Set J = {i ∈ I | xi ̸= 0} so that
∑

i∈J xihi = d and xi ⩾ 1
for all i ∈ J . For α ∈ R+, the element ξ · α =

∑
i∈J xiϖi · α is 0 (respectively, d) if and only

if we have ϖi · α = 0 (respectively, ϖi · α = hi) for all i ∈ J . Formulas (5.3) and (5.4) then
show RJ = R′. Also, φ is surjective if and only if the set of xj with j ∈ J is coprime with d.
Conversely, any RJ as in the statement is a d-kernel by this same analysis, setting ξ =

∑
i∈J xiϖi

and φ(x) = ξ · x mod d.

Remark 5.15. Assume that J ⊂ I contains some element i with hi = 1 (for example 0 ∈ J) and
|J | > 1. The existence of xj as in Proposition 5.14 is then equivalent to

∑
i∈J hi ⩽ d, setting

xj = 1 for all j ̸= i.

Remark 5.16. If we omit the condition that the set of xj is coprime to d, we obtain a description
of all d′-kernels of R for some d′ dividing d.

Example 5.17. (An) The affine diagram of An (n ⩾ 1) is a “circle” with hi = 1 for all i.
By removing s ⩾ 2 vertices, we see that the d-kernels of An with d ⩾ 2 are isomorphic to
Aa1 Aa2 · · ·Aas with 2 ⩽ s ⩽ d, ai ⩾ 0 and n+ 1 = s+

∑s
i=1 ai.
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(Dn) The affine diagram of Dn (n ⩾ 4) is a “bone”, with boundary heights h0 = h1 = hn =
hn−1 = 1 and hi = 2 otherwise. Removing for instance s ⩾ 2 inner vertices, we see that for d even,
the root systems of the form Aa1 Aa2 · · ·Aas−1 DmDm′ with 2 ⩽ s ⩽ d/2, ai ⩾ 0, m,m′ ⩾ 2 and
n+ 1 = m+m′ + s+

∑
1⩽i⩽s−1 ai, are d-kernels of Dn.

Example 5.18 (2-kernels). The 2-kernels of An with n ⩾ 1 are the ApAn−1−p with 0 ⩽ p ⩽ n−1.
Those of Dn with n ⩾ 4 are An−1 and the DpDn−p for 1 ⩽ p ⩽ n− 1. The 2-kernels of En are
A1A5 and D5 for n = 6, A1D6, A7 and E6 for n = 7, and A1E7 and D8 for n = 8.

6. King’s mass formulas

Our aim in this section is to discuss various mass formulas. It will be convenient to first recall
a few elementary but useful concepts about groupoids.

6.1 Preliminaries on groupoids

A groupoid is a category X whose arrows are all isomorphisms. We say that such an X is finite
if it has finitely many objects up to isomorphism and if Aut(x) is a finite group for all objects
x of X. We then denote by X the finite set of isomorphism classes of objects in X. The class
number of a finite groupoid X is h(X) = |X|, and its mass is the rational number

mass(X) =
∑
x

1/|Aut(x)| , (6.1)

where x runs among representatives of X. Two equivalent finite groupoids (in the sense of cate-
gories) have the same class numbers and masses. Now assume that F : X → Y is any morphism
of groupoids, which simply means that F is a functor. If y is an object of Y , we define the
(naive) fiber of F at y as the full subcategory F−1y of X whose objects x satisfy F (x) ≃ y. This
is a groupoid that only depends on the isomorphism class of y. If X is finite, then so are the
fibers of F , and we trivially have

mass(X) =
∑
y

mass
(
F−1y

)
, (6.2)

where y runs among representatives of Y .

A typical finite groupoid is obtained as follows. Let G be a finite group acting on a finite
set S. We denote by [S/G] the finite groupoid with set of objects S and with set of morphisms
s → s′ the set of elements g ∈ G with gs = s′ (with obvious compositions). Then h([S/G]) is the
number of G-orbits in S, and we have

mass([S/G]) = |S|/|G| (6.3)

by the orbit-stabilizer formula applied to each G-orbit in X. In the proofs below, we will usually
compute the mass of a givenX fiberwise, using (6.2) for a suitable morphism F : X → Y and (6.3)
by identifying each fiber of F with a concrete [S/G].

6.2 Minkowski–Siegel–Smith mass formulas

Recall that the mass of an integral lattice L is defined by

mass(L) =
1

|O(L)|
.
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More generally, if L is any collection of integral lattices (embedded in some fixed Euclidean space
or not), but consisting of finitely many isometry classes L1, . . . , Lh, the mass of L may be defined
and mass(L) =

∑
i 1/|O(Li)|. Alternatively, this is the mass of the finite groupoid (that we will

still denote by L) with objects L and with morphisms given by isometries.

When L is a genus of integral lattices, the famous Minkowski–Siegel–Smith mass formula
gives a closed formula for mass(L). Recall that Ln is the disjoint union of the two genera Lodd

n

and Leven
n consisting of odd or even lattices; see for example [CS88] for concrete formulas for

their respective masses.

6.3 King’s mass formulas

For any groupoid L of integral Euclidean lattices L and any ADE root system R, we denote
by L(R) the groupoid of objects L of L whose root system R2(L) is isometric to R. King explains
in [Kin03] an algorithm to compute, for each root system R, the mass

mass(Leven
n (R)) . (6.4)

He uses for this the expression for the “mass-weighted” sum of the Siegel theta series of rank n
even unimodular lattices as a Siegel Eisenstein series (Siegel–Weil formula), Katsurada’s formula
for its Fourier coefficients, as well as elementary properties of root lattices. Using the computer,
he was then able to determine the quantity (6.4) for all R up to n = 32.

As explained in [Kin03, § 4], using ideas of Conway and Sloane in [CS99, Chapter 16], one can
deduce from this computation the mass of Lodd

n (R) for all R and n ⩽ 30. As the argument is only
sketched loc. cit., and with tables not freely available, we now give more details about how this
computation can be made. Actually, we follow a different method and give more general formulas.

Assume that m > 1 is an integer and R and R′ are ADE root systems. Denote by Nm(R,R′)
the number of root systems S ⊂ R that are isomorphic to Dm, saturated14 in R and with S⊥∩R
isometric to R′ (see Section 4.2). This integer only depends on the isomorphism classes of R
and R′. Its concrete determination is easily deduced from [Kin03, § 8, Table 4]. Recall the root
lattice Dn for n > 1 (see Section 2(v)). The integer |O(Dn)| is |O(In)| = 2n n! for n ̸= 4 and
3 · 24 4! for n = 4 (triality).

Proposition 6.1. Fix integers n,m > 1 with m+ n ≡ 0 mod 8. We have

mass
(
Lodd
n (R)

)
=

|O(Dm)|
2

∑
R′

Nm(R,R′)mass
(
Leven
n+m(R′)

)
,

where R is any ADE root system of rank at most n and R′ runs among all the isomorphism
classes of ADE root systems of rank at most n+m.

Our aim now is to prove this proposition. Denote by Dn the groupoid of (abstract) even
lattices D of rank n such that the finite quadratic space resD is isomorphic to resDn. Set fn = 1
for n ̸≡ 4 mod 8 and fn = 3 otherwise.

Lemma 6.2. For any n > 1 and any ADE root system R, we have

mass
(
Lodd
n (R)

)
= fnmass(Dn(R)) .

14This condition is empty for m ̸= 8, and for m = 8, it means that the irreducible component of R containing S
is not of type E8.
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Proof. If L is an integral lattice, it has a largest even sublattice denoted by Leven, which is of
index 2 if L is odd. As Dn = (In)

even and Lodd
n is the genus of In, it follows that L 7→ Leven defines

a morphism of groupoids evn : Lodd
n → Dn. As R2(L) = R2(L

even) for all integral lattices L, by
formula (6.2), it is enough to show that for all D in Dn, we have

mass
(
ev−1

n D
)
= fnmass(D) . (6.5)

Fix a D in Dn, and let S be the set of odd unimodular lattices L in V = D⊗R with Leven = D.
Any object in ev−1

n D is isomorphic to some element of S. Better, any isometry L → L′ with L,L′

in S is induced by an isometry of D = Leven = (L′)even. The functor [S/O(D)] → ev−1
n D, L 7→ L,

is thus an equivalence. By formula (6.3), it only remains to show |S| = fn. By Section 2(iii)
and (iv), the map βD : L 7→ L/D defines a bijection between S and the set of order 2 subgroups
of resD generated by an element v with v · v ≡ 0 but q(v) ̸≡ 0. An inspection of resD ≃ resDn

(Table 4) concludes the proof.

Proposition 6.1 is a special case of the more general Proposition 6.5. It will be convenient to
first give a definition.

Definition 6.3. Let R be an ADE root system, and set Q = Q(R). We say that R satisfies
(M) if the finite quadratic space resQ is anisotropic, or equivalently, if Q is saturated in any
even lattice containing it. We say that R satisfies (M’) if we have qm(x) = 1 for all isotropic
x ∈ resQ(R), or equivalently, if all even integral lattices between Q and Q♯ are root lattices.

Example 6.4. It is clear that (M) implies (M’). The irreducible root systems satisfying (M) are
the following: Am in the case where m + 1 is either square-free or of the form 4q with q odd
and square-free, Dm for m ̸≡ 0 mod 8, E6, E7 and E8. The root systems D8, Am for m ⩽ 14,
and mA1 for m ⩽ 7 satisfy (M’).

For ADE root systems R1, R2, R3, we denote by N(R1, R2, R3) the number of saturated
sub–root systems T of R2 satisfying T ≃ R1 and T⊥ ∩ R2 ≃ R3. If R1 satisfies (M’), then
N(R1, R2, R3) can be deduced15 from Table 4 in [Kin03, § 8].

Proposition 6.5. Let R0 be a rank m ADE root system satisfying (M’), let n > 1 be an
integer with m + n ≡ 0 mod 8, and let G be the groupoid of rank n even Euclidean lattices L
with resL ≃ − resQ(R0) (as quadratic spaces). Then for any ADE root system R, we have

mass(G(R)) =
|O(Q(R0))|
|O(resR0)|

∑
R′

N(R0, R
′, R)mass

(
Leven
m+n(R

′)
)
,

where R′ runs over all isomorphism classes of ADE root systems of rank at most m+ n.

In the statement above, O(resR0) denotes the isometry group of the finite quadratic space
resR0 = resQ(R0) (equipped with the form q of Section 2(iv)). Also, note that the G is actually
a single genus, by [Nik79, Corollary 1.9.4]; we will not use this.

Proof of Proposition 6.1. Observe that we have resDn ≃ − resDm, so we are in the situation of
Proposition 6.5 with R0 ≃ Dm, Q(R0) ≃ Dm and G = Dn. As the isometry group of resDm

is isomorphic to S3 for m ≡ 4 mod 8, and to Z/2 otherwise, we have |O(resDm)| = 2fm. We
conclude by Lemma 6.2 and the equalities fn = fm and N(Dm, R′, R) = Nm(R′, R).

15This is especially simple if R1 satisfies (M) since this number is just the number of sub–root systems T of R2

satisfying T ≃ R1 and T⊥ ∩R2 ≃ R3.
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Proof of Proposition 6.5. Denote by Un,R0 the groupoid with objects the pairs (U,Q) where U
is an even unimodular lattice of rank m + n and Q is a saturated subgroup of U isomorphic to
the root lattice Q(R0), and with morphisms (U,Q) → (U ′, Q′) the isometries U → U ′ sending Q
onto Q′. For (U,Q) in Un,R0 , the orthogonal Q⊥ of Q in U is an object of G since we have
isomorphisms of finite quadratic spaces resQ⊥ ≃ − resQ by [Nik79, Proposition 1.6.1]. The map
U 7→ Q⊥ induces a morphism of groupoids orth: Un,R0 → G.

Lemma 6.6. For all D in G, we have

mass
(
orth−1D

)
=

|O(resR0)|
|O(Q(R0))|

mass(D) .

Proof. Fix D in G. Set M = Q(R0) ⊥ D and V = M⊗R, and let S be the set of even unimodular
lattices U of V containing M and with Q(R0) saturated in U . This set has a natural action of
the group G = O(Q(R0))×O(D), and the map L 7→ (L,Q(R0)) trivially induces an equivalence
[S/G] ∼−→ orth−1D. We have thus mass(orth−1D)| = |S|/|G|. By Section 2(iii) and (iv), the
map βM : U 7→ U/M induces a bijection between S and the set of quadratic Lagrangians in
resM = resQ(R0) ⊥ resD that are transversal to resQ(R0). But in a finite quadratic space
A ⊥ B with B ≃ −A, there are |O(A)| Lagrangians that are transversal to A, namely the
Iφ = {x+ φ(x), x ∈ A} with φ any isomorphism A ∼−→ −B; thus |S| = |O(resR0)|.

Denote by Un,R0,R the full subcategory of Un,R0 whose objects (U,Q) satisfy R2(Q
⊥) ≃ R,

that is, Q⊥ is an object of G(R). This is the disjoint union of all the fibers of orth over G(R), so
Lemma 6.6 and formula (6.2) imply

mass(Un,R0,R) =
|O(resR0)|
|O(Q(R0))|

mass(G(R)) . (6.6)

Now consider the forgetful functor forg : Un,R0,R → Leven
m+n, (U,Q) 7→ U . Fix U in Leven

m+n, and con-
sider the set S(R0, U,R) of saturated subgroups Q of U satisfying Q ≃ Q(R0) and R2(Q

⊥) ≃ R.
Then S(R0, U,R) has a natural O(U)-action, and the fiber forg−1U is trivially equivalent to the
groupoid [S(R0, U,R)/O(U)].

Lemma 6.7. We have |S(R0, U,R)| = N(R0, R
′, R).

Proof. Set R′ = R2(U), and let Q = Q(S) be a sub–root lattice of U , hence of Q(R′). If Q is
saturated in U , then Q is obviously saturated in Q(R′). Assume conversely that Q is saturated
in Q(R′). Let Q′ be the saturation of Q in U . As Q′ is even, we have Q′ = Q′(S′) for S′ = R2(Q

′)
since R0 satisfies (M’). But then we have S′ ⊂ R2(U) = R′ and thus Q′ ⊂ Q(R′), and then
Q = Q′ as Q is saturated in Q(R′), so Q is saturated in U .

Proof of Proposition 6.5, continued. We have mass(forg−1U) = N(R0, R
′, R)mass(U) by for-

mula (6.3) and Lemma 6.7. Using formula (6.2), we deduce

mass(Un,R0,R) =
∑
R′

N(R0, R
′, R)mass

(
Leven
m+n(R

′)
)
,

the sum being over all isomorphism classes of ADE root systems R′, and conclude by (6.6).

As a consequence of King’s results and Proposition 6.5, we obtain new lower bounds for the
number of isometry classes in the genera of even lattices of rank 32− r and residue isometric to
− resQ(R0) with R0 an ADE root system of rank r ⩾ 1 satisfying (M’). This will be a useful
ingredient in forthcoming work with O. Täıbi. As a very simple example, let us consider the
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genus G of even lattices of rank 31 and determinant 2. We are in the case R0 ≃ A1, m = 1 and
n = 31. The numerical application of Proposition 6.5 shows that there are exactly 18 437 root
systems in this genus, and using the same argument as in [Kin03, § 6], we obtain the following.

Corollary 6.8. There are at least 6 678 411 375 even lattices of determinant 2 in dimension 31.
Moreover, the mass of those lattices having an empty root system is

11882632915662079/591224832 ≃ 20 098 331.92 .

6.4 Odd unimodular lattices without norm 1 vector

We denote by L′
n the groupoid of all L in Ln with r1(L) = 0. Note that in the canonical

decomposition L = A ⊥ B recalled in formula (1.8) of the introduction, we obviously have
mass(L) = mass(B)/2mm!. Using the convention mass(L0) = mass(L′

0) = 1 (in other words,
Aut(0) = {1}), we deduce the equality∑

n⩾0

mass(L′
n)x

n = e−x/2
∑
n⩾0

mass(Ln)x
n . (6.7)

The relevant numerical values are given in Table 8 below.

n mass(L′
n) n mass(L′

n)

0 1 20 4060488226549/11479871952566228090880000

8 1/696729600 21 138813595637/54497004983156736000000

12 1/980995276800 22 1475568922019/45471119389159682211840

14 1/16855282483200 23 21569773276937492389/28590262351867673365708800000

15 1/41845579776000 24 4261904533831299496396870055017/129477933340026851560636148613120000000

16 5213041/277667181515243520000 25 103079509578355844357599/37291646545914356563968000000

17 1/49662885888000 26 15661211867944570315962162816169/34253421518525622105988399104000000

18 1073351/32780153373327360000 27 18471746857358122138056975582390629/121385562506275173338096389324800000

19 37813/450541700775936000 28 1722914776839913679032185321786744287148737/16573175467523436999761427022479360000000

Table 8. The non-zero mass(L′
n) for 0 ⩽ n ⩽ 28.

Also note that still in the canonical decomposition L = A ⊥ B above, we have r1(B) = 0 and
thus R2(L) = R2(A)

∐
R2(B) and R2(A) ≃ Dm. If Lodd′

n denotes the groupoid of rank n odd
unimodular lattices with no norm 1 vector, and if R is an ADE root system, we thus have

mass
(
Lodd
n (R)

)
=

∑
(m,S)

1

2mm!
mass

(
Lodd′
n−m(S)

)
, (6.8)

where (m,S) runs among the pairs with m an integer ⩾ 0 and S an isomorphism class of root
systems such that Dm

∐
S ≃ R. Of course, the term mass

(
Lodd′
n (R)

)
appears in the sum (6.8)

for m = 0, so we obtain an expression for it in terms of King’s mass
(
Leven
32 (R′)

)
for n ⩽ 30; see

Table 2 in the introduction for a bit of information.

7. Visible isometries

7.1 The visible isometry group of a d-neighbor

Fix an L ∈ Ln, an integer d ⩾ 1 and an isotropic line ℓ ∈ CL(Z/d). The group O(L) naturally
acts on CL(Z/d), and we denote by O(L; ℓ) the stabilizer of ℓ. As it is equivalent to stabilize ℓ
and its orthogonal Md(ℓ)/dL, we also have

O(L; ℓ) = O(L) ∩O(Md(ℓ)) . (7.1)
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Observe that the action of any g ∈ O(L; ℓ) on the line ℓ ≃ Z/d is Z/d-linear, hence given by
multiplication by some element ν(g) ∈ (Z/d)×. Then

ν : O(L; ℓ) −→ (Z/d)× , g 7−→ ν(g) (7.2)

is a group homomorphism. For instance, we have ν(−idL) = −1. Our aim now is to determine
O(L; ℓ) when L is the lattice In. For this we choose an x ∈ Zn such that x mod d generates ℓ,
denote by X(ℓ) the multiset {{±x1, . . . ,±xn}} of elements of (Z/d)/{±1} and set16

H(ℓ) = {λ ∈ (Z/d)× | λX(ℓ) = X(ℓ)} . (7.3)

Then H(ℓ) is a subgroup of (Z/d)× not depending on the choice of x. Also recall from Section 5
that attached to ℓ is a natural partition of the integer n

n = m(ℓ) + m′(ℓ) +
∑
i∈I

ai(ℓ) .

Proposition 7.1. For ℓ ∈ Cn(Z/d) and ν as in formula (7.2), we have

Im ν = H(ℓ) and ker ν ≃ O(Im(ℓ))×O(Im′(ℓ))×
∏
i∈I

Sai(ℓ) .

Proof. Recall that O(In) ≃ {±1}n ⋊ Sn acts on In = Zn as arbitrary signed permutations of
the coordinates. We thus have ν(g) ∈ H(ℓ) for all g ∈ O(L; ℓ). Conversely, assume that we have
λ ∈ H(ℓ). By definition, there are σ ∈ Sn and e ∈ {±1}n such that for all 1 ⩽ i ⩽ n, we have
λxi = eixσ(i). In other words, there is a g ∈ O(In) with g(x) = λx mod d, that is, with ν(g) = λ.
We have proved Im ν = H(ℓ).

An element σ ∈ O(L; ℓ) is in ker ν if, and only if, we have σ(x) ≡ x mod d. The natural action
of the signed permutation σ on {1, . . . , n} thus preserves the partition of {1, . . . , n} defined in
Section 5, with sign changes only allowed on the subsets D and D′. Indeed, for i ∈ Z/d, we have
−i ≡ i mod d if, and only if, d is even and i ≡ 0 or i/2 mod d. This proves the assertion about
ker ν.

We now go back to the case of a general L ∈ Ln. Set e = 1 for d odd, e = 2 otherwise. Then
O(L; ℓ) preserves the lattice Md(ℓ) and thus permutes the e cyclic d-neighbors of L with line ℓ,
which defines a natural group morphism

O(L; ℓ) −→ Se . (7.4)

Definition 7.2. We denote by O(L; ℓ)0 the kernel of the morphism (7.4). If N is any of the one
or two cyclic d-neighbors of L with line ℓ, then O(L; ℓ)0 coincides with the subgroup O(N)v :=
O(N) ∩O(L) of O(N). We call it the visible isometry group of the d-neighbor N of L.

The idea behind these definitions is that visible isometries can be concretely determined from
an inspection of the line ℓ. Of course, in the case d odd, we always have O(L; ℓ) = O(L; ℓ)0 =
O(N)v. This also holds for d even unless O(L; ℓ) permutes the two cyclic d-neighbors with line
ℓ. An element of O(N)v will also be called a visible isometry of N .

Remark 7.3. For d odd and M = L ∩ N , we have O(N) ∩ O(M) ⊂ O(L) since L is the unique
cyclic d-neighbor of N with visible part M by Proposition 3.1. This shows the equality O(N)v =
O(N) ∩O(M) for d odd.

16For a multiset X over (Z/d)/{±1} and λ ∈ (Z/d)×, we set λX = {{λx | x ∈ X}}.
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For the purpose of unimodular hunting, the most basic application of visible isometries is
that if we fix σ ∈ O(L) and restrict to isotropic lines ℓ ∈ CL(Z/d) satisfying σ(ℓ) = ℓ, then
the corresponding d-neighbors of L necessarily contain σ as a visible isometry (or perhaps σ2,
if d is even and σ permutes the two neighbors with line ℓ). In what follows, we give an efficient
construction of such lines for L = In.

7.2 Some stable isotropic lines for In

Let us focus on the case L = In. Fix two integers q and k with qk ⩽ n, and consider an element
σ ∈ Sn ⊂ O(In) that is a product of k cycles of length q with disjoint supports C1, . . . , Ck ⊂
{1, . . . , n}. Set C =

∐k
j=1Cj . Choose any odd prime p ≡ 1 mod q, and for such a p, choose an

element ω ∈ (Z/p)× of order q. Choose any x ∈ (Z/pZ)n such that

xi ̸= 0 ⇐⇒ i ∈ C , and xσ−1(i) = ωxi for all i ∈ C .

There are exactly (p − 1)k such elements x. Note that the line ℓ = Z/p x generated by x is
automatically in Cn(Z/p) for q ̸= 2 as we have

∑q−1
s=0 ω

2s = 0. In the case q = 2 (so ω = −1), we
add the assumption that ℓ is isotropic. By construction, we have σ(x) = ωx and thus

σ ∈ O(L; ℓ) and ν(σ) = ω .

So σ is a visible isometry of the p-neighbor Np(x). This construction is promising, but too
restrictive in practice. Indeed, as we (must) have xi = 0 for i /∈ C, the visible root system of Np(x)
necessarily contains An−qk−1, which is too restrictive to find the most interesting lattices. We
can circumvent this problem using the following trick. Consider an extra integer d prime to p,
and choose any d-isotropic vector y ∈ Cn(Z/d) such that

yσ(i) = yi ∀i ∈ C .

We clearly have σ(y) = y, so σ ∈ O(L;Z/d y), and ν(σ) = 1. By the Chinese remainder theorem,
there is a unique z ∈ (Z/pd)n with z ≡ x mod p and z ≡ y mod d. Then z is pd-isotropic and
generates a line ℓ′ such that

σ ∈ O(L; ℓ′) , ν(σ) ≡ ω mod p and ν(σ) = 1 mod d .

Note that for q odd, σ necessarily belongs to the subgroup O(L; ℓ′)0.

Using such lines, we may even produce lattices with empty visible root systems! Indeed, it is
enough to ensure that we have yi ̸≡ ±yj mod d for i and j not in the same Ck.

7.3 An example: The Bacher–Venkov rank 28 unimodular lattices with no root

Let us consider the problem of finding representatives of X∅
28, which is the most difficult com-

putation in [BV01]. For this computation, we will use the variant BV of an invariant used by
Bacher–Venkov, which is defined in the companion paper [AC24]. Using either the arguments
op. cit. or King’s results, we know that the mass of X∅

28 is 17924389897/26202009600. The de-
nominator of this mass factors as 212 · 39 · 52 · 13.

(a) This suggests to first look for lattices with a visible automorphism of order 13. By enumer-
ating isotropic lines of the form above for q = 13, the prime p = 53, k = 2 and odd d ⩽ 17, we
find for d = 17 (so pd = 901) two unimodular lattices with no element of norm less than or equal
to 2 and a visible isometry of order 13, after running only over 12 isotropic lines! Their masses
turn out to be, respectively, 1/18341406720 and 1/116480. For instance, the first one is N901(x)
with x ∈ (Z/901)28 defined by the following formula, with t ≡ 16 mod 53 (of order 13):
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x mod 53 =
(
1, t, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, 1, t, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, 0, 0

)
,

x mod 17 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 7) .

This is one of the last lattices found in [BV01], whereas this method finds it instantly. The
remaining mass is then 17021999/24883200, whose denominator is 212 · 35 · 52.
(b) Now we use q = 5, with the prime p = 11. For k = 5, we find six new lattices in X∅

28 in
the first thousand lines, namely three for d = 35, with masses 1/400, 1/7680 and 1/15360, and
three others for d = 37, with masses 1/696729600, 1/7680 and 1/3317760. The remaining mass
is 474647137/696729600, but other tries do not seem to find new lattices. On the other hand, we
have 696729600 = 214 · 35 · 52 · 7, and the prime 7 now appears.17

(c) So we try q = 7, with the prime p = 43. For k = 4 and d ⩽ 15, we find four new lattices in
the first two hundred lines for d = 15 (hence pd = 645), with respective mass 1/344064, 1/112,
1/96768 and 1/9676800. The remaining mass is then 836459/1244160, with denominator 210 ·35 ·5
(no more 7).

(d) Trying q = 3, p = 7 and k = 8, we immediately find seven lattices for d = 45 with masses
1/96, 1/1728, 1/96, 1/15552, 1/55296, 1/6144 and 1/192. The remaining mass is then 4957/7680,
with denominator 29 · 3 · 5 (luckily, the exponent of 7 is now 0, and that of 5 is 1). For k = 9, we
find two more lattices for d = 41, with mass 1/24 and 1/192. Hence the remaining mass is then
4597/7680, with denominator 29 · 3 · 5.
(e) At this point, we have actually found all the lattices with smallest mass, so the most efficient
(and lazy) method is to run the general algorithm described in the introduction, biased with an
empty visible root system. This way we do quickly find the 17 remaining lattices as d-neighbors
of I28 with 61 ⩽ d ⩽ 70.

7.4 A constraint: The type of a prime order isometry of a unimodular lattice

Let L ∈ Ln and γ ∈ O(L) of odd prime order q. The characteristic polynomial of γ is18

Φk
qΦ

l
1 , with n = l + k(q − 1) .

As explained in [Neb13, § 4], the rank l sublattice L1 = ker(γ−1) ⊂ L satisfies L♯
1/L1 ≃ (Z/q)s

with s ⩽ k, l and s ≡ k mod 2. The pair (k, s) is called the type of γ; it only depends on the
Zq[γ]-module L⊗ Zq.

In the case L = In, the visible isometry σ is necessarily a product of k cycles of length q, and
the orthogonal of L1 in L is clearly isometric to Ak

q−1. So σ is of type (k, k). As a consequence, for
any stable isotropic line ℓ ∈ Cn(Z/d) with d prime to q, the visible isometry σ of the associated
d-neighbors will also have type (k, k). This is an important restriction in the above method,
although type (k, k) seems to be the most common one in practice. Another restriction, more
obvious, is the fact that we must have kq ⩽ n, or equivalently l ⩾ k, instead of the most general
case k(q − 1) ⩽ n. This excludes, for instance, in the case n ≡ 0 mod q − 1, the unimodular
lattices defined by Hermitian Z[ζq]-lattices of rank n/(q − 1).

Example 7.4. Going back to the example of Section 7.3, there are 11 elements in X∅
28 having an

isometry of order 5. Two of them, with masses 1/320 and 1/160, have not been found in step (b)
(nor in steps (a), (c) and (d) as we have 160 = 25 · 5). Indeed, using [GAP19] we can check that

17Actually, 7 already appeared in the two masses found in step (a) but disappeared in the remaining mass there
by an unlucky cancellation.
18Here Φd denotes the dth cyclotomic polynomial.
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these two lattices have a single conjugacy class of order 5 isometry, whose type is (6, 4). But
there is no isometry of I28 with characteristic polynomial Φ6

5Φ
4
1. Actually, a third lattice also has

a single conjugacy class of order 5 isometry, which is of type (6, 4). But this lattice has an order
13 isometry of type (2, 2), and we found it in step (a).

7.5 “The neighbors of a lattice with small mass likely have a small mass”

Here is an alternative method that we used in many instances to find lattices of small mass, and
whose slogan is the title of this subsection. The idea is that if we have L0 ∈ Ln with a large
isometry group, then CL0(Z/d) will usually contain many points with non-trivial stabilizer in
O(L0), hence leading to d-neighbors of L0 with non-trivial visible isometry groups.

In practice, we often take d = 2 and assume L0 given as a d0-neighbor of In with d0 odd, say
L0 = Nd0(x0). So we expect to find lattices with non-trivial isometry groups of the form N2d0(x)
with x ≡ x0 mod d0 by Lemma 11.2. In practice, we often combine this idea with that of the
visible root system, by imposing that Nd0(x) and N2d0(x) have the same visible root systems.
We call those N2d0(x) the strict 2-neighbors of Nd0(x).

Example 7.5. Consider for instance the problem of finding the elements L ∈ X27 with r1(L) = 0
and R2(L)≃12A1. From King’s results, the total reduced mass of those lattices is 368401/138240.
Using the visible root system 9A1, and an already lengthy enumeration of the corresponding d-
neighbors for odd d from d = 37 to d = 45, we find 26 such lattices, with remaining reduced
mass 731/276480. The one with smallest mass is N45(x) with

x = (1, 1, 2, 4, 4, 6, 6, 7, 9, 9, 10, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18, 18, 19, 20, 21, 21, 22) ∈ Z27 ,

whose reduced mass is 1/2048. By considering “solely” the approximately 216 strict 2-neighbors
of this lattice, we quickly find the three remaining ones, with respective reduced mass 1/384,
1/46080 and 1/55296; see Table 9.

reduced mass 1/4 1/8 1/16 1/32 1/48 1/64 1/384 1/640 1/720 1/2048 1/46080 1/55296

♯lattices 8 2 4 3 2 1 4 1 1 1 1 1

Table 9. The 29 lattices in X27 with no norm 1 elements and root system 12A1.

8. An example: The lattice N2n+1(1, 2, . . . , n)

In this section, we give an example of the non-visible part of a neighbor. More precisely, we fix an
integer n ⩾ 1 with n ̸≡ 1 mod 3 and set x = (1, 2, . . . , n). As already stated in the introduction
in formula (1.6), we have a unimodular lattice

Nn := N2n+1(x) ∈ Ln

defined by Nn = Mn+Z(1/(2n+ 1))x′ with Mn := M2n+1(x) and x′ = x+ 1
6(2n+1)n2(n+1)ϵ1.

As we have ±i,±i± j ̸≡ 0 mod 2n+ 1 for 1 ⩽ i < j ⩽ n, we have no non-zero visible element of
norm less than or equal to 2, that is, R⩽2(Mn) = ∅. Better, we have the following.

Proposition 8.1. We have r2(Nn) = 0 for all n ⩾ 23.

Proof. Fix z ∈ Nn∖Mn. For some divisor b of 2n+1, we may write z = m+(k/b)x′ with m ∈ M
and 1 ⩽ k < b coprime with b. Write

b = 2s+ 1 and 2n+ 1 = (2t+ 1)(2s+ 1) .
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We have n = (2s+ 1)t+ s, so the coordinates of x are congruent modulo b to ±1,±2, . . . ,±s, 0
(t times) and then to 1, 2, . . . , s. Observe that if S is a subset of X := Z/(2s+1)∖{0} satisfying
X = S

∐
−S, then the same holds for kS for all k ∈ (Z/(2s+1))×. It follows that the coordinates

mod b of the elements bz = bm+kx′ also are 2t+1 times ±1,±2, . . . ,±s and t times 0. A trivial
coordinatewise inequality then shows

z · z ⩾
1

b2
(2t+ 1)

s∑
i=1

i2 =
2n+ 1

24

(
1− 1

(2s+ 1)2

)
. (8.1)

As 2n + 1 ̸≡ 0 mod 3, we have s ⩾ 2, and thus z · z ⩾ (53/24)(24/25) > 2 for n ⩾ 26. The two
remaining cases n = 23 and 24 (shorter Leech and odd Leech lattices) could be further analyzed
in this style (or checked with a computer), but they are classical, so we omit them.

Proposition 8.2. For n ⩾ 5, the lattice Mn is generated by R3(Mn), and for n ⩾ 36, we have
R3(Mn) = R3(Nn).

Proof. Let Ln be the orthogonal of x = (1, 2, . . . , n) in In. We have Ln ⊂ Mn. A simple com-
putation shows that L5 is generated by its norm 3 vectors (there are eight such vectors). Using
Ln = Ln−1 × {0} + Ze with e = (−1, 0, . . . , 0,−1, 1), we see that the same holds for Ln with
n ⩾ 5. The vector e′ = (0, 1, 0, . . . , 0, 1, 1) satisfies e′ · e′ = 3 and e′ · x = 2n + 1, so we have
Mn = Ln + Ze′, and the first assertion holds.

A non-visible vector z in N2n+1(1, 2, . . . , n) satisfies inequality (8.1) for some integer s ⩾ 2
such that 2s + 1 divides 2n + 1. For n > 37, the right-hand side of (8.1) is equal to at least
(77/24)(24/25) > 3. If n = 36, then 2n+1 = 73 is prime, so we have s = n and z · z ⩾ 222/73 > 3.

We finally determine the isometry group of Nn. Recall from Section 7 the visible subgroup
O(Nn)

v = O(Nn) ∩O(In) as well as the morphism

ν : O(Nn)
v −→ (Z/(2n+ 1))× .

Proposition 8.3. For all n ⩾ 1, the morphism ν defines an isomorphism

O(Nn)
v ∼−→ (Z/(2n+ 1)Z)× .

Moreover, for n ⩾ 32, we have O(Nn)
v = O(Nn).

Proof. The first assertion is a consequence of Proposition 7.1. Indeed, in the notation of that
proposition, and given the shape of x, we have m(ℓ) = m′(ℓ) = 0 and ai(ℓ) = 1 for all i ∈ I, so ν
is injective. Moreover, X(ℓ) = (Z/(2n+1)∖ {0})/{±1}, so we have H(ℓ) = (Z/(2n+1))× and ν
is surjective.

For n ⩾ 36, we have O(Nn) ⊂ O(Mn) by Proposition 8.2, hence the last assertion by Re-
mark 7.3. In the remaining cases n = 32, 33, 35, it is enough to check |O(Nn)| = φ(2n + 1).
This follows from a computation using the Plesken–Souvignier algorithm (actually, we have
R3(Mn) ⊊ R3(Nn) for those three values of n).

Remark 8.4. For n = 23, 24, 26, 27, 29 and 30, the quotient |O(Nn)|/φ(2n + 1) is, respectively,
1 839 366 144 000, 23 876 075 520, 360 000, 192, 4 and 2.

9. Exceptional lattices and visible characteristic vectors

As already observed by Bacher and Venkov in their study of lattices with no root [BV01], certain
unimodular lattices that they term exceptional tend to be harder to find. For this same reason,
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they played an important role in our search, which explains this section.

9.1 Exceptional lattices

Let L be a unimodular lattice of rank n. Recall that Char(L) denotes the set of characteristic
vectors of L (see Section 3.3). We have

∀ξ ∈ Char(L) ξ · ξ ≡ n mod 8 . (9.1)

Indeed, if L is even, this holds as ξ ∈ 2L, and if L is odd, it also holds as L and In are isometric
over Z2. The following definition is a generalization of terminology of Bacher and Venkov [BV01,
§ 3].

Definition 9.1. A unimodular lattice L of rank n is called exceptional if there exists a ξ in
Char(L) with ξ · ξ < 8.

As an example, it follows from formula (3.4) that the lattice In is exceptional only for n < 8,
in which case it has exactly 2n characteristic vectors of norm less than 8. Observe that for
L = A ⊥ B, we have Char(L) = {a + b | a ∈ Char(A), b ∈ Char(B)}. We deduce the following
fact, where ρ(n) denotes the unique integer 0 ⩽ r < 8 satisfying n ≡ r mod 8.

Proposition 9.2. Let m,n ⩾ 0 and L be a unimodular lattice of rank n. Then Im ⊥ L is
exceptional if, and only if, L is exceptional and we have m+ ρ(n) < 8.

The exceptional unimodular lattices of rank n ≡ 0 mod 8 are just the even unimodular
lattices. Also, there is clearly no exceptional unimodular lattice of rank n with ρ(n) = 1 and
r1(L) = 0. We will say more about the cases ρ(n) > 1 below. For L ∈ Ln, we denote by Exc(L)
the set of e ∈ Char(L) with e ·e = ρ(n). Proposition 9.4 below gives information on Exc(L) when
2 ⩽ ρ(n) ⩽ 4. In order to prove it, we recall a classical specificity of the case n ≡ 4 mod 8.

Proposition 9.3. Assume L ∈ Ln with n ≡ 4 mod 8, and let M denote the largest even lattice
in L (the “even part” of L). There are exactly two other unimodular lattices in Ln with the same
even part M .

Indeed, this follows immediately from resM ≃ resD4 and Table 4. The two other lattices of
the statement will be called the companions of L.

Proposition 9.4. Assume that L ∈ Ln is exceptional with r1(L) = 0.

(i) For ρ(n) ∈ {2, 3}, or ρ(n) = 4 and r2(L) = 0, we have |Exc(L)| = 2.

(ii) For ρ(n) = 4, we have |Exc(L)| ⩽ 2n.

The ideas in the proof below are inspired by the proof of [BV01, Proposition 4.1], which
contains the special case r2(L) = 0.

Proof. Assume L ∈ Ln with ρ(n) = 4 (but do not assume r1(L) = 0 for the moment). Define M
as the even part of L, namely M = M2(L; ξ) for any ξ ∈ Char(L). Denote by L′ and L′′ the
two companions of L. Then we have M ♯ = L ∪ L′ ∪ L′′, and the map M ♯ → L, v 7→ 2v, defines
bijections

R1(M
♯) ∼−→ R1(L)

∐
Exc(L) and R1(L

′)
∐

R1(L
′′) ∼−→ Exc(L) . (9.2)

Assume furthermore that L is exceptional. Up to exchanging the roles of L′ and L′′, we may thus
assume r1(L

′) ̸= 0. But if any of L, L′ and L′′ has a norm 1 vector, then the orthogonal symmetry
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about this vector defines an isometry between the two other lattices (see [BV01, Proposition 2.3]).
This shows L ≃ L′′, and also that we have L′ ≃ L′′ in the case where L has a norm 1 vector.

First assume L = Ir ⊥ L0 with r ∈ {1, 2} and r1(L0) = 0. Then we have L ≃ L′ ≃ L′′ and thus
|Exc(L)| = 2r+2r = 4r. But the discussion before Proposition 9.2 shows |Exc(L)| = 2r ·|Exc(L0)|.
This proves |Exc(L0)| = 4r/2r = 2, hence part (i) (for the lattice L0) in the case 2 ⩽ ρ(n) ⩽ 3.

Finally, assume r1(L) = 0. Then we have r1(L
′′) = 0 and L′ ≃ Ik ⊥ N for some 1 ⩽ k ⩽ n

and r1(N) = 0. We have |Exc(L)| = 2k. Note that the norm 2 vectors of L, L′ and M are the
same. This shows k = 1 for r2(L) = 0 and proves assertions (ii) and (i) for ρ(n) = 4.

Remark 9.5 (The case ρ(n) = 4). Let n ⩾ 1 be an integer congruent to 4 mod 8. Let An be
the groupoid of exceptional lattices A ∈ Ln with r1(A) = 0, and let Bn be the groupoid of
non-exceptional lattices B ∈ Ln with r1(B) ̸= 0. The last paragraph in the proof above shows
that each L in An has a unique companion L′ ∈ Ln with r1(L

′) ̸= 0, necessarily non-exceptional.
Better, L 7→ L′ defines a natural functor An → Bn that induces a bijection on isometry classes
on both sides and has the following properties: |Exc(L)| = r1(L

′), R2(L) = R2(L
′), and O(L) is

an index 2 subgroup of O(L′).

9.2 Mass formulae for 2 ⩽ ρ(n) ⩽ 7

In the cases 2 ⩽ ρ(n) ⩽ 7, the exceptional unimodular lattices are related to the genus19 Gn of
even Euclidean lattices of rank n − 1 and determinant ρ(n). This is presumably quite classical,
but we briefly recall how in this section and use this to derive a few interesting mass formulae.

For L ∈ Ln and e ∈ Exc(L), we denote by L(e) the orthogonal of e in L. This is an even
lattice as e ∈ Char(L), with determinant e · e = ρ(n) as L is unimodular, so we have L(e) ∈ Gn.
Also, Ze is saturated in L. Set δ(n) = 1 if ρ(n) = 2, and δ(n) = 2 otherwise.

Lemma 9.6. Assume 2 ⩽ ρ(n) ⩽ 7, let N ∈ Gn, and set M = N ⊥ Ze with e · e = ρ(n). There
are δ(n) integral unimodular lattices L containing M and in which Ze is saturated, and they are
permuted transitively by 1×O(Ze) ≃ Z/2.

Proof. The finite bilinear space V := ResZe is isometric to Z/r equipped with the Q/Z-valued
bilinear form (i, j) 7→ ij/r mod Z and is isometric to − resN . By Section 2(iii), the unimodular
lattices L of the statement naturally correspond to the bilinear Lagrangians in resM ≃ −V ⊥ V
that are transversal to 0 ⊥ V . We conclude as V is cyclic of order r = ρ(n) and the only solutions
to x2 = 1 in Z/r are the δ(n) elements x = ±1 for 2 ⩽ r ⩽ 7.

For L ∈ Ln, the group O(L) naturally acts on Exc(L), as well as on the quotient set
Exc(L)± := Exc(L)/{±idL}. Let En be the natural groupoid whose objects are the pairs (L,±e)
with L ∈ Ln and ±e ∈ Exc(L)±. (For ρ(n) = 2, 3, Proposition 9.4 shows that the datum of ±e
is unique, hence superfluous). Lemma 9.6 shows the following.

Proposition 9.7. The natural functor F : En → Gn, (L,±e) 7→ L(e), is essentially surjective,
and for all (L,±e) in En, the natural morphism O(L,±e) → O(L(e)) is surjective and δ(n) : 1.

For an (isomorphism class of) ADE root system(s) R, let us denote by ER
n the subgroupoid

of pairs (L, e) in En with R2(L(e)) ≃ R.

19These lattices form a single genus by [CS99, § 15.8.2, Table 15.4]. An example is given by the root lattice

Ar−1 ⊥ E
(n−r)/8
8 , with r = ρ(n). For all such lattices L, we have in particular resL ≃ resAr−1 (a cyclic group of

order r).
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Corollary 9.8. Assume 2 ⩽ ρ(n) ⩽ 7. Let L1, . . . , Lh be representatives for the isometry classes
of exceptional unimodular lattices of rank n.

(i) We have (1/δ(n))massGn = mass En =
∑h

i=1 |Exc(Li)
±|mass(Li).

(ii) For each ADE root system R, we have (1/δ(n))massGn(R) = mass ER
n .

Proof. Part (ii) and the first equality in part (i) follow from Proposition 9.7. The second equal-
ity in part (i) follows from the obvious equivalence of groupoids En ≃

∐h
i=1[Exc(Li)

±/O(Li)]
(see Section 6 for several similar arguments).

Remark 9.9 (Determination of the terms massGn(R)). Assume ρ(n) = 2, 3, 4, 5 or 6, and set
R0 = E7, E6, D5, A4 or A1A2, respectively. Then we have resAρ(n)−1 ≃ − resR0. In particular,
Gn coincides with the genus G in the statement of Proposition 6.5, with m := 9−ρ(n). Assuming
furthermore n ⩽ 30, we may thus deduce massGn(R) from that proposition and [Kin03].

Example 9.10 (The cases n = 26 and 27). For such an n and an exceptional lattice L ∈ Ln with
r1(L) = 0, we have |Exc(L)| = 2 by Proposition 9.4.

(i) The genus G26 of even lattices of rank 25 and determinant 2 has been determined by
Borcherds in [Bor00]. There are 121 such lattices: 24 of the form A1 ⊥ N with N a Niemeier
lattice, and 97 with a dual lattice with minimum greater than 1/2. Accordingly, the corre-
sponding 26-dimensional exceptional lattice L either is I1 ⊥ N or satisfies r1(L) = 0 and
R2(L(e))

∐
{±e} = R2(L).

(ii) The genus G27 of even lattices of rank 26 and determinant 3 has also been determined by
Borcherds [Bor84], up to a few indeterminacies that were settled by Mégarbané in [Még18].
They are 678 such lattices. For (L,±e) in E26, we easily check the equivalences between:20

(a) r1(L) = 0, (b) there is no v ∈ L(e)♯ with v · v = 2/3, (c) R2(L(e)) = R2(L).

(iii) The genus G28 of even lattices of rank 27 and determinant 4 is also denoted by D28 in Sec-
tion 6.3 and thus is easily deduced from L27. See also Remark 9.5 for yet another approach.

9.3 Visible exceptional characteristic vectors

Our main aim now is to explain how to produce d-neighbors of In that are exceptional. See also
[BV01, Proposition 3.2] for a quite different method.

Proposition 9.11 (Visible characteristic vectors). Let L be an odd unimodular lattice of rank n,
d be an even integer, x ∈ L be a d-isotropic vector, ϵ ∈ {0, 1}, and N := Nd(L;x; ϵ) be the
associated d-neighbor of L. An element e ∈ L is in Char(N) if, and only, if the following properties
are satisfied:

(i) We have x · e ≡ 0 mod d.

(ii) Either e ∈ Char(L), or there exists a ξ ∈ Char(L) such that x ≡ ξ − e mod 2L.

(iii) We have (x · e)/d ≡ (x · x)/2d+ ϵ(1 + d/2) mod 2.

Proof. Set M = L ∩N . By definition, we have e ∈ M if and only if property (i) holds. We first
check that for e ∈ M , condition (ii) is equivalent to m ·m ≡ e ·m mod 2 for all m ∈ M . Fix a
ξ ∈ Char(L). For m ∈ M , we have m ·m ≡ ξ ·m mod 2. We may thus assume e /∈ Char(L). The
condition (ξ − e) ·m ≡ 0 mod 2 for all m ∈ M amounts to asking that the kernel M = Md(x) of
the linear form L → Z/d, v 7→ v ·x mod d, is included in the kernel H of the non-zero linear form

20If v ∈ L(e)♯ with v · v = 2/3, then ±v ± e/3 has norm 1 and ±v ± 2e/3 has norm 2.
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L → Z/2, v 7→ v · (ξ − e) mod 2. As L/M is cyclic, the unique index 2 lattice of L containing M
is M2(x), so we have H = M2(x), so that condition is equivalent to x ≡ ξ − e mod 2.

By the definition of N , we have N = M + Z(x̃/d) with x̃ = x + dry for r ∈ Z given by
r = −(x · x)/2d + ϵd/2 and y ∈ L with y · x ≡ 1 mod d (see Remark 3.2). It only remains to
check that condition (iii) is equivalent to e · (x̃/d) ≡ (x̃/d) · (x̃/d) mod 2. We have

x̃ · x̃ ≡ x · x+ 2dr x · y + d2r2 y · y ≡ ϵd2 + d2 ry · y mod 2d2 ,

d x̃ · e ≡ d x · e+ d2 ry · e mod 2d2 .

Using y · y − y · e ≡ (ξ − e) · y ≡ x · y ≡ 1 mod 2, we obtain

x̃ · x̃− d x̃ · e ≡ ϵd2 + d2r + d x · e ≡ ϵd2(1 + d/2)− d
x · x
2

+ d x · e mod 2d2

and conclude the proof.

Remark 9.12. Part (iii) implies 2x · e ≡ x · x mod 8, and then (x− 2e) · x ≡ 0 mod 8. If we write
x = e + ξ with ξ ∈ Char(L), we deduce the congruence e · e ≡ ξ · ξ mod 8, in agreement with
formula (9.1).

9.4 The case L = In

We now discuss the special case L = In. Fix an integer 1 ⩽ r < n with n ≡ r mod 8, and consider
the element e ∈ Zn defined by

e = (0, . . . , 0︸ ︷︷ ︸
n−r

, 1, . . . , 1︸ ︷︷ ︸
r

) , with e · e = r .

Fix an even integer d, a d-isotropic x ∈ Zn and ϵ ∈ {0, 1}. Then conditions (i), (ii) and (iii) on
(x, ϵ) in Proposition 9.11 take the following forms:

(i)
∑

n−r<i⩽n xi ≡ 0 mod d,

(ii) xi is odd for i ⩽ n− r, and xi is even for i > n− r,

(iii) 2
∑

n−r<i⩽n xi ≡
∑n

i=1 x
2
i + dϵ(2 + d) mod 4d.

(For condition (ii), just use that ξ = (1, 1, . . . , 1) is in Char(In)). These equations have many
solutions (x, ϵ) for sufficiently large d, and for such an (x, ϵ), the associated d-neighbor Nd(x; ϵ)
has the concrete vector e as a characteristic vector of norm r. The special case r < 8 leads to con-
structions of exceptional lattices. Note that these choices of x also allow us to prescribe the visible
root system, as well as visible isometries, to some extent. If we furthermore impose that the xi
are distinct mod d for n− r < i, the visible root system of Nd(x; ϵ) is a sub–root system of e⊥.

Example 9.13. In the introduction, we considered the problem of finding all unimodular lattices of
rank 26 with root system 10A1. Among the seven such lattices, a single one is exceptional, namely
the last (and most complicated to find there) of Table 3. This lattice L is straightforward to find
by the method above. For instance, using the visible root system 2A1D2 ≃ 4A1, we immediately
find L ≃ N92(x) with x = (1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
43,46,46). Here, the even coordinates of x (whose sum is congruent to 0 mod d) are emphasized
using the bold font.

9.5 Application: The exceptional unimodular lattices of rank at most 27

Let En denote the set of isometry classes of exceptional unimodular lattices L of rank n with
r1(L) = 0. As explained after Proposition 9.2, we have |E24| = 24 (the Niemeier lattices) and
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E25 = ∅. Moreover, by Example 9.10, we know the following.

Proposition 9.14. We have |E26| = 97 and |E27| = 557.

Most of these exceptional lattices are found as d-neighbors of In using our general algorithms
without any specific efforts, but for a few of them, it is much more efficient to use the isotropic
lines described in Section 9.3 and prescribe suitable visible root systems. We already gave an
example of such a situation in dimension 26 (Example 9.13). In Table 10 below, we give a few
examples of exceptional unimodular lattices of dimension 27 with no norm 1 vectors obtained by
this method:

R2 d x ∈ Z27 ϵ reduced mass

6A1 70 (1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 19, 21, 23, 23, 25, 25, 27, 27, 29, 31, 33, 33, 35, 4, 32, 34) 1 1/23040

3A1A2 74 (1, 1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 17, 19, 19, 21, 23, 25, 27, 29, 29, 31, 33, 35, 37, 8, 32, 34) 0 1/483840

3A1 82 (1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 29, 31, 31, 33, 35, 37, 39, 41,20,24,38) 0 1/1512000

A2 100 (1, 1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 39, 41, 43, 45,2,48,50) 0 1/277136640

A3 94 (1, 1, 1, 1, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 47,4,44,46) 0 1/489646080

∅ 96 (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47,30,32,34) 1 1/1268047872

Table 10. A few rank 27 exceptional unimodular lattices of the form Nd(x; ϵ).

10. A few more examples in dimension 26

In this section, we illustrate our methods by studying a few more examples. We first consider,
in dimension 26, the root systems in Table 11 below. In the end, they will turn out to be exactly
those with at least seven isometry classes of lattices.

As a first example, consider the root system R := 2A1 2A2 2A3 2A4. In this case, the reduced
mass is 6; hence a priori R is the root system of at least 12 lattices in X26. By searching for
isotropic lines with visible root system A1 2A2 2A3 2A4 (one A1 less!), we quickly find 16 lattices
for 16 ⩽ d ⩽ 25, namely 8 with reduced mass 1/2 and 8 with reduced mass 1/4, the last one
being21

N25(x) with x =
(
15, 23, 44, 52, 65, 113, 124

)
.

As already said, all these 16 lattices are distinguished by their invariant δ2. However, they are
not distinguished by δ1. In fact, if we rather choose the invariant δ1 in the search above, we
stop finding new lattices for d ⩾ 26 despite running several thousands of isotropic lines whose
associated neighbor has root system R. At this point, the remaining mass is 3/4, which represents
(3/4)/6 = 12.5% of the total mass, so if we believe in Theorems 1.2 and 1.10 (say, ignoring
the unknown terms emb(R,−)), we should instead have found the missing lattices hundreds
of times. This is a very strong argument that the chosen invariant is wrong and has to be
refined. We used this strategy several times during our search before we discovered fine enough
invariants!

Most of the isometry classes in X26 with root system as in Table 11 are not especially hard
to find. The most complicated is the case R = 10A1, which is why we discussed it at length
in the introduction. One lattice with root system 8A1 2A2 has reduced mass 1/1344 and is not

21That is, x := (1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 11, 11, 11, 12, 12, 12, 12).
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R 2A12A22A32A4 4A14A22A3 3A13A22A3A4 5A13A22A3 7A13A2A3

reduced mass 6 77/16 6 4 8/3

♯lattices 16 15 15 13 12

R 6A14A2A3 2A12A23A3A4 6A14A2 4A12A24A3 3A13A23A3

reduced mass 161/48 5 545/576 31/16 15/4

♯lattices 11 11 10 10 10

R A12A22A3A4A5 8A12A22A3 6A12A23A3 5A15A2A3 5A13A2A3A4

reduced mass 17/4 85/64 23/12 5/2 13/4

♯lattices 9 9 9 9 9

R 4A12A22A3A4 8A12A2 4A14A2A3A4 3A15A22A3 3A12A23A3A5

reduced mass 4 491/1344 7/2 9/4 7/4

♯lattices 9 8 8 8 7

R 8A14A2 6A12A22A3 5A12A22A3A5 2A1A2A32A4A5 2A14A22A3A4

reduced mass 41/32 15/8 7/4 3 3

♯lattices 8 7 7 7 7

R 2A13A2A3A4A5 10A1 A12A2A32A4A5 9A13A2 6A12A22A3A4

reduced mass 13/4 4424507/116121600 11/4 15/16 7/4

♯lattices 7 7 6 6 6

Table 11. The root systems R such that there are at least seven isometry classes in X26 with
root system R an no norm 1 vectors (and a few others).

immediate to find. We immediately find it using a visible isometry of order 7 and visible root
system 7A1, more precisely, the 29 · 27-isotropic vector x ∈ Z26 with

x ≡
(
114, 27, 3, 5, 9, 10, 11

)
mod 27 ,

x ≡
(
1, t, t2, t3, t4, t5, t6, 1, t, t2, t3, t4, t5, t6, 1, t, t2, t3, t4, t5, t6, 0, 0, 0, 0, 0

)
mod 29 ,

for t ≡ 16 mod 29 (an element of order 7).

We now give another example, namely the case of the root system R = 22A1D4. The reduced
mass is 53/60480. This is a typical case where we cannot choose anything very close to R as
a visible root system. Nevertheless, for even d, a priori 11A1D4 is a possible visible root system.
It amounts to choosing d-isotropic vectors x ∈ Z26 having four coordinates equal to d/2, as
well as 11 other pairs of equal coordinates. This forces d ⩾ 24. And indeed, we quickly find the
following two lattices, with respective masses 1/1152 and 1/120960, and conclude

N30

(
12, 22, 32, 42, 72, 82, 92, 102, 112, 132, 142, 154

)
,

N46

(
12, 52, 72, 92, 112, 132, 152, 172, 192, 202, 212, 234

)
.

Both lattices can also be understood with the help of X22. For instance, the orthogonal of the D4

in the latter is actually the even sublattice of the unique lattice in X22 with root system 22A1

(whose even part is also the orthogonal of some 2A1 inside the Niemeier lattice with root system
24A1).
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11. A few constructions of lattices in neighbor form

It is straightforward to “add Im” to unimodular lattices in neighbor forms.

Lemma 11.1. Let x ∈ Zn be d-isotropic, and define y ∈ Zn+m by yi = xi for i ⩽ n and
yi = 0 otherwise. Then y is d-isotropic, and we have Nd(y) = Nd(x) ⊥ Im if d is odd, and
Nd(y; ϵ) = Nd(x; ϵ) ⊥ Im if d is even and ϵ ∈ {0, 1}.

Proof. We have Md(y) = Md(x) ⊥ Im. Consider a d-neighbor Nd(x
′) associated with x, and

define y′ ∈ Zn+m by y′i = x′i for i ⩽ n and y′i = 0 otherwise. As x (respectively, x′) coincides with
y (respectively, y′) inside Zn+m, we have Nd(y

′) = Nd(x
′) ⊥ Im.

Lemma 11.2. Let L,N ∈ Ln. Assume that N is a d-neighbor of In associated with the d-isotropic
vector x ∈ Zn and that L is a d′-neighbor of N with gcd(d, d′) = 1. Then L is a dd′-neighbor
of In associated with a dd′-isotropic vector y ∈ Zn satisfying yi ≡ xi mod d for all i = 1, . . . , n.

Proof. Using gcd(d, d′) = 1 and localizing at primes dividing dd′, one readily observes that we
have L∩In⊂N , as well as In/(L ∩ In) ≃ Z/dd′. Let ℓ ⊂ In ⊗ Z/dd′ be the dd′-isotropic line
satisfying L ∩ In = Mdd′(ℓ). By the inclusion Mdd′(ℓ) ⊂ N ∩ In = Md(x), the reduction mod d of
ℓ has to be l(x), and the statement follows.

Our aim now is to address the following more interesting problem.

Problem (Addition of Dm). Assume that we know all (isometry classes of) unimodular lattices
L ∈ Ln with given root system R and in neighbor form. Choose m ⩾ 2. Find neighbor forms for
the unimodular lattices U ∈ Ln+m with root system R

∐
Dm.

Lemma 11.3. Assume that U ∈ Ln+m contains D := {0}×Dm as a saturated subgroup (m ⩾ 2),
and set L0 = D⊥ ∩ U . Then there is a unique L ∈ Ln containing L0 with index 2 and such that
U is a 2-neighbor of L ⊥ Im.

Actually, in the lemma, we have resL0 ≃ − resDm, so there is a unique unimodular lattice L
containing L0 of index 2 unless we have m ≡ 0 mod 4, in which case there are three.

Proof. By Section 2(iii), the lattice U is the inverse image of some (order 4) Lagrangian I
contained in resL0 ⊥ resDm that is transversal to both summands. In particular, I contains
a unique element of the form a + b, where b is a generator of Im/Dm ≃ Z/2 and a ∈ resL0,

necessarily satisfying a · a ≡ 0 mod Z and 2a = 0. The inverse image of Z/2 a in L♯
0 is thus a

unimodular lattice containing L0 that we denote by L. By construction, U ∩ (L ⊥ Im) contains
L0 ∩Dm with index 2, hence has index 2 in L ⊥ Im.

Proposition 11.4. Assume that U ∈ Ln+m contains D := {0} × Dm as a saturated subgroup
(m ⩾ 2). Let L be the associated rank n unimodular lattice given by Lemma 11.3. Assume that
we have L ≃ Nd(x) for some odd integer d and a d-isotropic x ∈ Zn. Then we have U ≃ N2d(y)
for some 2d-isotropic y ∈ Zn+m satisfying yi ≡ xi mod d for i = 1, . . . , n and yi ≡ d mod 2d for
i = n+ 1, . . . , n+m.

Proof. By Lemma 11.3, the lattice U is isometric to some 2-neighbor U ′ of Nd(x) ⊥ Im in which
the natural Dm is saturated. By Lemma 11.1, we have Nd(x) ⊥ Im = Nd(ξ) with ξi = xi for
i = 1, . . . , n and ξi = 0 for i = n+1, . . . , n+m. By Lemma 11.2, we thus have U ′ = N2d(y) with
yi ≡ ξi for i = 1, . . . , n +m. As U ′ contains the natural Dm, we also have yi ≡ yj mod 2d and
yi ≡ 0 mod d for all i, j > n. If we have yi ≡ 0 mod 2d for i > n, then U ′ contains the natural
Im, contradicting the saturation of Dm.
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Remark 11.5. If x as above is given, there are at most 2n choices for y mod 2d, which may be
a lot. In practice, it is often useful to restrict the search to y with visible root system Rv

∐
Dm,

where Rv denotes the visible root system of Nd(x). A concrete example of such a search was
given in the introduction: This is how the last two lattices of Table 3 have been found (for
m = 2, we have D2 ≃ 2A1.) We have used this method in very many cases during our proof of
Theorem 1.1.

We finish the case n ≡ 0 mod 4 (see Proposition 9.3) with a proposition.

Proposition 11.6. Assume n ≡ 4 mod 8 and that x ∈ Zn is d-isotropic with d odd. Assume that
y ∈ Zn satisfies yi ≡ xi mod d and yi ≡ 1 mod 2 for all i = 1, . . . , n. Then the two companions
of Nd(x) are the N2d(y)

±.

Proof. Each companion L of Nd(x) is a 2d-neighbors of In by Lemma 11.2, so it is enough to show
L ⊃ M2d(y). But the even part of In is M2(1

n), so that of Nd(x) (hence of L) is Nd(x) ∩M2(1
n)

since d is odd. We deduce L ⊃ Nd(x) ∩M2(1
n) ⊃ Md(x) ∩M2(1

n) = M2d(y).

12. The Jordan–Hölder factors of O(L) for L ∈ Ln and n ⩽ 27

In this section, we discuss the Jordan–Hölder factors of O(L) for L ∈ Ln and n ⩽ 27. It is enough
to study the (usually smaller) reduced isometry group O(L)red (see Section 4.3). For this, we view
O(L)red as a finite permutation group of suitable small-norm vectors of L, of which the Plesken–
Souvignier algorithm provides generators (see Remark 4.4), and then we use the permutation
groups algorithms in [GAP19]. For n ⩽ 25, the output is that the non-abelian simple groups
appearing as a Jordan–Hölder factor of some O(L)red are

Co1 , Co2 , Co3 , HS , M24 , M22 , M12 , U6(2) , A8 , A7 , A6 , A5 and L2(7) .

In dimension 26, there are only 39 lattices L in X26 with r1(L) = 0 and such that |O(L)red|
is both congruent to 0 mod 4 and not of the form paqb with p, q prime. We checked that in each
of these cases, O(L)red is indeed non-solvable.22 For exactly 6 lattices among these 39 lattices,
we obtain the following “new” Jordan–Hölder factors, not appearing for unimodular lattices of
rank less than 26: A9, O5(5), L3(4), L3(3) and L2(8) (twice).

R2(L) 10A1 ∅ 22A1 D4 26A1 A1 9A2 & 9A1 A2

|O(L)red| 92897280 18720000 120960 11232 3024

O(L)red C2.(C
8
2.A9) O5(5) : C4 (L3(4) : C3) : C2 L3(3) : C2 C2 × (L2(8) : C3)

Table 12. The six lattices in X26 whose reduced isometry group has a “new” Jordan–Hölder
factor and is described by GAP’s StructureDescription function.

In a similar manner, there are only 74 lattices in X27 with no norm 1 vectors and whose
reduced isometry group has order both congruent to 0 mod 4 and not of the form paqb with p, q
prime. Their reduced isometry groups are indeed non-solvable in all cases, with a unique non-
abelian factor. Again, for exactly six lattices, a new Jordan–Hölder factor appears, namely U6(2),
3D4(2), U4(2), O5(3), U3(5), M11 and PSL2(11).

22It has a unique non-abelian simple factor, except for the lattice with root system 10A1 and reduced mass
1/7372800, which contains two factors isomorphic to A5.
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D4 ∅ ∅ 3A1 A1 A3 11A1 A4

55180984320 634023936 1658880 756000 7920 660

C2 × ((U6(2) : C3) : C2) C2 × (3D4(2) : C3) C2 × (C6
2.O5(3)) C2 × ((U3(5) : C3) : C2) C2 ×M11 C2 × L2(11)

Table 13. The six lattices L in X27 whose reduced isometry group has a “new” Jordan–Hölder
factor (same format as Table 12).

13. Proof of Theorem 1.2

We now explain how to modify the proof of [Che22, Theorem A] in order to also deal with the
case of cyclic d-neighbors with d not-necessarily prime. Note that the result is obvious for n ⩽ 4
since we know |Xn| = 1 in this case. To keep the discussion short, we freely use the notation in
[Che22].

Theorem 13.1. Let L be an integral lattice in Rn with n > 4. Assume that G = Gen(L) is a
single spinor genus, choose L′ in G, and for d prime to 2 detL, denote by Nd(L,L

′) the number
of cyclic d-neighbors of L that are isometric to L′. Fix ϵ > 0. Then for d prime to 2 detL, we
have

Nd(L,L
′)

|CL(Z/d)|
=

1/|O(L′)|
m(G)

+ O

(
1

d1−ϵ

)
when d → ∞ . (13.1)

For this, we first generalize the discussion in [Che22, § 4] to pα-neighbors. Fix an odd prime p
and a non-degenerate quadratic space V over Qp. We assume dimV ⩾ 3 and that the set U(V )
of unimodular integral Zp-lattices in V is non-empty. Fix an L ∈ U(V ). For any integer α ⩾ 1,
the cyclic pα-neighbors of L are the lattices N ∈ U(V ) such that L/(L ∩ N) is cyclic of order
pα. They form a subset Npα(L) of U(V ). A similar argument to that in Corollary 3.4 shows that
Npα(L) is in natural bijection with CL(Z/pα) and that the Npα(L) form a single O(L)-orbit.
Assuming L = (Zpe ⊕ Zpf) ⊥ M with M unimodular, e · e = f · f = 0 and e · f = 1 (this is
always possible), we have

(Zp p
αe⊕ Zp p

−αf) ⊥ M ∈ Npα(L) . (13.2)

We denote by Tpα the element of the Hecke ring HV defined, for L ∈ U(V ), by TpαL =∑
N∈Npα (L)N . The key estimate is the following.

Proposition 13.2. Let V be a non-degenerate quadratic space over Qp of dimension at least 5,
let L ∈ U(V ), and let α ⩾ 1 be an integer. Let U a unitary irreducible unramified C[O(V )]-
module and λ ∈ C the eigenvalue of Tpα on the line UO(Lp). If dimU > 1, then we have
|λ| ⩽ |CL(Z/pα)| (α+ 1)2p−α.

Proof. The proof is the same as that of [Che22, Proposition 6.5], up to replacing the subset
C ⊂ O(V ) loc. cit. with the double coset O(L) cO(L) of elements g ∈ O(V ) such that g(L) is
a cyclic pα-neighbor of L. In the notation of that proof, and by formula (13.2), we may take
c = ε∗1(p

α). Applying [Oh02, Theorem 1.2], we obtain the inequality |⟨ce, e⟩| ⩽ ΞPGL2(Qp)(p
α)2

with ΞPGL2(Qp)(p
α) = (1/pα/2)(α(p− 1) + p+ 1)/(p+ 1).

Proof of Theorem 13.1. We now follow the arguments given at the beginning of [Che22, § 6]. For
the application to Theorem 13.1 (“lattice case”), the finite set S loc. cit. is the set of primes
dividing D := 2 detL. For each integer d prime to D, we have a natural global Hecke operator Td

corresponding to the cyclic d-neighbors and generalizing those above when d is a prime power.
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For d = d′d′′ with coprime d′ and d′′, it satisfies Td = Td′Td′′ , and its degree cV (d) := |CL(Z/d)|
of course satisfies cV (d) = cV (d

′)cV (d
′′) as well. These operators pairwise commute and act in a

diagonalizable way on the space of automorphic forms denoted by M(K) loc. cit. Fix a common
eigenvector v in the subspace M(K), and denote by λ(d) the eigenvalue of Td/cV (d) on v. If v is
in the subspace M(K)0 loc. cit. and p is a prime not dividing D, then Proposition 13.2 implies
that for all α ⩾ 1, we have λ(pα) ⩽ (α+ 1)2p−α. It follows that for each d prime to D, we have
|λ(d)| ⩽ σ0(d)

2d−1, where σ0(n) denotes the number of divisors of the integer n ⩾ 1. It is well
known that, for any ϵ > 0, we have σ0(n) = O(nϵ) for n → ∞. This proves λ(d) = O(d2ϵ−1) for
d → ∞, and the result follows.

Remark 13.3. (i) If detL is odd and L is even, and if we restrict to even cyclic d-neighbors,
then the statement (and its proof) also holds with 2 detL replaced by detL.

(ii) The cases n = 3, 4 could be handled as well using similar methods to those in the second
proof of [Che22, Theorem 6.3] (see the end of Section 6 of that paper).
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