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The dual Lagrangian fibration of known
hyper-Kahler manifolds

Yoon-Joo Kim

ABSTRACT

Given a Lagrangian fibration 7: X — P" of a compact hyper-Kéhler manifold of K3["-,
Kum,-, OG10-, or OG6-type, we construct a natural compactification of its dual torus
fibration. Specifically, this compactification is given by a quotient of X by certain au-
tomorphisms acting trivially on the second cohomology and respecting the Lagrangian
fibration. It is a compact hyper-Kéahler orbifold with identical period mapping behavior
to X.

1. Introduction

Let Y be a compact Calabi—Yau manifold with a fixed Kahler class and 7: Y — B its Lagrangian
fibration structure. A general fiber of 7 is a torus by the classical Arnold—Liouville theorem.
Any torus has its dual, so one may wonder if we can systematically dualize general fibers of 7
to obtain a new fibration 7. The mirror symmetry conjecture in [SYZ96] predicts that this
should be possible for certain situations. More specifically, one expects that there exists a “dual
Lagrangian fibration” 7: Y — B satisfying: (1) Y is a compact Calabi-Yau orbifold and 7 is
its Lagrangian fibration, and (2) the smooth fibers of 7 are dual tori to the smooth fibers of .
When the Calabi—Yau manifold of interest is a K3 surface, there is a holomorphic variant of this
question. The Kéahler class and Lagrangian fibration are replaced by a holomorphic symplectic
form and holomorphic elliptic fibration 7: X — B. Unfortunately, elliptic curves are self-dual, so
the original 7: X — B satisfies both conditions (1) and (2) and the conjecture becomes rather
uninteresting.

A compact hyper-Kéhler manifold is a higher-dimensional generalization of a K3 surface. It
is a simply connected compact Kéahler manifold with a unique global holomorphic symplectic
form up to scaling. Let w: X — B be a holomorphic Lagrangian fibration of a compact hyper-
Kahler manifold X. By the same reasons as for K3 surfaces, [GTZ13, § 2] claimed that 7 should
be considered as self-dual if the following two conditions hold: (a) all the torus fibers of =
are principally polarized abelian varieties, and (b) 7 admits at least one section. The role of
assumption (a) is to say that 7 is fiberwise self-dual, and the role of assumption (b) is to single
out a uniform dualization of complex tori as a family. If the assumptions are dropped, there is
a priori no reason why one should believe the existence of a good notion of a dual Lagrangian
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fibration 7: X — B. The goal of this paper is to give, without assumptions (a) and (b), one
distinguished candidate for a dual Lagrangian fibration 7 that has all the expected properties.
Unfortunately, we were able to realize our strategy only for the currently known deformation types
of hyper-Kéahler manifolds (Theorem 1.1), but we believe that similar results should hold in the
most general setup. Once assumption (a) fails, the construction yields a compact hyper-Kéhler
orbifold X that is not homeomorphic to X. The technical assumption (b) will be completely
overcome.

Let again X be a compact hyper-Kéahler manifold of dimension 2n. In this paper, a Lagrangian
fibration of X will mean a holomorphic surjective morphism 7: X — B with connected fibers
to a complex manifold B with 0 < dim B < 2n. By [Hwa08, GL14], the base B is necessarily
isomorphic to P". It is well known that any smooth fiber of 7 is a complex Lagrangian subtorus
of X, so by restricting the Lagrangian fibration 7 to the locus of smooth fibers By C B, we get
a torus fibration my: Xo — By, a smooth proper family of complex tori.

The dual Lagrangian fibration 7 will be obtained by a suitable compactification of the “dual
torus fibration” 7o: Xg — Bp that fiberwise dualizes the original torus fibration my. Sawon
[Saw04, §4.2] and Nagai (Ph.D. thesis, Tokyo, 2005) proposed to define the dual torus fibration
as the neutral relative Picard scheme of my. While this definition behaves well when m admits
a section, it behaves in a slightly unsatisfactory way when 7y has no sections. We thus start by
proposing a new definition of 7g. Recall the fact that all torus fibers of mg are naturally polarized
(see, for example, Voisin’s argument in [Cam06, Proposition 2.1]). That is, each torus fiber F'
of mp admits a natural isogeny F' — F to its dual torus F'. Let us denote the kernel of this isogeny
by (ker) and obtain an isomorphism F' 22 F'/(ker). The idea is to make this discussion global over
the entire base By. In Theorem 3.1, we will attach a naturally polarized abelian scheme Py — By
to mp so that Xy becomes a Py-torsor (this combines the results of Arinkin—Fedorov and van
Geemen—Voisin). Let Ky be the kernel of this natural polarization Py — By. It is a group scheme
over By acting on both Py and Xg. Take the Ky-quotient of both spaces; on the one hand, we
recover the dual abelian scheme Py 2 P /Ko, and on the other hand, we obtain a new space

o X() —>B0 for X[) :Xo/K().

By construction, Xg is a Py-torsor, a smooth proper family of complex tori that are fiberwise
dual to the original fibration my. This 7 is our definition of the dual torus fibration. If my has at
least one section, then Xy is a trivial Py-torsor, which would imply that X is a trivial Py-torsor.
Since Py = Picg<O /Bo (see Example 3.12), this recovers Sawon and Nagai’s definition.

It is important to notice that the group scheme Kj is only a finite étale group scheme over By.
One can think of this as the total space of a finite local system on By; there is a monodromy
issue hiding in the background, and a priori Ky may not be a constant group scheme. We are
now ready to state the main result of this paper.

THEOREM 1.1. Let w: X — B be a Lagrangian fibration of a compact hyper-Kéahler manifold.
Assume that X is of K3"-, Kum,-, OG10-, or OG6-type.

(i) The kernel group scheme Ky — By extends to a constant group scheme K — B that acts
on the entire Lagrangian fibration w: X — B. Moreover, K is a subgroup of the group

Aut®(X/B) = {f € Aut(X) : wo f =, f* acts as the identity on H?*(X, z)}.
(ii) The quotient 7: X — B for X = X/K compactifies the dual torus fibration .

(iii) The space X is a compact hyper-Kéhler orbifold, and 7 is its Lagrangian fibration. Moreover,
X has the same period mapping/deformation behavior as X.

662



THE DUAL FIBRATION OF KNOWN HYPER-KAHLER MANIFOLDS

Note. We will frequently view a finite constant group scheme K — B as a finite group, and vice
versa. We will denote them by the same letter K if no confusions arise.

If X is of K3/"- or OG10-type, then the group K (or the constant group scheme K — B) is in
fact trivial and these hyper-Kéahler manifolds are self-dual. On the other hand, if X is of Kum,,-
or OG6-type, then K is nontrivial and X is not even homeomorphic to X. We will provide explicit
computations for the group K in Theorem 5.1 and Remark 6.2. Also note that X is a global quo-
tient of X by automorphisms acting trivially on H2(X,Z). As a result, the second rational coho-
mologies of X and X are isometric as Beauville-Bogomolov-Fujiki quadratic spaces. The higher
cohomology of X may be strictly smaller than that of X by [Ogu20], but they are still tightly
connected via their Looijenga-Lunts—Verbitsky (LLV) structures (see [LLI7, Ver95, GKLR22]).
Finally, the singularities of X are quotient singularities of high codimensions (at least 4), so they
do not admit any symplectic resolutions. We briefly recall for the reader’s convenience the notion
of a singular hyper-Kéhler variety and its Lagrangian fibration in Appendix A.

Remark 1.2. There were several previous results on the constructions of dual Lagrangian fibra-
tions of compact hyper-Kahler manifolds. In particular, [Saw20, Theorem 24] announced the
construction of a dual Lagrangian fibration of certain Kum,,-type hyper-Kéhler manifolds (with-
out a proof). Although Sawon’s method is different from ours, it is isomorphic to our construction
when 7 admits a section and the polarization type is (1,...,1,n41). This can be shown by using
the computations in Section 5.4. Sawon [Saw04] and Nagai (Ph.D. thesis) discussed a possible
hyper-Kéhler structure on a partial compactification of the relative Picard scheme of my. These
are different from our direction because our dual torus fibration #o: Xo — By is not isomorphic to
the relative Picard scheme when 7y does not have any section. Markushevich—Tikhomirov, and
Menet [MT07, Menl4] introduced an explicit geometric construction of certain 4-dimensional
Lagrangian fibered hyper-Kahler orbifolds and realized their dual Lagrangian fibrations using
the same construction. It would be interesting to find a connection between their results and
our perspective. Finally, [Ver99] discussed certain self-dualities of hyper-Kéhler manifolds at the
level of cohomology.

There are two key ingredients for our proof of Theorem 1.1: the group Aut®(X/B) and
the notion of a polarization type. The definition of the group Aut°(X/B) is inspired by the
similar group Aut®(X), which has already played an important role in the theory of hyper-
Kéhler manifolds. The two main properties of Aut®(X) are its finiteness [Huy99] and deformation
invariance [HT13]. The group Aut°(X) is also computed for all known deformation types of
hyper-Kéhler manifolds (see [Bea83a, BNS11, MW17]). We provide similar results for the group
Aut®(X/B): It is finite abelian (Proposition 3.22) and deformation invariant (Theorem 2.2). We
also compute Aut®(X/B) for all known deformation types in Theorem 5.1. The polarization type
of the fibers of g are studied in [Wiel6, Wiel8], though the idea in that work has already been
used before. We relate the polarization type to the study of our group scheme Kj.

1.1 Structure of the paper

In Section 2, we prove that the group Aut®(X/B) is deformation invariant on the Lagrangian fi-
bration 7. This is inspired by Hassett—Tschinkel’s proof of the deformation invariance of Aut®(X)
in [HT13, Theorem 2.1]. In Section 3, we start by attaching an abelian scheme Py to any La-
grangian fibration of a hyper-Kéhler manifold: Py is the identity component of the relative
automorphism scheme of m. There exists a unique primitive polarization A on Py, and we can
define its kernel group scheme Kjy. We then try to relate Ky and Aut®(X/B) in general. This
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section also discusses the notion of the polarization type of a Lagrangian fibration. In essence,
the polarization type is the study of a single fiber of the group scheme Kj.

The goal of Section 5 is twofold. First, we compute the group Aut°(X/B) for all cur-
rently known deformation types of hyper-Kéahler manifolds. Second, we prove an inclusion Ko C
Aut®(X/B) for special constructions of Kum,-type hyper-Kahler manifolds. The material here
will be mostly concrete computations. Section 4 introduces a slightly more systematic method
to assist these computations. In Section 6, we prove the main result of this article: There exists
a natural compactification of the dual torus fibration for all currently known deformation types
of hyper-Kéahler manifolds.

We provide two appendices. Appendix A contains various definitions of singular hyper-Kéhler
varieties appearing in the literature. In Appendix B, we discuss certain special quotients of
compact hyper-Kahler manifolds. The quotient X = X /K will be a special instance of this more
general setup.

1.2 Notation and conventions

In this paper, every hyper-Kéahler manifold X will be assumed to be compact but not necessarily
projective unless stated explicitly. When X further admits a Lagrangian fibration 7: X — B,
it is helpful to keep in mind that X is projective if and only if 7 admits at least one rational
multisection. Indeed, if X is projective, then a general scheme-theoretic fact says that any smooth
morphism between algebraic varieties admits an étale local section. The converse is [Saw(9,
Lemma 2].

Assume that X has dimension 2n. Any Lagrangian fibration 7: X — B in this paper will
always have base B = P" since we are assuming that B is smooth and 0 < dim B < 2n (see
[Hwa08, GL14]). The Beauville-Bogomolov—Fujiki form and the Fujiki constant of X are a unique
primitive symmetric bilinear form ¢: H?(X,Z) ® H?(X,Z) — Z and a positive rational number
cx satisfying the Fujiki relation

2n)!

The Fujiki constant is computed for all currently known deformation types of hyper-Kéhler
manifolds: (1) ex = 1 for K3"- or OG10-type, and (2) c¢x = n + 1 for Kum,- or OG6-type
(see [Bea83b, Rap07, Rap08]). In practice, we will mostly need a stronger version of the Fujiki
relation, which follows from the polarization process:

/X Ty---Top = CX Z Q(xo(1)7 wo(Z)) e Q(ma(2n71)7x0(2n)) for x; € HQ(Xa Z) :

Here 0 € &9, runs through all the 2n-permutations but up to 2" - n! ambiguities inducing the
same expression in the summation. The divisibility of x € H?(X,Z) is defined to be the positive
integer
div(z) = ged{q(z,y) 1 y € H*(X,Z)}. (1.2)
The study of the full cohomology H*(X, Q) will need the notion of the LLV algebra g, introduced
by Looijenga—Lunts [LL97] and Verbitsky [Ver95]. For its concrete computations, we will follow
the representation-theoretic notation used in [GKLR22, §§2-3].
Throughout, group schemes will be used both in algebraic and analytic context. An abelian
scheme P — S is an analytically proper connected commutative group scheme over S with
complex torus fibers. Every abelian scheme P admits its dual abelian scheme P. A polarization
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of an abelian scheme P is a finite étale homomorphism A: P — P over S such that for each
fiber F, the restriction A\jp: F' — F is of the form z [t;L ® L‘l] for an ample line bundle L
on F'. Given a group scheme G — S, an analytic G-torsor is a morphism Y — S equipped with
a G-action such that there exists an analytic covering S = L], Ua — S where the base changes
Y =Y xgS5 and G = G xg S are G-equivariantly isomorphic over S. In the algebraic setting, one
can use a different topology, for example étale topology, to define an étale torsor. Our references
for the theory of abelian schemes are [MFK94, BLR90, FC90]. For the notion of torsors, see
[Mil80] or [BLRI0].

2. Deformation invariance of the H?-trivial automorphisms

Let X be a compact hyper-Kéahler manifold. Consider the group of H?2-trivial automorphisms
Aut®(X) = ker(Aut(X) — O(H2(X, 7),q), f > f+).

Here Aut(X) is the group of biholomorphic automorphisms of X. Huybrechts [Huy99, Proposi-
tion 9.1] together with Hassett—Tschinkel [HT13, Theorem 2.1] proved that Aut®(X) is a finite
group that is invariant under deformations of X.

Let us now further assume that X admits a Lagrangian fibration 7: X — B and denote by
Aut(X/B) the group of automorphisms of X acting fiberwise on 7. We can restrict our attention
to H?-trivial automorphisms that acts fiberwise on the Lagrangian fibration

Aut®(X/B) = Aut(X/B) N Aut®(X) . (2.1)

Since Aut®(X) is finite, so is Aut®(X/B). In fact, we can further prove that Aut®(X/B) is abelian:
This will be shown later in Proposition 3.22. In Section 3, we will reinterpret Aut®(X/B) as global
sections of the “translation automorphism scheme” Py — By. In Section 5, we will compute
Aut®(X/B) for all Lagrangian fibrations m: X — B from a hyper-Kéhler manifold X of known
deformation type.

But before doing so, let us establish a more basic fact in this section; we prove that Aut®(X/B)
is invariant under deformations of 7. To make this more precise, we first need to define the notion
of a family of Lagrangian fibered hyper-Kéahler manifolds.

DEFINITION 2.1. A family of Lagrangian fibered compact hyper-Kdhler manifolds is a commuta-
tive diagram

X ™
s
5 <

with the following conditions:

(i) The map p: X — S is a smooth proper family of compact hyper-Kdhler manifolds of
dimension 2n over a connected complex space S.
(ii) The map q: B — S is the projectivization of a rank n + 1 holomorphic vector bundle on S.

(iii) For all t € S, the fiber m: X; — B, is a Lagrangian fibration.

Note that the second condition ensures that B is projective over S and admits a relative
ample line bundle Op/g(1). The pullback H = 7*Op,5(1) can be considered as a family of line
bundles on X. Therefore, Definition 2.1 induces a family of pairs (X, H), where H = 7*Op(1).
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If we assumed that ¢: B — S is only a P"™-bundle, then we would not have had a family of line
bundles H.

As usual, two Lagrangian fibrations 7: X — B and 7’: X’ — B’ are deformation equiv-
alent if there exists a family of Lagrangian fibered compact hyper-Kéhler manifolds X /B/S
over a connected union of 1-dimensional open disks S, realizing them as two fibers at ¢, € S.
Matsushita [Mat16, Corollary 1.3] proved that such a deformation problem admits a local uni-
versal deformation.

We can now state the main theorem of this section.

THEOREM 2.2. The group Aut®°(X/B) is invariant under deformations of m: X — B.

The rest of this section will be devoted to the proof of Theorem 2.2. The sketch of the proof
is as follows. First, we descend the Aut®(X)-action on X to B so that the Lagrangian fibration
m: X — B becomes an equivariant morphism. This means that we have a group homomor-
phism Aut®(X) — Aut(B) whose kernel is precisely Aut®(X/B). Descending such an action is
a nontrivial problem (this is quite similar to the result of [Brill, Proposition 2.1]), so we need
to overcome this issue using the notion of a G-linearizability of line bundles. Next, we need to
sheafify the discussions as we are interested in their deformation behavior. The result will follow
from formal properties of the kernel of the sheaf homomorphism.

2.1 G-linearizability of a line bundle

Before we get into the proof of Theorem 2.2, let us recall the notion of G-linearizability of a line
bundle on a complex manifold. For simplicity we only consider finite group actions. Our references
are [Bril8, §3], [Dol03, § 7], and [MFK94, §1.3], but we need to take some additional care since
these references only consider the algebraic setting.

Let G be an arbitrary finite group and X be a complex manifold equipped with a holomor-
phic G-action. A G-linearized line bundle on X is a holomorphic line bundle £ together with
a collection of isomorphisms ®,: £ — ¢*L for g € G such that ¢, = @4 0 ¢"®, for g,¢' € G.
A G-invariant line bundle on X is a holomorphic line bundle £ such that £ = ¢*L for all g € G
(without any condition). We denote by Pic(X) and Pic(X)% the groups of G-linearized line
bundles and G-invariant line bundles on X up to isomorphisms. The second group is precisely
the G-invariant subgroup of Pic(X).

There is a forgetful homomorphism Pic® (X)) — Pic(X)¢, which is neither injective nor surjec-

tive in general. To understand the obstruction to its surjectivity, one considers an exact sequence
of abelian groups ([Dol03, Lemma 7.1 and Remark 7.2] or [Bril8, Proposition 3.4.5])

Pic%(X) — Pic(X)¥ — H*(G,T), T =HX,0%).

Both Dolgachev’s and Brion’s discussions are for algebraic varieties, but their proofs consist in
checking the cocycle/coboundary conditions of group cohomology, so they apply to our analytic
setting as well. With this exact sequence in hand, we have the following.

LEMMA 2.3. Every G-invariant line bundle H on X is G-linerizable up to a suitable tensor power.

Proof. 1t is a general fact in the theory of group cohomology (for finite groups) that all the
higher-degree cohomologies HZ!(G,T') are |G|-torsion for any G-module I' (see, for example,
[Ser79, Corollary VIIL1]). Hence by the exact sequence above, the |G|th tensor H®!Cl vanishes
in H?(G,T) and hence comes from Pic%(X). O
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For us, the importance of the G-linearizability of a line bundle comes from the induced
G-action on the higher direct images of a linearized line bundle. If £ is a G-linearized line bundle
on X and p: X — S is a G-invariant holomorphic map, then we have a contravariant G-action
on all the higher direct image sheaves

g*Rkp*C%Rkp*E, (gog/)*:g/*og*.

Now assume further that £ is globally generated over S and p.L is a vector bundle on S. Then we
have a G-action on Pg(p,L) making the holomorphic map X — Pg(p.L) G-equivariant over S.
See [MFK94, Proposition 1.7].

2.2 The automorphism sheaves and deformation invariance of the H?2-trivial
automorphisms

Suppose that we have a smooth proper family of hyper-Kéahler manifolds p: X — S. Let U C S
be an analytic open subset, and denote by p: Xy = p~1(U) — U the restricted family over U.
We define the sheaf of H?-trivial automorphism groups Aut’, /g on S by

M}/s(U) = {U—automorphisms f: Xy — Xy such that f*: R*p,Z — R*p,Z is the identity} .

By the work of Huybrechts and Hassett—Tschinkel, this sheaf is a local system of finite groups. We
can consider it as a family of groups Aut®(X;) for ¢t € S. Similarly, given a family of Lagrangian
fibered hyper-Kéhler manifolds, we can define a family of groups Aut®(X;/By).

DEFINITION 2.4. Given a family of Lagrangian fibered hyper-Kihler manifolds p: X = B 49,
we define a sheaf of groups Aut$, /B/s On S by
MS\.’/B/S(U) = {BU—automorphisms f: Xy — Xy
such that f*: R*p,Z — R?p.Z is the identity}.
Equivalently, we may define @3{/6/5 = ¢« Auty/p N @}/S.

As mentioned, the sheaf of H2-trivial automorphisms Aut’, /s Is a local system. The sheaf
AutS, /B/S is a subsheaf of Aut}, /s> and our goal is to prove that it is locally constant as well.
The question is local on the base S, so we may assume that S is a small open ball. Then Aut?, /8
becomes a constant sheaf, so we may consider it as an abstract finite group

G = Aut®(X)
acting on X — S fiberwise.

Consider the automorphism sheaf Autg/g of the P"-bundle B — S. It is the sheaf of analytic
local sections of the PGL(n + 1, C)-group scheme Autg/g — S.

PROPOSITION 2.5. Assume that S is an open ball. Then the G-action on X descends to B and
makes m: X — B a G-equivariant morphism. In other words, there exists a homomorphism of
sheaves

G = Auty g — Autg/g (2.2)
with kernel M}/B/S'

We use the G-linearizability of line bundles to prove this proposition. The following lemma
proves that every line bundle on X is G-invariant.

LEMMA 2.6. The group G acts trivially on Pic(X).
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Proof. We first claim that G acts trivially on H?(X,Z). Apply the Leray spectral sequence
EYY = HP(S,Rip,Z) = HPYI(X,Z).

Noticing that R'p,Z = Z, R'p,Z = 0, and S is an open ball, we obtain an isomorphism
H?(X,7) = H° (S, R2p*Z). This isomorphism respects the G-action as the Leray spectral se-
quence is functorial. Now G acts on H?(Xy,7Z) trivially for any fiber X;, so G acts on R%p,Z
trivially and the claim follows.

Let us prove that the first Chern class map Pic(X) — H?(X,Z) is injective to conclude. From
the usual exponential sequence 0 — Z — Oy — O% — 0, it suffices to prove HY(X,0x) = 0.
Again, use the Leray spectral sequence

EY? = HP(S,Rip.Oy) = HPTI(X,0y).
This time, we have R%p,Ox = Og and R'p,Ox = 0. This implies H'(X,0x) = 0. O
Consider the line bundle # = 7*Op/g(1) on X. Since Pic(X) is G-invariant, we can apply
Lemma 2.3 to H and conclude that H®™ is G-linearizable for some positive integer m. As a

result, we have a G-equivariant morphism 7,,,: X — B,,, where B, = Pg (p*”H®m) is the dual of
the complete linear system associated with H®™. Consider the diagram

7

l B — B, . (2.3)
S

{

Proof of Proposition 2.5. Let us first prove that the mth relative Veronese embedding B — B5,,
makes the diagram (2.3) commute. Let ¢ € S be an arbitrary point. The morphism 7: X; — B;
over t has connected fibers, so it is the Iitaka fibration associated with the line bundle H; (see,
for example, [Laz04, §2.1.B]). This in particular implies that the morphism m,,: X; — (Bn)t
defined by H?™ factors through the litaka fibration 7, where the morphism B; < (B,); is
precisely the mth Veronese embedding. In other words, the mth relative Veronese embedding
makes the diagram (2.3) commute.

Note that 7, is equivariant because H®™ was G-linearized. This implies that 7 is equivariant
since the image of mp, is B. In other words, we have a homomorphism of sheaves G — Autg/g.
Its kernel consists of elements acting fiberwise on 7: X — B, which is Aut}, /B/S" O

We now present the proof of the main theorem.

Proof of Theorem 2.2. Let X — B — S be a family of Lagrangian fibered hyper-Kahler mani-
folds over an open ball S. The sheaves Aut$, /8 and Autpg/g are represented by constant group
schemes

Aut}/SgGXS, AutB/SgPGLOl—Fl)XS.

The homomorphism (2.2) is thus representable by a homomorphism a: Aut$, /s Autg/s of
group schemes, so ker a = Aut5, /B/S is representable by a subgroup scheme of G x S.

To prove that ker v is a constant subgroup scheme of G x S, fix a connected component S’
of G x S. Consider the restriction of « followed by the projection

B: S8 — PGL(n+1) x § — PGL(n +1).
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Then we claim that either 5(S") = {id} or B(S’) Z id. Notice that the image $5(S’) consists of
|G|-torsion matrices in PGL(n 4 1). Since the set of |G|-torsion matrices is a disjoint union of
PGL(n+1)-adjoint orbits (classified by eigenvalues), the connected set 3(S”) has to lie in a single
orbit. The adjoint orbit containing the identity matrix is a singleton set {id}. Hence the claim
follows and shows that ker « is constant. O

3. Abelian schemes associated with Lagrangian fibrations

The aim of this section is to associate a polarized abelian scheme with every Lagrangian fibered
compact hyper-Kéahler manifold, and to discuss its consequences. The following is the first main
theorem of this section.

THEOREM 3.1. Let m: X — B be a Lagrangian fibration of a compact hyper-Kahler manifold
and By C B the open subset where  is smooth. Set Xy = W_I(Bo) so that it becomes a smooth
proper family of complex tori over By.

(i) There exists a unique projective abelian scheme v: Py — By making w: Xg — By an
analytic torsor under v.

(ii) Moreover, the abelian scheme is simple and has a unique choice of a primitive polarization
Al P() —>P0. (31)

Here Py — By is the dual abelian scheme of Py — By.

Recall that an abelian scheme Py — By is called simple if it does not contain any nontrivial
proper abelian subscheme Q9 C Py. Theorem 3.1 is a combination (with a slight generalization)
of [AF16, Theorem 2] and [vGV16]. See also [AR21].

DEFINITION 3.2. The abelian scheme v: Py — By in Theorem 3.1 is called the abelian scheme
associated with .

One application of Theorem 3.1 is a systematic study of the polarization type of the smooth
(torus) fibers of 7. The study of their polarization type goes back to at least [Saw03], which in turn
references an earlier idea of Mukai (see Proposition 5.3 in op. cit.). However, to our knowledge,
Wieneck’s series of papers [Wiel6, Wiel8] were the first work to consider the polarization type
as an invariant attached to a Lagrangian fibration and study them in great details for K3l
and Kum,-type hyper-Ké&hler manifolds. Using Theorem 3.1, we can give a slightly more refined
definition of the polarization type.

DEFINITION 3.3. (i) The polarization scheme of 7 is the kernel Ky = ker A of the polariza-
tion (3.1).

(ii) The polarization type of 7 is an n-tuple of positive integers (di,...,dy,) with d;y | --- | d,
such that the fibers of the polarization scheme are isomorphic to (Z/dy @ -+ @ Z/dy)%2.

The polarization scheme K| is a finite, étale, and commutative group scheme over By. Hence
its fibers are all isomorphic, and the polarization type is well defined. The polarization type
will be crucially used in our method. We therefore devote the short Section 3.3 to collect its
properties.

The second main theme of this section is a relation between the group Aut°(X/B) and the
polarization scheme K. We will see in Proposition 3.21 that Aut®°(X/B) can be interpreted as
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a constant subgroup scheme of Fy:
Aut®(X/B) — Fy. (3.2)

We expect that the image of this homomorphism will contain the polarization scheme K. This
is a nontrivial claim; this would imply that Ky — By is extendable to a constant group scheme
K — B acting on the entire X — B. We were not able to prove this claim in general, and
a large part of this paper will be devoted to showing this for known deformation types of hyper-
Kahler manifolds. The following propositions will be our technical tools for doing this. It will be
convenient to introduce a temporary notation

Kola] = ker(aX: Py — Po) ,
a finite étale commutative group scheme over By.

PROPOSITION 3.4. Let 7: X — B and ’: X' — B’ be two deformation-equivalent Lagrangian
fibrations of compact hyper-Kéahler manifolds. Let a be a positive integer. Then the inclusion (3.2)
factors through

Aut®(X/B) —— Kyla] (3.3)
if and only if the same holds for 7.

ProprosITION 3.5. Let m: X — B be a Lagrangian fibration of a compact hyper-Kahler manifold
and (di,...,d,) its polarization type. Assume that we have an equality cx = dy - - - d,,. Then (3.3)
holds for a = div(h), where h € H*(X,7Z) is the class of 7*Op(1) and its divisibility div(h) is as
defined in (1.2).

Note that the inclusion (3.3) has a different direction from our desired K¢ — Aut®(X/B).
Our strategy will be to first show (3.3) for a certain value of a, and then deduce the relation
between two subgroup schemes Ko, Aut®(X/B) C Kpla]. The first proposition says that the
inclusion (3.3) is deformation invariant on 7. The second proposition provides at least one such
an integer a, though this may not be the minimal possible value. The unfortunate assumption
cx = dp ---d, will be satisfied for all known deformation types of hyper-Kéhler manifolds, so it
will not be a huge problem. See Theorem 3.16.

3.1 Abelian scheme associated with a Lagrangian fibration
In this subsection, we present the proof of Theorem 3.1. Note again that we are assuming neither
that X is projective nor that 7w has a rational section.

Recall that every smooth closed fiber F' of 7 is a complex torus (holomorphic Arnold—Liouville
theorem). In fact, F' is necessarily an abelian variety as observed by Voisin [Cam06, Proposi-
tion 2.1]. It would be helpful for us to first review this fact. The key idea is the following cohomo-
logical lemma, which has been discovered several times independently in [V0i92, Ogu09, Mat16]
and recently generalized into higher-degree cohomologies by Shen—Yin and Voisin [SY22]. We
follow the version stated in [Mat16, Lemma 2.2].

LEMMA 3.6. Let F be any smooth fiber of m and h € H?(X,7Z) the cohomology class of 7*Op(1).
Then the restriction map

—r: H*(X,Z) — H*(F,Z)
has ker(—p) = ht. Consequently, it has im(—p) = Z.

COROLLARY 3.7 (Voisin). The integral generator of im(—p) in Lemma 3.6 is an ample class
of F'. As a result, F' is an abelian variety.
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Proof. Say y is an integral generator of Lemma 3.6. Choose any Kihler class w € H?(X,R), and
consider its restriction wyr, a Kéhler class on F. It has to be a nonzero real multiple of y. This
means that, up to a sign, y has to be a Kahler class on F. Hence y is an integral Kéahler class,
so it is ample. ]

We caution the reader to be aware that the ample generator y of im(—| r) may be nonprimitive
(see Proposition 3.17). One reasonable choice of a polarization on an abelian variety fiber F' is a
unique primitive ample class in H?(F,Z) parallel to y. Theorem 3.1 is essentially a more global
way to formulate this over the whole base By.

We divide the proof of Theorem 3.1 into three parts: (1) an explicit construction of the
polarized abelian scheme Py, (2) a proof that such a construction makes Xy a torsor under Py, and
finally (3) a proof of its uniqueness. The uniqueness should be a more general fact about arbitrary
torsors, at least in the algebraic case (see Moret-Bailly’s answer in [Morl18]). The construction
of Py works for any proper family of complex tori. The uniqueness of the polarization is the only
part that needs the fact that Xg is obtained from a Lagrangian fibered hyper-Kéhler manifold X.

The proof of the construction part closely follows [vGV16], but for completeness we reproduce
their argument here.

Proof of Theorem 3.1, construction. Apply the global invariant cycle theorem (for proper maps
between compact Kéhler manifolds [Del71]) and Lemma 3.6 to obtain

H°(By, R*1,.Q) = im(H?*(X,Q) — H*(F,Q)) = Q. (3.4)

It follows that there exists a unique homomorphism Q — R?m,Q of local systems on By up to
scaling. Hence, there exists a unique primitive homomorphism Z — R?7,Z of Z-local systems.
This is a homomorphism of variations of Z-Hodge structures (Z-VHS for short) since fiberwise,
Corollary 3.7 proves that the image of H?(X,Q) — H?(F,Q) is a Hodge cycle. Taking the dual
and using R?*m.Z = A’R'7,7Z (as mo: Xo — B is a family of complex tori), we obtain a primitive
polarization

(R'm.2)" @ (R'm.2)" — Z. (3.5)

We have constructed a weight —1 Z-VHS (Rlﬂ'*Z)V equipped with a polarization (3.5).
Now use a formal equivalence of categories between the category of polarized weight —1 Z-
VHS and that of polarized abelian schemes (see, for example, [Del72, §5.2] and [Del71, §4.4]).
This constructs our desired abelian scheme v: Py — By with a unique primitive polarization
\: Py — Py over By. To prove that Py is simple, we may prove that the corresponding VHS R'7,Q
is simple. This is tacitly proved in [vGV16] and later explicitly stated in [Voil8, Lemma 4.5].
The idea is that if R'7,Q splits as a direct sum V; @ Vs of two VHS, then each of them has
their own polarizations, forcing h° (Bo, RQW*Q) > hO (Bo, /\2V1) +hO (BO, /\2V2)> 2. We omit the
details here. O

Proof of Theorem 3.1, torsor. The following is a standard descent argument for torsors. Consider
a covering |—|i€ ;1 Bi — By in analytic topology so that each X; = W_I(Bi) — B; admits a holo-
morphic section s;: B; — X;. Consider 7: X; — B; as an abelian scheme with a zero section s;.
By the equivalence of abelian schemes and (Rlﬂ'*Z)V, we have an isomorphism ¢;: X; — P; of
abelian schemes.

The group law of the abelian schemes under the isomorphism ¢; can be made into a P;-action
on Xl

pit Pixp, Xi — Xiw (piyxi) — 7 (¢i(2) + pi) -
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To patch the p; together to descend them to p: P xp X — X, we need to check that p; and p;
coincide over the intersection B;; = B; N B, that is,

&; H(di(zig) + pig) = 65 (8(wij) +pij)  for all (pij, xi;) € Pij xp,; Xij - (3.6)

Over B;;, notice that the automorphism ¢; o qbi_lz P;; — P;; is a translation automorphism by
¢jo ¢ 1(0), the discrepancy between the two zero sections. This means that

¢j (i) + pij = 5 0 6, (Gi(wig)) + pij = (di(ij) + ¢ 0 6,1 (0)) + pij
= (¢i(i) + pij) + b5 0 67 1(0) = 5 0 67 (di(wiy) + pij)
proving (3.6). The group action axioms are easily verified, and Xj is clearly a Py-torsor. O

Proof of Theorem 3.1, uniqueness. Let v: Py — By be a (not necessarily projective) abelian
scheme so that 7 becomes a torsor under v. We claim that R'v,.Z = R'7.Z as VHS over By.
Consider the group scheme action map

From the diagram, we have a pullback morphism between the VHS p*: R'm,Z — Ry, Z. The
latter is isomorphic to the direct sum R'v,Z @ R'7,Z by the Kiinneth formula (see, for example,
[Ive86, § VII.2.7]) and decomposition theorem for smooth proper morphisms. Hence composing
with the first projection, we obtain a morphism R'w,Z — R'v,7Z.

Over an open subset U C By where 7: Xy — U admits a holomorphic section, Xy is identified
with Py as a trivial torsor. Hence p becomes the addition operation of the abelian scheme
Xy xy Xy — Xy, and the pullback morphism is fiberwise p*: H'(F,Z) — HY(F,Z)® H'(F,Z),
x +— (z,x). Hence the morphism R7.7Z — RW,Z is an isomorphism over U, and the claim
follows. O

Remark 3.8. (i) A posteriori, one has an interpretation of Corollary 3.7 in terms of Theo-
rem 3.1. The abelian scheme v is projective, and v and 7 are fiberwise isomorphic. Hence the
smooth fibers of 7 are projective, even when the hyper-Kéahler manifold X is not.

(ii) Theorem 3.1 is also related to [Ogu09, Theorem 1.1] in the following sense. Let L be
the function field of B, and consider the generic fiber of the abelian scheme v: Py — By, an
abelian variety P;, — Spec L. Since Py has a unique polarization up to scaling, so does P;. Now
ampleness is an open condition in NS(Pr)r, so this implies p(Pr) = 1.

(iii) If we further assume that X is projective, then the smooth morphism 7: X¢ — By admits
étale local sections, that is, 7 is an étale torsor under v.

The unique abelian scheme P, above should be considered as the identity component of the
automorphism scheme of 7 (see [AF16, §8.3]). Define a sheaf of relative automorphisms acting
by translations on each fiber by

Autgzo /B, (U) = {U-automorphisms f: Xy — Xy acting by translation on each fiber}. (3.7)
PROPOSITION 3.9. The abelian scheme v: Py — By represents Autt)go/Bo.

Proof. Denote by Py the sheaf of analytic local sections of v. Since Fy acts on X by fiberwise
translation, we have a sheaf homomorphism Py — Autglgo /By The homomorphism is injective
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because the Py-action is effective. Over a small analytic open subset U C By, the morphism
Xy — U admits a section, so it is identified with an abelian scheme Py — U, and thus Py(U) —
Aut’ Auty 5, (U) is an isomorphism. O

3.2 Examples

Before getting into the next discussion, let us devote a short subsection to collecting a few
examples.

Ezxample 3.10. Let X be a smooth projective moduli space of stable torsion coherent sheaves
on a K3 surface with a fixed Mukai vector, so that it is a hyper-Kéahler manifold of K3[”]-type
equipped with a Lagrangian fibration 7: X — B. In this case, it is known that the torus fibration
m: Xo — By is isomorphic to a relative Jacobian PICC /Bo associated with a certain universal
family Cy/ By of smooth curves on the K3 surface. Now the relative Jacobian PICC B, 1S a torsor
under the numerically trivial relative Jacobian Plcc /By See [BLR90, Theorem 9.3.1]. By the
uniqueness assertion of Theorem 3.1, this is the associated abelian scheme P,.

Example 3.11. When 77: X — B = P! is an elliptic K3 surface, Theorem 3.1 is a weaker version of
the relative Jacobian fibration construction of 7 (see, for example, [Huy16, § 11.4]). In this case,
there exists a group scheme P — B extending the one in Theorem 3.1 over the entire base (Néron
model) so that the smooth locus of 7 becomes a torsor under P. Arinkin—Fedorov generalized
this result to higher-dimensional projective hyper-Kéahler manifolds when 7 has integral fibers.

Ezample 3.12. For higher-dimensional compact hyper-Kéahler manifolds, we can still consider
the relative Picard scheme Picg(o /By By. However, in general, this is the dual of the abelian
scheme Py. This means that Py is the “double relative Picard scheme” of the original Xy (this is
done in [Saw04, §4.2]). However, for us it will be more important to consider Py as the identity
component of the relative automorphism scheme of Xy/By as in Proposition 3.9.

Ezample 3.13. When 7 admits at least one rational section, the abelian scheme Py is in fact
isomorphic to Xg. This is because the rational section must be defined over By (see Remark 3.20)
so that Xy becomes a trivial Py-torsor. In some sense, Theorem 3.1 is thus a generalization of
certain properties of Xy to the case where m does not have any rational section. For example, one
can study the Mordell-Weil group of v, generalizing the study of the Mordell-Weil group of .

Example 3.14. Assume again that m admits a rational section and hence Xg = Py. We will
see later in Proposition 3.21 (or (3.2)) that there exists an inclusion Aut®°(X/B) C Py. Since
Aut®(X/B) is finite, this implies the existence of certain torsion rational sections of the La-
grangian fibration

Aut®(X/B) € MW(X/B).

For example, let us consider the case when X is of Kum,-type. We will prove in Theorem 5.1
that the order of Aut®(X/B) is at least (n + 1)2. Thus any Lagrangian fibration of a Kum,,-
type hyper-Kéhler manifold must have at least (n + 1)? torsion rational sections (once it admits
a single rational section), and the dual hyper-Kéhler orbifold X is precisely the quotient of X
by these special torsion rational sections. To our knowledge, this phenomenon was not known,
and it became one of our original motivations. See also [Sac23, §§ 3-5] for some related ideas on
the Mordell-Weil group and birational automorphisms defined by torsion rational sections.
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3.3 Polarization type and divisibility of 7#*Op(1)

The purpose of this section is to study two numerical invariants associated with 7 and study
their relations: (1) the polarization type of 7 in Definition 3.3, and (2) the divisibility of the line
bundle 7*Op(1). Throughout, we will write h € H?(X,Z) for the first Chern class of 7*Op(1)
and div(h) for the divisibility

div(h) = ged{q(h,y) 1y € HZ(X,Z)} : (1.2 restated)

The polarization type of 7 is an n-tuple of positive integers (dy,...,d,) with dy | - -+ | dy, such
that each fiber of the polarization scheme Kj is isomorphic to (Z/dy @---®Z/d,)®?. Since we are
assuming that the polarization \: Py — Py is primitive, we always have d; = 1. The polarization
type was already computed for all currently known deformation types of hyper-Kéahler manifolds.
The known computations are based on its original definition in [Wiel6, §4, p. 318]. Therefore,
to use the previous results, we first need to show our definition is equivalent to the original one.

LEMMA 3.15. Definition 3.3 of the polarization type is equivalent to Wieneck’s definition.

Proof. Our definition of polarization is from the primitive homomorphism Z — R?7.Z of local
systems. Fixing a smooth fiber F of 7, the VHS R?m,Z is identified with H2(F,Z) as a 71(By)-
module. In this setting, the primitive morphism Z — R?m,Z of local systems corresponds to
the generator of H?(F, Z)”l(BO). By the global invariant cycle theorem, this is the primitive
polarization type of F' coming from the image of H?(X,Q) — H?(F,Q), which coincides with
the definition in [Wiel6]. O

We can now use the previous results on computations of the polarization type of 7. By [Wiel6,
Theorem 1.1], the polarization type is invariant under deformations of w. We will recover this
result later in Corollary 3.24. The polarization type is computed for all Lagrangian fibrations of
hyper-Kéhler manifolds of known deformation types. The computations for K3["- and Kum,,-
types are the main results of [Wiel6, Wiel8]. The results for OG10- and OG6-types are in [MO22,
Theorem 2.2] and [MR21, Theorem 7.2].

THEOREM 3.16 ([Wiel6, Wiel8, MO22, MR21]). Let m: X — B be a Lagrangian fibered compact
hyper-Kahler manifold. Then the polarization type of m is

(1,...,1) if X is of K3 -type,
(1,1,1,1,1) if X is of OG10-typem,
(1,...,1,d1,d9) if X is of Kum,-type, and
(1,2,2) if X is of OG6-type.

When X is of Kum,,-type, we set dy = div(h) in H*(X,Z) and dy = (n+1)/d;.

Observe from Theorem 3.16 that we have an equality cx = dj - - - d,, for all known deformation
types of hyper-Kahler manifolds. In this sense, the polarization type should be considered as
a refinement of the Fujiki constant cx. This is also related to the nonprimitiveness of the image
of the restriction homomorphism H?(X,Z) — H?(F,7Z).

PROPOSITION 3.17. Assume that we have an equality cx = dy---d,. Then the image of the
restriction homomorphism H?*(X,7Z) — H?(F,Z) in Lemma 3.6 is generated by af), where a =
div(h) and 6 is a primitive ample class representing the natural polarization of F'.
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Proof. Choose a cohomology class z € H?(X,Z) with q(h,z) = a. By Lemma 3.6, the class
rp € H 2(F,7Z) must be an integer multiple of the primitive polarization class . Set zp = bl
for b € Zo. Now the claim directly follows from the Fujiki relation

et [k () k) o (B

Though not used in this paper, the divisibility of A is also related to the existence of a rational
section of m. We end this subsection with the following observation.

PROPOSITION 3.18. Assume cx = dj - - -d,, and that w admits at least one rational section. Then
div(h) =1 or 2.

Proof. If m admits a rational section, then Xy = P is a projective abelian scheme (Example 3.13).
By the general theory of abelian schemes, twice a polarization is always associated with a line
bundle (see, for example, [MFK94, Proposition 6.10] or [FC90, Definition I.1.6]). This means that
20 € H*(F,Z) is contained in the image of Pic(X) C H?(X,Z) — H?(F,Z). By Proposition 3.17,
this implies div(h) =1 or 2. O

For every positive integer d with d? | n — 1, there exists a Lagrangian fibration of a K3l
type hyper-Kéahler manifold with div(h) = d; see [Marl4, Theorem 1.5]. Similarly, for every d
with d? | n + 1, there exists a Lagrangian fibration of a Kum,,-type hyper-Kéhler manifold with
div(h) = d; see [Wiel8, Theorem 1.2]. Therefore, there are examples of Lagrangian fibrations =
with div(h) > 2; such 7 (and any of their deformations) would never admit any rational section,
and the notion of torsor is necessary.

3.4 The polarization scheme and H?-trivial automorphisms
We present the proofs of Propositions 3.4 and 3.5 in this subsection.

LEMMA 3.19. Every rational section of v: Py — By is a regular section.

Proof. Assume that s: By --+ Py is a rational section undefined at b € By. Let S C Py be
the closure of the image of s so that we obtain a proper birational morphism v|g: S — By.
Since By is smooth and s is undefined at b, the fiber S, = (v, 5)71(b) is a uniruled variety (see,
for example, [Kol96, Theorem VI.1.2]). This means that an abelian variety v~!(b) contains a
uniruled variety Sp. We have a contradiction. See [BLR90, Corollary 8.4.6] for an alternative
proof. O

Remark 3.20. The same argument applies to m and proves the following: Any rational section
of 7 is necessarily defined over By.

PROPOSITION 3.21. Every H?-trivial automorphism in Aut®(X/B) defines a global section of
Py — Bg. That is, we have a closed immersion of group schemes

Aut®(X/B) — Py.

Proof. We need to prove that Aut®(X/B) acts on m: Xo — By by fiberwise translations (Propo-
sition 3.9). Consider the quotient X = X/ Aut®°(X/B) with a commutative diagram

X p
[¥s.
5 <7
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We first claim that p is étale on general fibers over B. Let S C X be the ramified locus of p. It
has codimension at least 2 because p is quasi-étale by Proposition B.1. Let b € B be a general
point, so that the fibers F = X, and F' = X are both smooth. Observe that the ramification
locus of p: ' — F is precisely S N F, which is of codimension at least 2 since b is general. The
purity of the branch locus theorem forces p: F — F to be étale.

Now we have a finite étale quotient p: FF — F = F/ Aut®(X/B) between smooth projective
varieties. Its Galois group Aut®(X/B) acts on F' by fixed-point-free automorphisms. Since F
and F are both abelian varieties (see [Sch20, Theorem 3]), this means that Aut®°(X/B) acts
on F' by translations. The conclusion is that on a general fiber of 7, the group Aut®(X/B)
acts by translation. This means that Aut°(X/B) defines a rational section of v: Py — By by
Proposition 3.9. Such a rational section must be a regular section by Lemma 3.19. That is,
Aut®(X/B) acts by translations over the entire By. O

An immediate byproduct is that Aut®(X/B) is abelian.

PROPOSITION 3.22. The group Aut®(X/B) is finite abelian.

We next understand the behavior of the polarization A under deformations of 7. Recall that
the polarization scheme Ky was defined to be the kernel of the polarization ker A\. To deal with
the more technical Propositions 3.4 and 3.5, we have defined Ky[a] = ker(a)) for each positive
integer a:

0 — Kola] — Py % By — 0.

Since the abelian scheme P, was associated with the VHS (le*Z)v, there is a VHS version of
this sequence:

0 — (R'mz)” 2% R'r.Z — Kola] — 0. (3.8)
The group scheme Ky[a] and the local system Kjla] are related as follows: Ky[a] is a sheaf of
analytic sections of the group scheme Kjyla] — By, and Kyla| is the total space of the local
system Kpla.
LEMMA 3.23. Let p: X 5 B 9 A be a family of Lagrangian fibered compact hyper-Kéahler
manifolds over a complex open disc A. Let By C B be the locus where 7 is smooth. Then for
each positive integer a, there exists a finite étale group scheme Kyla] over By parametrizing the
group schemes (Kyla|); over (By) for all t € A.

Proof. We prove the statement for a = 1 for simplicity; the same proof works for any a. For each
t € A, the fibration m;: X; — By has its own abelian scheme (P;)g — (B;)p coming from the
VHS R!(m;).Z. Hence the VHS R!m,Z of the entire family 7: Xy — By will construct the family
of abelian schemes Py — By. The kernel group scheme Ky C Py being a finite subgroup scheme,
the question is (analytically) local on A, so we may shrink A if necessary and assume that X is
diffeomorphic to X x A by Ehresmann’s theorem. In particular, we have H?(X,7Z) = H?(X,7)
for all t € A.

Applying the invariant cycle theorem to 7: X — B, we have
H°(By, R*m.Q) = im(H?*(X,Q) — H*(F,Q)),

where F'is any fiber of m: Xy — By. Take t € A such that F' C X;. Since we have an identification
H?(X,Q) = H?(X;,Q), the above homomorphism coincides with the description (3.4), and we
have an isomorphism H° (Bo, R27T*@) =~ Q by Lemma 3.6. Now consider the primitive element in
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HO° (Bo, RQTI'*Z) = 7, and run the same argument as in the construction proof of Theorem 3.1; we
construct a primitive polarization \: Py — Py, which over any ¢ € A coincides with the primitive
polarization A\y: (Py) — (Fp)¢. Taking the kernel, this constructs o C Py over By. O

Lemma 3.23 in particular recovers [Wiel6, Theorem 1.1].

COROLLARY 3.24. The polarization type of 7 is invariant under deformations of .

The following final observation is elementary but nontrivial. We match its notation to our
original discussion.

LEMMA 3.25. Let Py — By be an abelian scheme over a complex manifold By and a\: Py — Py
a polarization with Ko[a] = ker(a\). Assume that there exists a torsion section f: By — Py. If

f(Bo) N Kola] # 0, then f(By) C Kola].

Proof. The statement is topological and local on the base By, so we may assume that By is
a complex open ball S and Py — By is homeomorphic to a topological constant group scheme
(R/Z)* x S — S. In this setting, the kernel Ky[a] is a constant subgroup scheme and the torsion
section f is a constant section. Hence f(S) N Kyla] # 0 if and only if f(S) C Kolal. O

Proof of Proposition 3.4. Consider a one-parameter family of Lagrangian fibered hyper-Kéhler
manifolds X — B — A over a complex disc A. By Lemma 3.23, there exists notions of a family of
abelian schemes Py — By and a family of finite étale group schemes Ky[a] C Py. Proposition 3.21
proves that we have a closed immersion Aut®(X/B) < P, for a single fiber. In fact, the argument
applies to the entire family and produces Aut®(X/B)-global sections of Py — By, or equivalently
an embedding

Aut®(X/B) —— Py .
Since Aut®(X/B) is finite, the global sections are torsion. Suppose that we had Aut®(X/B) —

Ky[a] for the original Lagrangian fibration over 0 € A. Then this forces Aut®(X/B) — Ky[a]
over the entire A by Lemma 3.25. The claim follows. 0

Proof of Proposition 3.5. Recall from Proposition 3.17 that the restriction map H?*(X,Z) —
H?(F,Z) has arank 1 image generated by the class af, where a = div(h) and  is the primitive am-
ple class corresponding to our polarization A: F — F. The preimage of af € H? (F,Z) under this
restriction homomorphism is precisely S = {:1: € HX(X,Z) : q(z,h) = a}. By Proposition 3.4, the
claim is invariant under deformations of 7. We may thus deform 7 and assume Pic(X) NS # (0. In
other words, we may assume that the composition Pic(X) C H?(X,Z) — H?(F,Z) is generated
by af.

The assertion Aut®(X/B) < Kyla] = ker(a)) is equivalent to aA(Aut®(X/B)) = 0. The latter
equality may be verified fiberwise, so we may concentrate on a single fiber F' = v=1(b) = 7~ 1(b).
Let L be any line bundle on X such that its image under Pic(X) — H?(F,Z) is af. This means
that the polarization a\ can be described as

a\: F— F, t,+— [t;(LIF) ®L|_Fl] :

If we assume that ¢, = f|p is from a global H 2_trivial automorphism f € Aut®(X/B), then we
have a sequence of identities

to(Lip) = (fip)*(Lip) = (f* L)r = LiF,
where the last isomorphism follows from the fact that f acts on Pic(X) C H?(X,Z) trivially.
This proves that aA sends Aut®(X/B) to 0, and the claim follows. O
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4. The minimal split covering and H?2-trivial automorphisms

This section discusses an explicit construction of certain H?-trivial automorphisms. This will be
conveniently used in the next section when we describe the Aut®(X)-action for certain exam-
ples of Kum,,-type hyper-Kéahler manifolds. Recall that the group Aut®(X) is computed for all
known deformation types of hyper-K&hler manifolds; see [Bea83a, Proposition 10] for KS["}—types,
[BNS11, Corollary 5] for Kum,,-types, and the main results of [MW17] for OG10- and OG6-types.
The strategy is to compute the group for a specific model in such deformation types and then
use the deformation equivalence in [HT13, Theorem 2.1]. Unfortunately, this argument does not
tell us precisely how Aut®(X) acts on X. The goal of this section is to prove Proposition 4.4 to
partially resolve this problem.

Throughout the section, we stick to the following setting. Let M be a projective holomorphic
symplectic manifold, not necessarily irreducible. By the Beauville-Bogomolov decomposition the-
orem, M admits a finite étale covering X x T — M, called a split covering, where X is a finite
product of projective hyper-Kéhler manifolds and 7' is an abelian variety. In fact, Beauville
in [Bea83a, Proposition 3] also considered the smallest possible split covering. A minimal split
covering of M is the smallest possible split covering of M, in the sense that every split cov-
ering factors through it. The minimal split covering of M always exists and is unique up to a
(nonunique) isomorphism. Moreover, it is a Galois covering. We refer to [Bea83a, § 3] for more
details about minimal split coverings.

On the other hand, Kawamata [Kaw85, Theorem 8.3] proved that if M is a K-trivial smooth
projective variety, then its Albanese morphism Alb: M — Alb(M) has to be smooth projective
and isotrivial. More precisely, there exists an isogeny ¢: T — Alb(M) of abelian varieties such
that the base change of Alb becomes a trivial fiber bundle over T'. We obtain a cartesian diagram

XxT 25 M
lprQ lAlb (4.1)
T —2 Alb(M),

where X is a fiber of the Albanese morphism. In particular, one sees that ®: X x T — M is
a split covering of M. Combining the two results, we get the following.

PROPOSITION 4.1. Let M be a projective holomorphic symplectic manifold and Alb: M —
Alb(M) its Albanese morphism, an isotrivial family of a product of hyper-Kéhler manifolds
X = Alb™Y(0). Then there exists a unique isogeny ¢: T — Alb(M) such that the morphism ®
in the fiber diagram (4.1) is the minimal split covering.

Proof. Use Kawamata’s result to construct an isogeny ¢’: T" — Alb(M) trivializing the Albanese
map as in (4.1). Since ¢’ is a finite Galois covering, @’ is also a finite Galois covering with
Gal(®') = Gal(¢'). Denote these common groups by G. The G-action on 7" is by translations
since ¢’ is a morphism between abelian varieties, that is, we can consider G C T’. The first
lemma in [Bea83a, §3] claims Aut(X x T") = Aut(X) x Aut(7”). In conclusion, g € G acts on
teT and (z,t) € X x T" by

g-t=t+g, g-(z,t)=(fy(x),t+g) for f; € Aut(X). (4.2)
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Consider the homomorphism G — Aut(X) by g — fy. Its kernel defines a factorization of ¢':

XxT — XxT 23 M

lPTQ lprz iAlb

T T —2 Alb(M).

~

By construction, Gal(¢) acts on X faithfully, or equivalently ® is the minimal split covering. The
uniqueness of ¢ follows from the uniqueness of the minimal split covering. O

Proposition 4.1 in particular proves that the minimal split covering can always be realized
by an isogeny ¢: T' — Alb(M) and the base change (4.1).

DEFINITION 4.2. We call ¢: T — Alb(M) in Proposition 4.1 the minimal isogeny trivializing
the Albanese morphism Alb: M — Alb(M). It is unique up to a (nonunique) isomorphism.

In fact, the proof of Proposition 4.1 says more about an arbitrary isogeny ¢'.

COROLLARY 4.3. We use the notation of Proposition 4.1. Let ¢': T' — Alb(M) be an isogeny
trivializing the Albanese morphism.

(i) The isogeny ¢' factors though the minimal isogeny ¢.
(ii) There exists a canonical Gal(¢')-action on X.

(iii) The isogeny ¢’ is minimal if and only if the Gal(¢')-action on X is effective.

Now we can state the main result of this section. The ideas here were already contained in
[Bea83a, Bea83b].

PROPOSITION 4.4. We use the notation of Proposition 4.1 and Corollary 4.3. The group Gal(¢')
acts on X by H?-trivial automorphisms. That is, we have a canonical homomorphism

Gal(¢') — Aut®(X),
which is injective if and only if ¢’ is minimal.

Proof. By Corollary 4.3, we may assume that ¢/ = ¢ is minimal and G = Gal(¢) C Aut(X).
The content of the proposition is that it is further a subgroup of Aut®(X), or the G-action on
H?(X,Q) is trivial.

Consider the diagram (4.1). Our first step is to define T-actions on all the four spaces to
make the diagram T-equivariant. Define a T-action on T by translation, and on X x T only
on the second factor, again by translation. The T-action on Alb(M) is by translation via the
morphism ¢: If @ € T and z € Alb(M), then we define a - z = z + ¢(a). To equip M with
a T-action, we claim that the T-action on X x T descends to M via ®. The descent works if
the G-action on X x T' commutes with the T-action (recall that G = Gal(¢) = Gal(®)). Recall
from (4.2) that g € G acts diagonally on X x T by g - (z,t) = (fg(x),t + g), where f; is an
automorphism of X. For any g € G and a € T', we have a sequence of equalities

a-(g-(x,1)) = (fy(2),t +9+a)=g-(a-(2,1)),

proving that the T- and G-actions commute.

Notice that the Galois group G = Gal(¢) was a subgroup of T', but our G- and T-actions
(restricted to G C T') on X x T are different: We had ¢ - (x,t) = (fy(z),t + g) for g € G and
a-(x,t) = (z,t+a) for a € T. Due to this fact, we call the restriction of the T-action to G C T
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a I-action. Since a € T acts on Alb(M) by translation by ¢(a), its stabilizer at 0 € Alb(M) is
precisely I' C T'. Since Alb is T-equivariant, this defines a I'-action on X = Alb_l(O). Combining
our definitions, we can check that a € I' acts on X by

a-x=(fa) (@) (= [-al@)). (4.3)
That is, the I'- and G-actions are inverse to each other.

Notice that any T-action on M is isotopic to the identity map because T is path connected.
In particular, T" acts trivially on the cohomology H*(M, Q). The embedding X C M is I'-equi-
variant, so we have a I'-equivariant restriction homomorphism

H*(M,Q) — H*(X,Q).

By (4.3), the I'- and G-actions on X are inverse. Hence it suffices to prove that the I'-action
on H%(X,Q) is trivial. Since I acted trivially H?(M, Q), it is enough to prove that this restriction
homomorphism is surjective.

The question now becomes topological. Deform the complex structure of the hyper-Kéhler
manifold X very generally so that H?(X,Q) becomes a simple Q-Hodge structure (we will have
to lose the projectiveness of X). The complex structure of M can be correspondingly chosen in
a way that the finite covering map ®: X x T'— M becomes holomorphic. Therefore, the Hodge
structure morphism H?(M,Q) — H?(X,Q) is either 0 or surjective. We only need to rule out
the former possibility.

To prove that it is nonzero, consider any global holomorphic symplectic form ¢ on M. Pulling
it back to X x T gives a holomorphic symplectic form & € H**(X x T) = H*°(X) @ H*%(T).
Since & is symplectic, it has nonzero components in both H*?(X) and H?%(T). In particular,
0|x = 0|x is nonzero, and the claim follows. O

Remark 4.5. An alternative way to state the results in this section is as follows. Any isogeny
¢': T" — Alb(M) trivizalizing the Albanese morphism defines a group homomorphism Gal(¢’) —
Aut®(X). The image of this homomorphism is independent on the choice of ¢’, which we denote by

Aut’'(X) C Aut®(X).

It is a finite abelian group, isomorphic to Gal(¢) for a minimal isogeny ¢, and is deformation
invariant on X. For example, we will later see that when X is of Kum,,-type, then

Aut/(X) = (Z/n+ 1), Aut®(X) = Z/2x (Z/n+1)%*.

Our main result can be more directly stated with this definition. See Remark 6.2.

5. The H?-trivial automorphisms and polarization scheme
for generalized Kummer varieties

The goal of this section is an explicit computation of the group Aut®(X/B) and the polarization
scheme K for certain Lagrangian fibrations of Kum,-type hyper-Kéhler manifolds. Since the
group Aut®(X/B) will be of interest for all known deformation types of hyper-Kéhler manifolds,
we state the result in a more general form. The following is the first main theorem of this section.

THEOREM 5.1. Let m: X — B be a Lagrangian fibration of a compact hyper-Kahler manifold.

{id} if X is of K3["- or OG10-type,

i) We have Aut®(X/B) =
(i) We have Aut®°(X/B) {(2/2)@94 if X is of OG6-type.
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(ii) Assume that X is of Kum,-type and (1,...,1,dy,ds) is the polarization type of w in The-
orem 3.16. Then

Aut®(X/B) = {(2/2)@5 if n = 3 and the polarization type is (1,2,2),

(Z)dy © 7Z./d2)®?  otherwise.

Notice that the bigger group Aut®(X) is already trivial for K3["- and OG10-types (see
[Bea83a, Proposition 10] and [MW17, Theorem 3.1]), so the theorem is clear in these cases. For
Kum,,- and OG6-types, recall from Theorem 2.2 that Aut®(X/B) is invariant under deformations
of . By [Wiel8, §6.28], every Lagrangian fibration of a Kum,,-type hyper-Kéhler manifold is de-
formation equivalent to the moduli construction, which will be recalled in Section 5.1. By [MR21,
Theorem 7.2], all Lagrangian fibrations of an OG6-type hyper-Kéahler manifold are deformation
equivalent to one another. Therefore, Theorem 5.1 follows from the following two more concrete
results.

Let S be an abelian surface, [ € NS(S) an ample cohomology class, and s € H4(S,Z) a coho-
mology class making the Mukai vector v = (0,1, s) € H*(S,Z) is primitive. In this situation, we
will see in Definition 5.5 (called the moduli construction or the Debarre system) that there is an
explicit construction of a Lagrangian fibration of a Kum,,-type hyper-Ké&hler manifold.

ProproSITION 5.2. Let m: X — B be a Lagrangian fibration of a Kumy-type hyper-Kéahler
manifold, obtained by the moduli construction from a triple (S, 1, s) in Definition 5.5. Let (d1, d2)
be the polarization type of the ample class [. Then

(Z)2)%5 ifn=3andd; =dy =2,

Aut®(X/B) =
w(X/B) {(Z/dl@z/d2)@2 otherwise.

PROPOSITION 5.3 (Mongardi-Wandel). Let m: X — B be a Lagrangian fibration of an OG6-type
hyper-Kéhler manifold, obtained by the moduli of sheaves construction. Then

Aut®(X/B) = (Z/2) .

We note that the latter computation for OG6-type was already done by Mongardi—Wandel
in [MW17, §5], as an intermediate step for their computation of the larger group Aut®(X) =
(Z/2)®8. Thus proving Proposition 5.2 will be enough to conclude Theorem 5.1. As mentioned
before, the proof will be done by an explicit computation. In fact, the computation can be
extended further and calculates the polarization scheme K, as well. This is the second main

result of this section.

PRrROPOSITION 5.4. Let m: X — B be a Lagrangian fibration of a Kumy-type hyper-Kahler
manifold, obtained by the moduli of sheaves construction from a triple (S,l, s) in Definition 5.5.
Let (dy,d2) be the polarization type of the ample class .

(i) If n =3 and d; = dy = 2, then
Ko —— Aut®(X/B) — Ky[2].
(ii) Otherwise, we have

Ko = Aut®(X/B).

Contrary to the previous sections, all the discussions in this section will be algebraic. In
particular, algebraic Chern classes and Chow groups will be used. Given a coherent sheaf E on
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a smooth projective variety S, we denote by
ci(E) € H*(S,Z), &(E) <€ CHY(S)

the ith cohomological and algebraic Chern classes of F, respectively.

5.1 Moduli of coherent sheaves on an abelian variety

In this subsection, we recall the construction of Kum,-type hyper-Kéhler manifolds obtained
from certain moduli spaces of sheaves on abelian varieties. We will mostly follow [YosO01].

Let S be an abelian surface and | € NS(S) an ample cohomology class with [ 1% = 2n + 2.
Fix a nonzero class s € H*(S,Z) so that we have a primitive Mukai vector

v=1(0,1,s) € H3,on(S,Z) . (5.1)

Then the moduli space M of stable coherent sheaves on S with Mukai vector v, with respect
to a v-generic polarization, is a smooth projective holomorphic symplectic variety of dimension
(v,v) + 2 = 2n + 4. (Since the polarization is v-generic, every semistable sheaf with Mukai
vector v is stable; that is, M is projective. See [Yos01, Theorem 0.1] and [KLS06, § 2.4].) Denote
by Picfg a connected component of the Picard scheme of S with cohomological first Chern class [.
Yoshioka proved that the Albanese variety of M is isomorphic to S X PiclS, so that we can define
the Albanese morphism Alb: M — S x Picls.

To be more precise, we first need to choose a specific reference line bundle Ly and coherent
sheaf Ey on S. We choose the line bundle Ly to be a symmetric ample line bundle with ¢; (L) ={
(there are precisely 16 of them). Fix a smooth curve i: Cp < S in the linear system |Lg|,
and define a reference coherent sheaf by Fy = i.D for a line bundle D on Cy with degree
s+ n + 1. The Riemann-Roch computation gives ch(Ey) = v = (0,1, s) and ¢;(Ep) = ¢1(Lo).
Say X: CHQ(S) — S is the summation map. We can choose an appropriate line bundle D on Cjy
such that X(é2(Ep)) = (3 (L3) + i.é1(D)) = 0. After choosing this specific reference point, the
Albanese morphism can be explicitly described by

Alb: M — § x Picy, [E] — (¢(E),&(E)), (5.2)

where we define ¢(E) = X(é2(F)). It sends the reference point [Ep] to the point (0, [Lg]). The
Albanese morphism is isotrivial with Kum,-type projective hyper-Kéhler manifold fibers. We
will work with the central fiber

X = Alb7Y(0, [L¢]) .

Due to our choice of the Mukai vector v in (5.1), the above construction further comes with a
Lagrangian fibration. Consider a connected component B of the Chow variety of effective divisors
on S with cohomological first Chern class [. Le Potier [LeP93] constructed a morphism

Supp: M — B, [E]— [Fittg E],

where Fittg E is the Fitting support of a coherent sheaf E. Finally, consider the Poincaré line
bundle P on S x PiclS, the universal family of line bundles with the cohomological Chern class I.
Denote by r: S x Picls — Picls the second projection; the pushforward r,P is a vector bundle of
rank n + 1. Its projectivization is a Zariski locally trivial P"-bundle

LB: B — Pick, [C]+— [0s(C)].
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Gathering all the morphisms together, we obtain a commutative diagram

M

\(c,)Supp)

Alb SxB.
/ideB

)
S x Picy

This is an isotrivial family of Lagrangian fibered hyper-Kahler manifolds in the sense of Defini-
tion 2.1. Its central fiber is a Lagrangian fibration 7: X — B, where B = LB™Y([L¢]) = | Lo| = P™.

DEFINITION 5.5. Let (S,1) be a degree n + 1 polarized abelian surface with polarization type
(d1,ds) and s € H*(S,Z) be any nonzero class with ged(dy,s) = 1 (so that the Mukai vector
v = (0,1, s) primitive). Then the above construction 7: X — B is called the moduli construction
of Kum,,-type (or of a Debarre system) associated with the triple (S,l,s). It is a Lagrangian
fibration of a projective hyper-Kéahler manifold of Kum,-type to a projective space.

5.2 The H?-trivial automorphisms of Kum,-type moduli constructions

Recall that [BNS11, Corollary 5] and [HT13, Theorem 2.1] computed that every Kum,-type
hyper-Kéhler manifold has

Aut®(X) =2 Z/2 x (Z/n+ 1)%4.
The goal of this subsection is to explicitly describe such automorphisms for the moduli con-

struction in Definition 5.5. Note that Lagrangian fibrations will temporarily play no role in this
subsection.

Recall that we have fixed the origin [Lg] € Picfg, a symmetric ample line bundle on S. By the
general theory of abelian varieties, there exists a dual ample line bundle Ly on the dual abelian
variety S (see [BL04, § 14.4]). The ample line bundles Ly and Lo induce polarization isogenies

0:S—8, ¢:8—8, (5.3)
making their compositions the multiplication endomorphisms
m+1: 55528 [m+1:8-55-53. (5.4)

Since Lo has polarization type (dy,ds), the dual line bundle L¢ has polarization type (dy,d>) as
well. In particular, we have an isomorphism

ker p = (Z/dy & Z/do)®? . (5.5)

A closed point x on S defines a translation automorphism by x. Our notation for the trans-
lation automorphism is

ty: S — S, y—y+z.
A closed point & on S represents a numerically trivial line bundle on S. Considering & as both
a closed point on S and a line bundle on S can possibly lead to confusion. Thus, we will write

P¢ = the numerically trivial line bundle on S corresponding to § € S.

With this notation in mind, we can explicitly realize the Aut®(X)-action for the moduli con-
structions.

PROPOSITION 5.6. Let X be a Kum,,-type moduli construction associated with a triple (5,1, s)
in Definition 5.5.
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(i) We have an isomorphism
Aut®(X) = {£1} x {(2,€) € S[n+ 1] x S[n+1] : p(z) = 0, ¢(§) = sz} .
(ii) With the above identification, the Aut®(X)-action on X is defined by
(L,2,8) - [El=[E® P, (-l,2,8)[E]=[t;([-1"E)® P,

where [—1]: S — S is the multiplication by —1 automorphism on S.

The rest of this subsection is devoted to the proof of Proposition 5.6. To start, we note that
Yoshioka has already computed an explicit trivialization of the Albanese morphism Alb: M —
S x Pick. Yoshioka’s trivialization is obtained by the base change [n + 1]: S x Picy — S x Pick,
which is a degree (n 4 1) isogeny. As we will see in a moment, this is not a minimal isogeny in
the sense of Definition 4.2. Using the methods in Section 4, we first prove that the morphism

¢: S x Picy — S x Picky, (y,[L]) — (sy — @(L® Ly"), [Lo ® P,)) (5.6)
is the minimal isogeny trivializing the Albanese morphism.

PROPOSITION 5.7. The base change (5.6) is the minimal isogeny trivializing the Albanese mor-
phism Alb: M — S x Picg in the sense of Definition 4.2.

Proof. Start from Yoshioka’s diagram [Yos01, §4.1, (4.10)] trivializing the Albanese morphism,
which is a cartesian diagram

X x (8 x Picy) —¥— M

iprz lAlb (5.7)

SxPicéMSxPicfg.

Here &' X x (S X Picfg) — M is

(I)/([E]a y, [L]) = [t;(L@)Lgl)E ® (L ® Lal)@)s ® P—so(y)] :

Note that our convention differs by a sign to Yoshioka’s original paper because Yoshioka’s dual
line bundle Lg differs to ours by a sign.

The Galois group of the base change [n + 1] is the group of (n + 1)-torsion points, namely
Sln+1] x S[n+1] = (Z/n+ 1)®8. By Proposition 4.4, it acts on X x (S x Pick) by translation
on the second factor:

(2,€) - ([El,y, [L]) = ([E],y + x, [L ® F]).
One computes the descent of this action to M via @'

(,8) - [E] = [the)E ® Pog—y(w)) -

This is the (S[n + 1] x S[n + 1])-action on X = Alb=1(0, [Lo]) in Proposition 4.4. One sees that
this action is not an effective action, and the kernel of the action is precisely

{(:E,f) € Sln+1] x S[n—l—l] :p(8) =0, s§ — p(x) :O}.

To kill the kernel and obtain an effective action, take a Galois quotient corresponding to the
kernel (via the Galois correspondence). This is an isogeny 1: S X Picfg — 5 x Picfg defined by

Y(y, [L]) = (Sb(L ® Lal)v (L ® L61)®5 ® P—w(y)) :
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One can check that the morphism ¢ in (5.6) is precisely the isogeny making ¢ o1 = [n+ 1] (here
one needs to use (5.4), but we omit the computation). The result is a factorization of (5.7) into
the minimal isogeny

X x (8 x Pick) % X x (8 x Pick) —2— M

lprQ lpr2 lAlb

S’XPic{g#SxPichSxPicg.

Here our new morphism ®, Beauville’s minimal split covering of M, turns out to have a neater
form than the original ®’:

O([E)y,[L]) = [t,E® (Lo Ly')]. (5.8)
The claim follows. O

Again thanks to Proposition 4.4, we have a canonical, effective, and H2-trivial Gal(¢)-action
on X. The Galois group Gal(¢) is captured by the kernel of ¢, so we have

Gal(¢) = {(z,€) € SIn+ 1] x S[n+1] : p(z) =0, ¢(§) = sx}. (5.9)

This explains the isomorphism in Proposition 5.6. The Gal(¢)-action on the fiber X is obtained
via the description of ® in (5.8). This explains how we obtained the group action in Proposi-
tion 5.6.

LEMMA 5.8. More explicitly, we have Gal(¢) = (Z/n + 1)®4.

Proof. Let us compute the group (5.9) explicitly. The expression involves the abelian surfaces S
and its dual S, their (n + 1)-torsion points, and their polarization isogenies ¢ and ¢. Therefore,
the expression is independent of the complex structure of .S, and the question is topological. We
may fix polarization bases Hi(S,Z) = Z{e1,...,es} and Hi(S,Z) = Z{e},...,e}} so that we
can identify S = (R/Z){e1,...,eq} and S = (R/Z){e},...,e;}. The polarization isogenies with
respect to them are

0 0 d 0 0 0 —dy O
o 0 0 d o0 0 -4
Y=l=a, o o o] " |d 0 0 0 (5.10)
0 —dy 0 0 0 d 0 0

Writing the coordinates as (ai,...,a4) for S = (R/Z)* and (by,...,bs) for S = (R/Z)*, we
can explicitly compute

Gal(¢) = {(ai b)) € (;592/2)°  diay = 0, say + dab3 =0, ... } = A%
where the abelian group A is defined by
A={(a,b) € (Z/n+1)%? :d1a =0, sa+dsb=10}.

Notice that ged(di, s) = 1 by the very assumption we had in Definition 5.5. Now A = Z/n + 1
by the following simple computational lemma, and the desired isomorphism is proved. O

LEMMA 5.9. Let p, q, s be nonzero integers. Set m = pq and assume either ged(p,s) = 1 or
ged(q, s) = 1. Then the abelian group

A={(a,b) € (Z/m)** : pa =0, sa + qb =0}

is isomorphic to Z/m.
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Proof. The group A is realized by the kernel of a homomorphism f: (Z/m)%®? — (Z/m)%2,
f= (75’ 2). Adjusting the bases of both the domain and codomain (that is, performing elementary
row and column operations), the matrix can be transformed into ((1) 19(1) = (49). Here one needs
the assumption ged(p,s) = 1 or ged(q,s) = 1 to apply the Euclidean algorithm. The claim

follows. O

We have described Gal(¢) = (Z/n+1)®*-action on X acting trivially on H2. Since Aut®(X) =
7/2x (Z/n+1)%4 we still need to describe an additional Z/2-part. Fortunately, this is not hard
to guess. Construct an involution ¢ on X x (S X Picls) by

U[ELy, () = ([F1E), =y, [[-1]7L]) -
Because we are not relying on the general theory anymore, we need to check that ¢ acts on M.
We omit the typical Chern class computation.

The involution does not commute with the (S X S)—action on X X (S X Picfg), and this is
the reason why Z/2 should act on (Z/n + 1)®4 nontrivially and leads to the semi-direct product.
The action descends to M as

L([E]) = [[-1]"E].
To check that ¢ acts on the fiber X = Alb~1(0,[L¢]), we need to check that ¢([-1]*E) = 0
and ¢1([-1]*F) = ¢ (Lg) for all [E] € X. The former follows by definition, and the latter
follows from the fact that Lo is a symmetric line bundle. It remains to prove that ¢ acts on
the second cohomology of X as the identity. We have already proved in Proposition 4.4 that
H?(M,Q) — H?*(X,Q) is surjective. Hence we only need to prove that ¢ acts on H?(M,Q)
as the identity. This follows because ¢ is induced from the automorphism [—1] on S and [—1]*
acts on H?(S,Q) trivially, and finally the Hodge structure H?(M,Q) is obtained by a tensor
construction of H?(S,Q) by [Biil20]. This exhausts the entire Aut®(X)-action description on X

and hence completes the proof of Proposition 5.6.
5.3 Automorphisms respecting the Lagrangian fibration
With Proposition 5.6 at hand, the proof of Proposition 5.2 becomes fairly straightforward. Any
H?-trivial automorphism is of the form

f=(£1,2,8) forxz €keryp and & € S[n + 1] with ¢(¢) = sz
Let us split the proof it into two lemmas to make it more organized. Assume that 7: X — B is
the moduli construction of Kum,,-type.

LEMMA 5.10. Suppose that f = (1,z,§) € Aut®(X) in the description of Proposition 5.6 respects
the Lagrangian fibration m. Then x = 0 and £ € ker @.

Proof. Recall that f acts on X by f-[E] = [t;F ® P¢| and that 7: X — B is the (Fitting)
support map Supp: [E] — [Fittg £]. The support of t3E ® P¢ is Supp £ — z, so f respects 7 if
and only if Supp F = Supp F — z. This means x = 0 and thus £ € ker ¢. ]
LEMMA 5.11. Suppose that f = (—1,2,&) € Aut®°(X) in Proposition 5.6 respects w. Then this
forcesn =3, d; = ds =2, x =0, and & € ker .

Proof. Recall that f acts on X by f-[E] = [t5([~1]*E) ® P]. A similar argument shows that
Supp E = [—1]*Supp F — «x for all [E] € X. In other words, we have D = [—1]*D — z for all
D € |Ly|. Fix any y € S with 2y = x (there are 16 of them). Then this condition is equivalent to

D+y=[-1]"(D+y) forall D€ |Lg,
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or equivalently to every divisor in |t*_yL0| being symmetric. In particular, 2, Lo is a symmetric
line bundle. We have chosen Lg to be a symmetric line bundle, so this implies that y is a 2-torsion
point, or x = 0. Hence £ € ker ¢.

Now we can say that every D € |Lg| is symmetric. In the following lemma, we will prove that
there are only three possible polarization types of Lg. We have assumed from the very beginning
that f S 12 =2n+ 2 =2d;dy and n > 2. The first two cases are thus excluded. The only possible
case is the polarization type (2,2), that is, when n = 3 and d; = ds = 2. O

LEMMA 5.12. Let S be an abelian surface and Ly a symmetric ample line bundle on it. Then
every divisor in the complete linear system |Lg| is symmetric if and only if Ly has a polarization
type (1,1), (1,2), or (2,2).

Proof. Assume that Ly has one of the three given polarization types. When Lg is a principal
polarization, | Ly| consists of a single symmetric divisor. When Ly is twice a principal polarization,
this is [BL04, Theorem 4.8.1]. When L has a polarization type (1, 2), the statement can be found
in [Bar87, Proposition 1.6].

Conversely, let us assume that every divisor in |Lg| is symmetric. Denote by H°(S, Lo)+ the
+1-eigenspaces of the involution [—1]* on H(S, Lg). Every divisor in |Lg| is symmetric if and
only if either H°(S, Lo)y = 0 or H%(S,Ly)_ = 0 by [BL04, Lemma 4.7.1]. The dimensions of
H°(S, L)+ are computed in [BLIO, §0] (or [BL04, Example 4.12.11]): If we let the polarization
type of Lg be (dy,d2), then depending on the characteristic of Ly, we have

hO(Lo)4+ = $h°(Lo) or Zh%(Lg) +£2'7%,
where 0 < s < 2 is an integer where dy,...,ds; are odd and dsy1 is even. There are three
possibilities making h%(Lg)+ = 0 or h%(Lg)— = 0:
(i) h%(Lo) =1 and s = 2,
(i) R%(Lg) =2 and s =1, or
(iii) h°(Lg) = 4 and s = 0.
Using h%(Lo) = dida, it is easy to check that these are the three desired cases in the statement. [

Proof of Proposition 5.2. If we are not in the exceptional case, then the above discussion con-
cludes that Aut®(X/B) = ker¢ = (Z/dy © Z/d2)®? by (5.5). In the exceptional case n = 3
and d; = dy = 2, we conclude that Aut®(X/B) = {£1} x ker p = {£1} x (Z/2)®*. The {£1}-
action on ker ¢ is trivial, either by direct computation or by using Proposition 3.22 to show that
Aut®(X/B) is abelian. O

5.4 The polarization scheme of generalized Kummer varieties
This subsection will be devoted to the proof of Proposition 5.4. Assume that 7: X — B is
a Kum,,-type moduli construction. The computations in this subsection are highly influenced by
[Wiel8, §6]. Recall from Section 5.1 that we had a Fitting support morphism Supp: M — B
over Pick. Fix a point [Lg] € Pick, and consider the fibers of M and B over it. We obtain
a morphism

Supp: Y — B,
where B = |Lg| is a complete linear system and Y C M consists of torsion coherent sheaves F
on S with ch(E) = v = (0,1, s) and ¢ (E) = ¢;1(Lg). The Kum,-type hyper-Kéhler manifold X
is obtained by a fiber of the isotrivial fiber bundle ¢: Y — S.
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Consider the universal family C — B of curves on S parametrizing effective divisors in
B = |Lg|. Since Ly is ample, by Bertini’s theorem, there exists a Zariski-dense open subset
By C B parametrizing smooth curves. The restriction of the universal family Cy — By is a
smooth projective family of curves. The following lemma is standard, and we only sketch its
proof.

LEMMA 5.13. The morphism Supp: Yy = Suppfl(Bg) — By is isomorphic to the relative Picard
scheme of the universal family of curves Picg0 /By By ford=s+n+1.

Proof. Define a morphism Picé‘%0 /B, — Yo over By by [L] — [i.L], where L is a line bundle of
degree d = s + n + 1 (Riemann—Roch computation) on a curve i: C' < S. Over a closed point
[C] € By on the base, Pic, is an abelian variety of dimension n + 2, so Pic} — Y|c) must be
an isomorphism. Any morphism of complex smooth varieties bijective on closed points is an
isomorphism by Zariski’s main theorem. O

Lemma 5.13 in particular says that Yy — By is a torsor under the numerically trivial relative

Picard scheme
Jo = Picg, /5, — Bo -

Since Cy/ By is a smooth projective family of curves, its relative Picard scheme .Jj is a canonically
principally polarized abelian scheme. As standard, we will call it a relative Jacobian of the family
and identify Jy = Jy. Notice that we now have four different spaces over By: Py, Xo, Jo, and Yj.
The space Xg is a Py-torsor as usual, and we also have Yj as a Jy-torsor. Since Py and Jy are
translation automorphism schemes of Xy C Yp, we have an inclusion Py C Jy. Our first goal is
to describe the quotient of this inclusion.

PROPOSITION 5.14. There exists a short exact sequence of abelian schemes over By
0—P)— Jy—SxBy—0. (5.11)

Proof. The universal family Cy — By is a subvariety of the product ¢: o — S x By. This
induces a pullback morphism i*: S x By — Jy between their relative Picard schemes over By.
The morphism Jy — S x By can be constructed by the dual of ¢*. Fiberwise, it is the morphism
Jo — S induced by the universal property of the Albanese morphism applied to i: C < S.

We prove that the kernel of the morphism Jy — S x By is Fy. The claim can be verified
fiberwise. Fix a closed point [C] € By corresponding to a smooth curve i: C' < S. Over it, a
closed point of Y} (respectively, Jy) is represented by a degree d line bundle L on C' (respectively,
degree 0 line bundle M). The Jp-action on Yy is given by [ixM] - [i«L] = [i«(L ® M)]. Recall that
X is a fiber of the morphism ¢: Y — S. Hence the abelian scheme Py consists of translation
automorphisms of Jy invariant under the morphism ¢. Recall the definition of ¢ in (5.2). A
Riemann—Roch computation gives us

¢([ix(L ® M)]) = ¢([isL]) — Z(ixc1(M)),

where ¢ (M) € CHY(S), i,: CHY(S) — CH?(S), and X: CH?(S) — S is a summation map. This
proves that the [i,M]-action on the fiber of Yj is c-invariant if and only if X(i.¢;(M)) = 0. The
claim follows by the following lemma, which is already proved in [Wiel8, (6.8)]. O

LEMMA 5.15. The morphism Jo — S sends a closed point [M] € Jo to X(i.¢1(M)) € S.

The dual of (5.11) is automatically (see, for example, [BL04, Proposition 2.4.2]) a short exact
sequence of abelian schemes

0— SxBy— Jy— Py —0. (5.12)
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In particular, Py and S x By are both abelian subschemes of a bigger abelian scheme Jy. The
following proposition describes the polarization scheme Ky more explicitly for the moduli con-
structions.

PROPOSITION 5.16. We have the following two additional descriptions of the polarization scheme
Ky as a By-group scheme:

Ko=Pyn (S x By) =ker(¢ xid: S x By — S x By) .
Proof. Fiberwise at a closed point [C] € By, the sequences (5.11) and (5.12) are short exact
sequences of abelian varieties
0—F—Jo—85—0, 0—8—Jo—F—0.

Here F = v=1([C]) is a fiber of Py, and J¢ is the Jacobian of the curve C. The two abelian sub-
varieties F' and S of the principally polarized abelian variety Jo are the so-called complementary
abelian subvarieties (see [BL04, § 12.1] or [Wiel8, §6.4]). In this case, we have an equality [BL04,
Corollary 12.1.4]

ker(F — Jo — F) = FNS =ker(S — Jo — 5).

We will soon prove in Lemma, 5.17 that the composition S — Jo — S is precisely the polarization
isogeny ¢ in (5.3), regardless of the choice of a closed point [C] € By. Given this, we obtain
a sequence of identities of group schemes

keI‘(Po—>J0—>p0):Poﬂ(SXBo):ker(@XidISXBo%SXBo).

By the last description and (5.5), this group scheme is a constant group scheme with fibers
(Z/dy ®Z/d3)P2. On the other hand, the first description is the polarization scheme Ky; combine
the uniqueness of the polarization in Theorem 3.1 and the computation of polarization types in
Theorem 3.16. The claim follows. O

LEMMA 5.17. The composition S — Jo — S is the polarization isogeny ¢ in (5.3).

Proof. Denote by i: C' < S the closed immersion. At the level of first homologies, the composi-
tion S — Jo — S becomes a Hodge structure homomorphism
H\(S8,7) = H'(S,Z) - H'(C,Z) = H3(S,Z) = H\(S,Z).

Hence the composition is 4, o i*, which is the multiplication map by ¢1(Og(C)) € H*(S,Z).
Because we have chosen [C] in a complete linear system |Lg|, it is multiplication by ¢1(Lg) = I.

Therefore, the question reduces to the following claim: The dual polarization ¢: S — S is
given by [ U —: HY(S,Z) — H3(S,Z). Again choose polarization bases H1(S,Z) = Z{e1,...,e4}
and H; (S,Z) = HY(S,Z) = Z{e%,...,e}} as in Lemma 5.8. The polarization isogenies ¢ and ¢
have the matrix forms (5.10). The ample class [ is the skew-symmetric bilinear map

v: H\(S,Z) ® H\(S,Z) — Z
considered as an element of H?(S,Z). Hence it is | = die} A €} + dae} A €.
We can now explicitly compute the map [ U —: H'(S,Z) — H3(S,Z):
el — dael Nes Nej, e5 — —die] Ney Nes,
e5 — —daes Nez Ney, ey — die] Nes Nej.
The Poincaré duality Hy(S,Z) = H3(S,Z) yields the basis of H3(S,Z):

{e5Nez Ney, —e] Nes Ney, el Ney Ney, —e] ANes ANest.
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With respect to it, the matrix form of the multiplication coincides with precisely the matrix form
of ¢ above. (Compare this lemma with [Wiel8, Lemma 6.14].) O

Proof of Proposition 5.4. Recall from Section 5.3 the complete description of Aut®(X/B). Let
us assume n # 3 or (dy,dsz) # (2,2) so that every automorphism f € Aut®(X/B) is of the form
(1,0,¢) for £ € ker. It acts on Y by f - [E] = [E ® P¢], where Pt is the numerically trivial line
bundle on S represented by ¢ € ker C S. On Yy, closed points are of the form [E] = [i.L],
where L is a line bundle on a smooth curve ¢: C' < S. Hence f acts on it by

[ lisL] = [isL @ Pe] = [is(L ® " Pe)] .

This means that the global section of Jy — By defined by f represents a line bundle [i* P¢] over
[C] € By. The inclusion S x By C Jy was by definition the pullback morphism of line bundles.
Hence f in fact defines a global section { = [P¢] € S of the constant group scheme S x By. This
coincides with the description of the polarization scheme Ky in Proposition 5.16, proving the
desired equality Ky = Aut®(X/B).

The proof for the exceptional case n = 3 and diy = dy = 2 is nearly identical. The only
difference is that the automorphisms f € Aut®(X/B) of the form (1,0,¢) make up an index 2
subgroup ker ¢ C Aut®(X/B). So the same argument proves that Ky = ker ¢ C Aut®°(X/B) is an
index 2 subgroup. The second inclusion Aut®(X/B) C Ky[2] follows from Proposition 3.5 since
we have div(h) = d; = 2. O

6. The dual Lagrangian fibration of a compact hyper-K&hler manifold

Combining the previous results, we can prove that the polarization scheme extends to a constant
subgroup scheme of Aut®(X/B) over B for known hyper-Kahler manifolds.

THEOREM 6.1. Let m: X — B be a Lagrangian fibration of a compact hyper-Kéhler manifold of
KB[”]—, Kum,,-, OG10-, or OG6-type. Then the polarization scheme Ky — By uniquely extends
to a constant group scheme K — B that is a subgroup scheme of the constant group scheme
Aut®(X/B).

Proof. When X is of K3["- or OG10-type, both the polarization scheme K and the global sections
defined by Aut®°(X/B) are the zero section of the abelian scheme Fy. Hence the claim is trivial.
When X is of OG6-type, lattice theory forces div(h) = 1 as shown in [MR21, Lemma 7.1]. Propo-
sition 3.5 applies, and we get an inclusion Aut®(X/B) < K. Combining Theorems 3.16 and 5.1,
we see that the inclusion is forced to be an equality fiberwise. Hence we get the global equality
Ky = Aut®(X/B). In particular, K extends over B to a constant group scheme Aut®(X/B).
Assume that X is of Kum,-type and the polarization type of 7 is not (1,2,2). In this case,
Proposition 5.4, together with Proposition 3.4, implies an equality of group schemes Ko =
Aut®(X/B). The remaining case is when X is of Kumgs-type and the polarization type of =
is (1,2,2). In this case, we have div(h) = 2 by Theorem 3.16, so Proposition 3.4 guarantees
Aut®°(X/B) C Ky[2], where Ky[2] = ker(2)\) is slightly bigger than Ky. Both Aut®(X/B) and
Ky = 2 Ky[2] are contained in Ky[2] and are invariant under deformations, so the inclusion
Ko C Aut®°(X/B) in Proposition 5.4 is preserved under deformation. The claim follows. O

Remark 6.2. We may state Theorem 6.1 in the following simpler way: We have an equality of
group schemes

Ko=Aut'(X/B) (= Aut°(X/B) N Aut'(X)),
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where Aut’(X) C Aut®(X) is a group defined in Remark 4.5. For most of the known examples
of Lagrangian fibered hyper-Kihler manifolds, we have Aut’(X/B) = Aut®°(X/B). There is
a single known example where the inclusion Aut’'(X/B) C Aut®°(X/B) is strict, when X is
of Kums-type and 7 has polarization type (1,2,2). In this case, Aut'(X/B) = (Z/2)®* and
Aut®°(X/B) = (Z/2)%.

A direct consequence of this theorem is a promised compactification of the dual torus fibration
7. Xo — By.

THEOREM 6.3. Let m: X — B be a Lagrangian fibration of a compact hyper-Kahler manifold of
K3"-, Kum,-, OG10-, or OG6-type. Then

7#: X — B for X =X/K
defines a compactification of the dual torus fibration 7: Xo — By.

Proof. As explained in the introduction, we have defined the dual torus fibration by Xy = Xg /K.
For known deformation types, Theorem 6.1 proves that K extends to a constant group scheme K
over B acting on X. Therefore, the group scheme quotient X(y/Ky — By can be compactified
into X/K — B. Since K — B is a constant group scheme, the quotient X/K may be considered
as either a group scheme quotient over B or a finite group quotient over C. ]

When X is of K3™- or OG10-type, X is identical to X, and there is nothing more to say.
Let us further study the space X when X is of Kum,- or OG6-type. Being a quotient by H?2-
trivial automorphisms, X inherits many interesting properties from X. We provide Appendix B to
collect their properties in a more general setup; the following proposition is a direct consequence of
this more general discussion. For the definitions of a primitive symplectic orbifold and irreducible
symplectic variety used in the following proposition, see Appendix A.

PROPOSITION 6.4. Keep the notation from Theorem 6.3, and assume that X is of either Kum,,-
or OG6-type.

i) The variety X is a compact primitive symplectic orbifold and also an irreducible symplectic
Y Y Y

variety.

(ii) The variety X does not admit a symplectic resolution.

(iii) The variety X is simply connected. It has Fujiki constant c v =1/cx.

(iv) The groups H? (X,Q) and H?(X,Q) are Hodge isomorphic and Beauville-Bogomolov—
Fujiki isometric.

(v) The LooijengaLunts—Verbitsky (LLV') algebras and Mumford-Tate algebras of X and X
are isomorphic.

(vi) The pullback H* (X, Q) — H*(X,Q) is an injective map of LLV structures.

(vii) There exists a canonical isomorphism Def® (X) = Def(X). If ¥ — Def(X) is the universal
deformation of X, then X /K — Def(X) is the (locally trivial ) universal deformation of X.

Proof. Everything is a direct consequence of Propositions B.1 and B.2. Only the first three items
need further explanations. For the first and second items, it is enough to show that codim X/ > 4
for all f € K\ {id}. The fixed loci of H2-trivial automorphisms deform when X deforms, by
Proposition B.3. Hence we may prove this for any model in the deformation class on X. For OG6,
the fixed loci are computed in [MW17, §6]; they are either K3 surfaces or points. For Kum,,,
the fixed loci are computed in [Ogu20, Lemma 3.5], and similarly one can deduce that their
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codimension is always at least 4. For the third item, simply notice that the group K has order
c%( in all cases. O

Proposition 6.4 shows that X has quotient singularities when X is of Kum,- or OG6-type.
Therefore, X cannot be homeomorphic to X. We call the corresponding X the dual Kummer
variety and dual OG6 variety, respectively.

Finally, Proposition 6.4 shows, in particular, that the local deformation behavior and period
domains of X and X are identical. Therefore, one can still apply the method in [GTZ13, §2] at
the level of period domains and obtain similar conclusions to it for all known deformation types
of hyper-Kahler manifolds. One subtlety here is that the quotient construction works for any
deformation X’ of X, even if X’ does not admit any Lagrangian fibration; the quotient X'/K is
still well defined because we have considered K as an abstract subgroup of the group Aut®(X).
The local universal deformation space of the Lagrangian fibration 7: X — B is a hyperplane
Def(X, H) C Def(X) (see [Matl6]). Once we choose a deformation X’ by respecting the La-
grangian fibration [7': X’ — B'] € Def(X, H), we can say that #': X'/K — B’ is the dual
Lagrangian fibration of n’': X’ — B’

Appendix A. Various notions of singular hyper-Kahler varieties

Many of the important properties of compact hyper-Kéahler manifolds have been generalized to
singular settings. There are several definitions of singular hyper-Kéhler varieties in the current
literature. To make our discussion less ambiguous, we collect some definitions and compare them.
Our main references are [BL22, Sch20, Men20].

If X is a normal complex space, then its sheaf of reflexive k-forms is defined to be the

reflexive closure of the sheaf of k-forms Qgg = (Q])“()VV, or equivalently Qg;] = j*Q’)“(reg, where

Ji Xreg = X is the smooth locus of X. A quasi-étale morphism is a morphism étale outside of
a closed subvariety of codimension at least 2.

DEFINITION A.1 ([BL22, Definition 3.1 and Theorem 3.4], [Sch20, Definition 1], [Men20, Def-
inition 3.1]). Let X be a compact normal Kéhler space (see, for example, [BL22, §2.3]) and

o€ HY (X , Q[)Z(]) a reflexive 2-form.
(i) (X,0) is called a symplectic variety if X has rational Gorenstein singularities and o is
nondegenerate on Xieg.

(ii) X is called a primitive symplectic variety if
H(x,08) =0, H(x,0) =cCo,
and (X, o) is a symplectic variety.

(iii) X is called an irreducible symplectic variety if it is a primitive symplectic variety with the
following condition: For any finite quasi-étale cover f: X’ — X, we have

HO(x Py o, HOX, Q) =C. ol fork>0.

(iv) X is called a Namikawa symplectic variety if it is a Q-factorial and terminal primitive
symplectic variety.

v is called a primitive symplectic orbifold if it is Namikawa symplectic with only finite
X i lled imiti lecti bifold if it is Namik lectic with only finit
quotient singularities.
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We have a series of implications

primitive symplecitc orbifold = Namikawa symplectic

!

irreducible symplectic =——= primitive symplectic == symplectic.

Eventually, the dual hyper-Kahler variety X in Theorem 1.1 will be both a primitive symplectic
orbifold and an irreducible symplectic variety (Proposition 6.4). Hence all of the discussions here
apply.

Many of the interesting properties of compact hyper-Kéahler manifolds generalize to their sin-
gular analogues, especially to primitive symplectic varieties. We highlight some of their properties
that will be useful to our discussion. Let X be a primitive symplectic variety of dimension 2n.

— The normalization of the singular locus Xgine is again symplectic [Kal06, Theorem 2.5]. In
particular, Xgj,e is always even-dimensional.

— There exists a notion of the Beauville-Bogomolov—Fujiki form and Fujiki constant of X, so
that the Fujiki relation (1.1) holds; see [Sch20, Theorem 2], [BL22, Lemma 5.7].

— The variety X is Namikawa symplectic if and only if it is Q-factorial and codim Xns > 4
[Nam01, Corollary 1] and [BL22, Theorem 3.4].

— Every morphism 7: X — B with connected fibers to a normal base B (with 0 < dim B < 2n)
is a Lagrangian fibration [Sch20, Theorem 3]. That is, all the irreducible components of the
fibers of w are Lagrangian subvarieties of X.

— The Hodge structure H?(X,Z) is pure; see [Sch20, Theorem 8] and [BL22, Corollary 3.5].
If X is a primitive symplectic orbifold, then the full cohomology H*(X, Q) is a pure Hodge
structure [PS08, Theorem 2.43].

— There exists a universal locally trivial deformation X — Def!*(X) over a smooth complex
germ Def! (X) of dimension h'!(X); see [BL22, Theorem 4.7]. If X is Namikawa symplectic,
then any deformation is automatically locally trivial [Nam06, Main Theorem)].

We will use these facts in Section 6 and Appendix B, without mentioning them explicitly.

Appendix B. Quotient of a hyper-Kihler manifold by H?2-trivial automorphisms

Let X be a compact hyper-Kihler manifold and Aut®(X) the finite group of H?-trivial auto-
morphisms. Throughout the appendix, we always let G C Aut®(X) to be any subgroup and
write

p: X — X = X/G. (B.1)

The goal of this appendix is to gather basic geometric and cohomological properties of the
quotient X. Note that Lagrangian fibrations play no role in this appendix. The results are
summarized in Propositions B.1, B.2, and B.3.

ProPOSITION B.1. Consider the quotient (B.1) of a compact hyper-Kéhler manifold X .
(i) The morphism p is a finite quasi-étale symplectic quotient.

(i) The quotient X is a Q-factorial irreducible symplectic variety whose singularity locus is
p( Usee giay X7). If codim X/ > 2 for all f € G\{id}, then X is also a primitive symplectic
orbifold.
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(iii) The quotient X is simply connected.

(iv) There exists a canonical isomorphism Def' (X) = Def(X). Moreover, if X — Def(X) is
the universal deformation of X, then the quotient X' /G — Def(X) is the universal locally
trivial deformation of X.

The quotient X = X/G being an irreducible symplectic variety, its behavior is intimately
related to its (second) cohomology. By [BL22, Lemma 5.7], there exists a notion of the Beauville—
Bogomolov-Fujiki form ¢y that is unique up to scaling. Typically, a primitive symmetric bilinear
form is chosen. However, to compute the Fujiki form cg explicitly, we will choose instead

ax(z,y) = qx(p*z,p*y) for z,y € H*(X,Z).

We do not know if such gy is a primitive bilinear form.

ProposiTION B.2. We use the same notation as above.
(i) The Fujiki constant of X is cg = cx/|G].
(ii) The pullback
p*: H? (X,Z)/(torsion) —» H*(X,7)
is an injective Hodge structure homomorphism and a Beauville-Bogomolov—Fujiki isometry.
It is an isomorphism over Q.
(iii) Let g be the LLV algebra of X. Then with respect to the injective homomorphism
p*: H*(X,Q) — H*(X,Q),
the cohomology of X is closed under the g-action.
(iv) If H* ()_(, Q) # 0, then its special Mumford-Tate algebra is isomorphic to that of H*(X,Q).

As a consequence, any g-module decomposition of H* (X,Q) is a pure Hodge structure
decomposition.

PROPOSITION B.3. Let X be a compact hyper-Kahler manifold and G C Aut®°(X). If X' is
deformation equivalent to X, then (X')¢ is deformation equivalent to X©.

Proof. Let p: X — Def(X) be a universal deformation of X. Since G acts fiberwise on p, the
morphism X® — Def(X) gives a family of fixed loci (X;)¢. Because G is a finite group acting on
a complex manifold X, its fixed locus X is a complex manifold proper over Def (X). Similarly,
each (X;)% is a (symplectic) manifold. Hence X — Def(X) is a smooth proper family, and the
claim follows. O

We note that, at the moment this paper is written, the definition of the LLV algebra for
primitive symplectic varieties is missing. The third and fourth items of Proposition B.2 suggest
that g is a good candidate for the LLV algebra of X = X/G.

Note again that the subgroup G C Aut®(X) was taken arbitrary. Hence we have a family
of irreducible symplectic varieties corresponding to each subgroup of Aut®(X). That is, we get
a Galois correspondence between the subgroups G C Aut°(X) and the symplectic quotients
X = X/G with the same rational Beauville-Bogomolov-Fujiki forms. In particular, their defor-
mation behaviors are all identical.

The rest of this appendix is devoted to the proof of Propositions B.1 and B.2. Most of the
proofs will be straightforward, so we will be brief.
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Proof of Proposition B.1(i), (iii), (iv). Let us present the proof of the proposition without the
second item. The second item will be proved separately.

The group G acts trivially on H?(X,Z), so it acts symplectically on X. Hence p is a symplectic
quotient. The ramified locus of p is contained in the union of the fixed loci | J FEG\{id} X7, which
is of codimension at least 2 as every f € G is a symplectic automorphism. This means that p is
quasi-étale and o descends to X; the first item follows.

The third item is a direct consequence of the second item because any irreducible symplectic
variety is simply connected by [GGK19, Corollary 13.3]. The last item again follows directly
from [Fuj83, Theorem 3.5 and Lemma 3.10]. Since G acts holomorphically on X and trivially on
H?(X,Z), the morphism X — Def(X) equipped with a G-action is the universal deformation of
the pair (X, G). Once we have a universal deformation of the pair (X, G), the quotient X' /G —
Def(X) is the locally trivial universal family of X/G. O

LEMMA B.4. Let (X,0) be a compact symplectic variety and f: X' — X a finite quasi-étale
morphism. Then (X', f*o) is a compact symplectic variety.

Proof. By [KM98, Proposition 5.20] or [GKP16, Remark 3.4], the variety X’ is Gorenstein
and canonical. Therefore, it has rational singularities by [KM98, Corollary 5.24]. Now f*o €

H° (X ! ,Q[;],) is a symplectic form in codimension 1 as f is étale in codimension 1. The claim
follows. O

Proof of Proposition B.1(ii). We prove the second item here. As a finite quotient of a smooth
variety X, the space X is certainly Q-factorial and has quotient singularities. Fix a point 2 € X,
and let Z = p(z). According to the Chevalley-Shephard-Todd theorem, the quotient X is smooth
at = if and only if the stabilizer group G, acting on the tangent space T, X is generated by
pseudoreflections (that is, linear automorphisms on 7, X with codimension 1 fixed loci). If z € X
has a nontrivial stabilizer GG, any nontrivial automorphism f € G, is symplectic so has fixed
locus of codimension at least 2 . This means that G, cannot be generated by pseudoreflections.
Therefore, X is singular at z. If we further assume codim X7 > 4 for all nontrivial f € G, then
codim Xsing > 4 and X becomes Namikawa symplectic.

To prove that X is irreducible symplectic, we follow the argument of Matsushita [Mat15,
Lemma 2.2]. Let f: Y — X be an arbitrary finite quasi-étale morphism. Consider the diagram

y 2. Xx

o

v 1 x,
where Y is the normalization of the fiber product X x ¢ Y. We claim that g and ¢ are finite
quasi-étale. The finiteness is clear, so we concentrate on their quasi-étaleness. Notice that the
quasi-étale property is stable under base change, so we need to prove that the normalization in
this case is quasi-étale. But notice that X is smooth and f is quasi-étale, so that X x ¢ Y is
smooth in codimension 1. Hence its normalization is in fact an isomorphism in codimension 1.
This proves that g and ¢ are quasi-étale.

Now X is smooth, Y is normal, and g: Y — X is finite quasi-étale. By the Zariski-Nagata
purity theorem of branch loci (see, for example, [Sta24, Tag 0BMB]), this forces g to be étale.
The hyper-Kéhler manifold X is simply connected, so this means that Y must be a disjoint union
of several isomorphic copies of X. Let us fix a connected component Yy of Y. It is a hyper-Kéhler
manifold isomorphic to X.
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Consider the morphism ¢ restricted to the connected component ¢: Yy — Y. It is a finite quasi-
étale morphism, so in particular it is surjective. Note that the target Y is canonical (Lemma B.4),
SO [GKKPH Theorem 4.3] guarantees the existence of a reflexive pullback ¢*: H° (Y olk })
HO (Yo, ol ]) Since q is quasi-étale, this morphism is injective. But recall that Yy = X is a hyper-
Kahler manifold, so this forces Y to satisfy the dimension condition of the definition of irreducible
symplectic varieties. This proves that X is an irreducible symplectic variety. O

Proof of Proposition B.2. The following sequence of identities proves that gy is the Beauville-
Bogomolov—-Fujiki form with Fujiki constant cx = cx/|G|:

1 . c 2n)! . c 2n)!
/}_{wQ": |G‘/X(p w)Q”:a'g(n.iu cqx(px)" = ,C);Q(ng@' gz ()"
Since X is a compact Kihler orbifold, its rational singular cohomology admits a pure Hodge
structure [PS08, Theorem 2.43], and p*: H* (X, Q) — H*(X,Q) is an injective Hodge structure
homomorphism with image H*(X, Q)G. In particular, p* is an isomorphism in degree 2.
To prove that H* ()_(, Q) = H*(X,Q)% is closed under the g-action, it is enough to prove that
the G-action and g-action on H*(X, Q) commute. Recall that the LLV structure is invariant under

homeomorphisms. In other words, if f: X; — X5 is a homeomorphism between two compact
hyper-Kéhler manifolds, then we have

F(La(€) = Ly (f76),  [H(A(§)) = Ap=a(f7E) for & € H'(X3,Q)

for any x € H?(X», Q) with gx,(z) # 0. Here L, and A, are Lefschetz and inverse Lefschetz op-
erators associated with x. If we set X; = Xy = X and let f € G be an H?-trivial automorphism,
then this means that f* commutes with the operators L, and A,. That is, G commutes with g.

To obtain the results about the Mumford—Tate algebras, one imitates the method used in
[GKLR22, §2] and deduces f € g for f a Weil operator on the cohomology H* (X, Q) (which is
the restriction of Weil operator on H*(X,Q)). This proves that all the special Mumford-Tate
algebras of nonzero HF (X, Q) are the same and even the same result for that of H?(X,Q). O

ACKNOWLEDGEMENTS

I would like to thank my advisor Radu Laza for his invaluable comments and suggestions. Without
his guidance, I would not have completed this paper. I would like to thank Thorsten Beckmann,
Mirko Mauri, and Jieao Song for indicating some errors in a previous version of this paper.
I would especially like to thank Salvatore Floccari for pointing out a gap in the original main
statement, and an anonymous referee for making thorough comments and suggestions to improve
the paper. Finally, I would like to thank Igor Dolgachev, Mark Gross, Brendan Hassett, Klaus
Hulek, Daniel Huybrechts, Olivier Martin, Grégoire Menet, Hyeonjun Park, and Qizheng Yin for
helpful comments.

REFERENCES

AR21 A. Abasheva and V. Rogov, Shafarevich-Tate groups of holomorphic Lagrangian fibrations,
Math. Z. 311 (2025), no. 1, Paper No. 4; doi:10.1007/s00209-025-03776-w.

AF16 D. Arinkin and R. Fedorov, Partial Fourier-Mukai transform for integrable systems with ap-
plications to Hitchin fibration, Duke Math. J. 165 (2016), no. 15, 2991-3042; doi:10.1215/
00127094-3645223.

696


https://doi.org/10.1007/s00209-025-03776-w
https://doi.org/10.1215/00127094-3645223
https://doi.org/10.1215/00127094-3645223

BL22

Bar87

Bea83a

Bea83b

BL90

BL04

BNS11

BLR90

Brill
Bril8

Biil20

Cam06

Del71

Del72

Dol03

FC90

Fujs3

vGV16

GGK19

GKKP11

GKP16

GL14

THE DUAL FIBRATION OF KNOWN HYPER-KAHLER MANIFOLDS

B. Bakker and C. Lehn, The global moduli theory of symplectic varieties, J. reine angew. Math.
790 (2022), 223-265; doi:10.1515/crelle-2022-0033.

W. Barth, Abelian surfaces with (1,2)-polarization, Algebraic geometry (Sendai, 1985), Adv.
Stud. Pure Math., vol. 10 (North-Holland, Amsterdam, 1987), 41-84; doi:10.2969/aspm/
01010041.

A. Beauville, Some remarks on Kdhler manifolds with ¢; = 0, Classification of algebraic and
analytic manifolds (Katata, 1982), Progr. Math., vol. 39 (Birkh&user, Boston, MA, 1983), 1-26.

, Variétés Kahleriennes dont la premiére classe de Chern est nulle, J. Differential Geom.
18 (1983), no. 4, 755-782; doi:10.4310/jdg/1214438181.

C. Birkenhake and H. Lange, Symmetric theta-structures, Manuscripta Math. 70 (1990), no. 1,
67-91; doi:10.1007/BF02568362.

, Complex abelian varieties, 2nd ed., Grundlehren Math. Wiss., vol. 302 (Springer-
Verlag, Berlin, 2004); doi:10.1007/978-3-662-06307-1.

S. Boissiere, M. Nieper-Wilkirchen, and A. Sarti, Higher dimensional Enriques varieties and
automorphisms of generalized Kummer varieties, J. Math. Pures Appl. (9) 95 (2011), no. 5,
553-563; doi:10.1016/j.matpur.2010.12.003.

S. Bosch, W. Liitkebohmert, and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb. (3),
vol. 21 (Springer, Berlin, 1990); doi:10.1007/978-3-642-51438-8.

M. Brion, On automorphism groups of fiber bundles, Publ. Mat. Urug. 12 (2011), 39-66.

, Linearization of algebraic group actions, in Handbook of group actions. Vol. IV, Adv.
Lect. Math. (ALM), vol. 41 (Int. Press, Somerville, MA, 2018), 291-340.

T.-H. Billes, Motives of moduli spaces on K3 surfaces and of special cubic fourfolds,
Manuscripta Math. 161 (2020), no. 1-2, 109-124; doi:10.1007/s00229-018-1086-0.

F. Campana, Isotrivialité de certaines familles kdhlériennes de wvariétés non projectives,
Math. Z. 252 (2006), no. 1, 147-156; doi:10.1007/s00209-005-0851-4.

P. Deligne, Théorie de Hodge. II, Inst. Hautes Etudes Sci. Publ. Math. 40 (1971), 5-57; doi:
10.1007/BF02684692.

, La congecture de Weil pour les surfaces K3, Invent. Math. 15 (1972), 206-226; doi:
10.1007/BF01404126.

1. Dolgachev, Lectures on invariant theory, London Math. Soc. Lecture Note Ser., vol. 296
(Cambridge Univ. Press, Cambridge, 2003); doi:10.1017/CB09780511615436.

G. Faltings and C.L. Chai, Degeneration of abelian varieties, Ergeb. Math. Grenzgeb. (3),
vol. 22 (Springer-Verlag, Berlin, 1990); doi:10.1007/978-3-662-02632-8.

A. Fujiki, On primitively symplectic compact Kdihler V-manifolds of dimension four, Classifi-
cation of algebraic and analytic manifolds (Katata, 1982), Progr. Math., vol. 39 (Birkh&user
Boston, Boston, MA, 1983), 71-250.

B. van Geemen and C. Voisin, On a conjecture of Matsushita, Int. Math. Res. Not. IMRN 10
(2016), 3111-3123; doi:10.1093/imrn/rnv230.

D. Greb, H. Guenancia, and S. Kebekus, Klt varieties with trivial canonical class: holonomy,
differential forms, and fundamental groups, Geom. Topol. 23 (2019), no. 4, 2051-2124; doi:
10.2140/gt.2019.23.2051.

D. Greb, S. Kebekus, S. Kovacs, and T. Peternell, Differential forms on log canonical spaces,
Publ. Math. Inst. Hautes Etudes Sci. 114 (2011), 87-169; doi:10.1007/s10240-011-0036-0.
D. Greb, S. Kebekus, and T. Peternell, Singular spaces with trivial canonical class, Minimal
models and extremal rays (Kyoto, 2011), Adv. Stud. Pure Math., vol. 70 (Math. Soc. Japan,
Tokyo, 2016), 67-113; doi:10.2969/aspm/07010067.

D. Greb and C. Lehn, Base manifolds for Lagrangian fibrations on hyperkdhler manifolds, Int.
Math. Res. Not. IMRN 19 (2014), 5483-5487; doi:10.1093/imrn/rnt133.

697


https://doi.org/10.1515/crelle-2022-0033
https://doi.org/10.2969/aspm/01010041
https://doi.org/10.2969/aspm/01010041
https://doi.org/10.4310/jdg/1214438181
https://doi.org/10.1007/BF02568362
https://doi.org/10.1007/978-3-662-06307-1
https://doi.org/10.1016/j.matpur.2010.12.003
https://doi.org/10.1007/978-3-642-51438-8
https://doi.org/10.1007/s00229-018-1086-0
https://doi.org/10.1007/s00209-005-0851-4
https://doi.org/10.1007/BF02684692
https://doi.org/10.1007/BF02684692
https://doi.org/10.1007/BF01404126
https://doi.org/10.1007/BF01404126
https://doi.org/10.1017/CBO9780511615436
https://doi.org/10.1007/978-3-662-02632-8
https://doi.org/10.1093/imrn/rnv230
https://doi.org/10.2140/gt.2019.23.2051
https://doi.org/10.2140/gt.2019.23.2051
https://doi.org/10.1007/s10240-011-0036-0
https://doi.org/10.2969/aspm/07010067
https://doi.org/10.1093/imrn/rnt133

Y.-J. Kim

GKLR22 M. Green, Y.-J. Kim, R. Laza, and C. Robles, The LLV decomposition of hyper-Kdhler coho-

GTZ13

HT13

Huy99

Huyl6

Hwa08

Ive86

Kal06

KLS06

Kaw85

Kol96

KM98

Laz04

LeP93

LL97

Marl4

MTO07

Mat1b

Mat16

Menl14

Men20

Mil80

mology (the known cases and the general conjectural behavior), Math. Ann. 382 (2022), no. 3-4,
1517-1590; doi:10.1007/s00208-021-02238~-y.

M. Gross, V. Tosatti, and Y. Zhang, Collapsing of abelian fibered Calabi—Yau manifolds, Duke
Math. J. 162 (2013), no. 3, 517-551; doi:10.1215/00127094-2019703.

B. Hassett and Y. Tschinkel, Hodge theory and Lagrangian planes on generalized Kummer
fourfolds, Mosc. Math. J. 13 (2013), no. 1, 33-56; doi:10.17323/1609-4514-2013-13-1-33~
56.

D. Huybrechts, Compact hyper-Kdhler manifolds: basic results, Invent. Math. 135 (1999), no. 1,
63—-113; doi:10.1007/s002220050280.

, Lectures on K3 surfaces, Cambridge Stud. Adv. Math., vol. 158 (Cambridge Univ.
Press, 2016); doi:10.1017/CB09781316594193.

J.-M. Hwang, Base manifolds for fibrations of projective irreducible symplectic manifolds, In-
vent. Math. 174 (2008), no. 3, 625—644; doi:10.1007/s00222-008-0143-9.

B. Iversen, Cohomology of sheaves, Universitext (Springer-Verlag, Berlin, 1986); doi:10.1007/
978-3-642-82783-9.

D. Kaledin, Symplectic singularities from the Poisson point of view, J. reine angew. Math. 600
(2006), 135-156; doi:10.1515/CRELLE.2006.089.

D. Kaledin, M. Lehn, and C. Sorger, Singular symplectic moduli spaces, Invent. Math. 164
(2006), no. 3, 591-614; doi:10.1007/500222-005-0484-6.

Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. reine
angew. Math. 363 (1985), 1-46; doi:10.1515/cr11.1985.363.1.

J. Kolldr, Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3), vol. 32 (Springer-
Verlag, Berlin, 1996); doi:10.1007/978-3-662-03276-3.

J. Kollar and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Math.,
vol. 134 (Cambridge Univ. Press, Cambridge, 1998); doi:10.1017/CB09780511662560.

R. Lazarsfeld, Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3), vol. 48 (Springer-
Verlag, Berlin, 2004); doi:10.1007/978-3-642-18808-4.

J. Le Potier, Fuaisceauzr semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math.
Pures Appl. 38 (1993), no. 7-8, 635-678.

E. Looijenga and V. A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129
(1997), no. 2, 361-412; doi:10.1007/s002220050166.

E. Markman, Lagrangian fibrations of holomorphic-symplectic varieties of K3 -type, in Al-
gebraic and complex geometry, Springer Proc. Math. Stat., vol. 71 (Springer, Cham, 2014),
241-283; doi:10.1007/978-3-319-05404-9_10.

D. Markushevich and A.S. Tikhomirov, New symplectic V -manifolds of dimension four via the
relative compactified Prymian, Internat. J. Math. 18 (2007), no. 10, 1187-1224; doi:10.1142/
S0129167X07004503.

D. Matsushita, On base manifolds of Lagrangian fibrations, Sci. China Math. 58 (2015), no. 3,
531-542; doi:10.1007/s11425-014-4927-7.

, On deformations of Lagrangian fibrations, K3 surfaces and their moduli, Progr. Math.,
vol. 315 (Birkh&user/Springer, Cham, 2016), 237-243; doi:10.1007/978-3-319-29959-4_9.
G. Menet, Duality for relative Prymians associated to K8 double covers of del Pezzo surfaces
of degree 2, Math. Z. 277 (2014), no. 3-4, 893-907; doi:10.1007/s00209-014~-1283-9.

, Global Torelli theorem for irreducible symplectic orbifolds, J. Math. Pures Appl. (9)
137 (2020), 213-237; doi:10.1016/j.matpur.2020.03.010.

J.S. Milne, Etale cohomology, Princeton Math. Ser., vol. 33 (Princeton Univ. Press, Princeton,
NJ, 1980).

698


https://doi.org/10.1007/s00208-021-02238-y
https://doi.org/10.1215/00127094-2019703.
https://doi.org/10.17323/1609-4514-2013-13-1-33-56
https://doi.org/10.17323/1609-4514-2013-13-1-33-56
https://doi.org/10.1007/s002220050280
https://doi.org/10.1017/CBO9781316594193
https://doi.org/10.1007/s00222-008-0143-9
https://doi.org/10.1007/978-3-642-82783-9
https://doi.org/10.1007/978-3-642-82783-9
https://doi.org/10.1515/CRELLE.2006.089
https://doi.org/10.1007/s00222-005-0484-6
https://doi.org/10.1515/crll.1985.363.1
https://doi.org/10.1007/978-3-662-03276-3
https://doi.org/10.1017/CBO9780511662560
https://doi.org/10.1007/978-3-642-18808-4
https://doi.org/10.1007/s002220050166
https://doi.org/10.1007/978-3-319-05404-9_10
https://doi.org/10.1142/S0129167X07004503
https://doi.org/10.1142/S0129167X07004503
https://doi.org/10.1007/s11425-014-4927-7
https://doi.org/10.1007/978-3-319-29959-4_9
https://doi.org/10.1007/s00209-014-1283-9
https://doi.org/10.1016/j.matpur.2020.03.010

MO22
MR21
MwW17
Morl8
MFK94

NamO1
Nam06

Ogu09
Ogu20
PS08

Rap07
Rap08

Sac23

Saw03

Saw04

Saw09
Saw20
Sch20
Ser79
SY22
Sta24
SYZ96

Ver95

THE DUAL FIBRATION OF KNOWN HYPER-KAHLER MANIFOLDS

G. Mongardi and C. Onorati, Birational geometry of irreducible holomorphic symplectic tenfolds
of O’Grady type, Math. Z. 300 (2022), no. 4, 3497-3526; doi:10.1007/s00209-021-02966-6.

G. Mongardi and A. Rapagnetta, Monodromy and birational geometry of O’Grady’s sizfolds,
J. Math. Pures Appl. (9) 146 (2021), 31-68; doi:10.1016/j.matpur.2020.12.006.

G. Mongardi and M. Wandel, Automorphisms of O’Grady’s manifolds acting trivially on coho-
mology, Algebr. Geom. 4 (2017), no. 1, 104-119; doi:10.14231/AG-2017-005.

L. Moret-Bailly, response to J. Rosen, To what extent does a torsor determine a group, version:
2018-01-06, https://mathoverflow.net/q/290094.

D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergeb. Math.
Grenzgeb. (2), vol. 34 (Springer-Verlag, Berlin, 1994); doi:10.1007/978-3-319-65907-7.

Y. Namikawa, A note on symplectic singularities, 2001, arXiv:math/0101028.

, On deformations of Q-factorial symplectic varieties, J. reine angew. Math. 599 (2006),
97-110; doi:10.1515/CRELLE.2006.079.

K. Oguiso, Picard number of the generic fiber of an abelian fibered hyperkdhler manifold, Math.
Ann. 344 (2009), no. 4, 929-937; doi:10.1007/s00208-009-0335-7.

, No cohomologically trivial nontrivial automorphism of generalized Kummer manifolds,
Nagoya Math. J. 239 (2020), 110-122; doi:10.1017/nmj.2018.29.

C. A.M. Peters and J. H. M. Steenbrink, Mized Hodge structures, Ergeb. Math. Grenzgeb. (3),
vol. 52 (Springer-Verlag, Berlin, 2008); doi:10.1007/978-3-540-77017-6.

A. Rapagnetta, Topological invariants of O’Grady’s sixz dimensional irreducible symplectic va-
riety, Math. Z. 256 (2007), no. 1, 1-34; doi:10.1007/s00209-006-0022-2.

, On the Beawville form of the known irreducible symplectic varieties, Math. Ann. 340
(2008), no. 1, 77-95; doi:10.1007/s00208-007-0139-6.

G. Sacca, Birational geometry of the intermediate Jacobian fibration of a cubic fourfold
(with an appendix by C. Voisin), Geom. Topol. 27 (2023), no. 4, 1479-1538; doi:10.2140/
gt.2023.27.1479.

J. Sawon, Abelian fibred holomorphic symplectic manifolds, Turkish J. Math. 27 (2003), no. 1,
197-230.

, Derived equivalence of holomorphic symplectic manifolds, in Algebraic structures and
moduli spaces, CRM Proc. Lecture Notes, vol. 38 (Amer. Math. Soc., Providence, RI, 2004),
193-211; doi:10.1090/crmp/038/09.

, Deformations of holomorphic Lagrangian fibrations, Proc. Amer. Math. Soc. 137
(2009), no. 1, 279-285; doi:10.1090/50002-9939-08-09473-2.

, Lagrangian fibrations by Prym varieties, Mat. Contemp. 47 (2020), 182-227; doi:
10.21711/231766362020/rmc479.

M. Schwald, Fujiki relations and fibrations of irreducible symplectic varieties, Epijournal Géom.
Algébrique 4 (2020), article no. 7; doi:10.46298/epiga.2020.volume4.4557.

J.-P. Serre, Local fields, Grad. Texts in Math., vol. 67 (Springer-Verlag, New York-Berlin, 1979);
doi:10.1007/978-1-4757-5673-9.

J. Shen and Q. Yin, Topology of Lagrangian fibrations and Hodge theory of hyper-Kdhler
manifolds (with Appendix B by C. Voisin), Duke Math. J. 171 (2022), no. 1, 209-241;
doi:10.1215/00127094-2021-0010.

The Stacks Project Authors, The Stacks Project, 2024, https://stacks.math.columbia.edu.

A. Strominger, S.-T. Yau, and E. Zaslow, Mirror symmetry is T-duality, Nuclear Phys. B 479
(1996), no. 1-2, 243-259; doi:10.1016/0550-3213(96)00434-8.

M. Verbitsky, Cohomology of compact hyperkdhler manifolds, Ph.D. thesis, 1995, Harvard Uni-
versity, arXiv:alg-geom/9501001.

699


https://doi.org/10.1007/s00209-021-02966-6
https://doi.org/10.1016/j.matpur.2020.12.006
https://doi.org/10.14231/AG-2017-005
https://mathoverflow.net/q/290094
https://doi.org/10.1007/978-3-319-65907-7
https://arxiv.org/abs/math/0101028
https://doi.org/10.1515/CRELLE.2006.079
https://doi.org/10.1007/s00208-009-0335-7
https://doi.org/10.1017/nmj.2018.29
https://doi.org/10.1007/978-3-540-77017-6
https://doi.org/10.1007/s00209-006-0022-2
https://doi.org/10.1007/s00208-007-0139-6
https://doi.org/10.2140/gt.2023.27.1479
https://doi.org/10.2140/gt.2023.27.1479
https://doi.org/10.1090/crmp/038/09
https://doi.org/10.1090/S0002-9939-08-09473-2
https://doi.org/10.21711/231766362020/rmc479
https://doi.org/10.21711/231766362020/rmc479
https://doi.org/10.46298/epiga.2020.volume4.4557
https://doi.org/10.1007/978-1-4757-5673-9
https://doi.org/10.1215/00127094-2021-0010
https://stacks.math.columbia.edu
https://doi.org/10.1016/0550-3213(96)00434-8
https://arxiv.org/abs/alg-geom/9501001

Ver99

Voi92

Voil8

Wiel6

Wiel8

Yos01

Y.-J. Kim

, Mirror symmetry for hyper-Kdhler manifolds, Mirror symmetry, IIT (Montreal, PQ,
1995), AMS/IP Stud. Adv. Math., vol. 10 (Amer. Math. Soc., Providence, RI, 1999), 115-156;
d0i:10.1090/amsip/010/04.

C. Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomor-
phes, Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture
Note Ser. (Cambridge Univ. Press, 1992), 294-303; doi:10.1017/CB09780511662652.022.

, Torsion points of sections of Lagrangian torus fibrations and the Chow ring of hyper-
Kahler manifolds, in Geometry of moduli, Abel Symp., vol. 14 (Springer, Cham, 2018), 295-326;
doi:10.1007/978-3-319-94881-2_10.

B. Wieneck, On polarization types of Lagrangian fibrations, Manuscripta Math. 151 (2016),
no. 3-4, 305-327; doi:10.1007/s00229-016-0845-z.

, Monodromy invariants and polarization types of generalized Kummer fibrations,
Math. Z. 290 (2018), no. 1-2, 347-378; doi:10.1007/s00209-017-2020-7y.

K. Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4,
817-884; doi:10.1007/s002080100255.

Yoon-Joo Kim yk3029@columbia.edu
Department of Mathematics, Columbia University, New York, NY 10027, USA

700


https://doi.org/10.1090/amsip/010/04
https://doi.org/10.1017/CBO9780511662652.022
https://doi.org/10.1007/978-3-319-94881-2_10
https://doi.org/10.1007/s00229-016-0845-z
https://doi.org/10.1007/s00209-017-2020-y
https://doi.org/10.1007/s002080100255
mailto:yk3029@columbia.edu

	Introduction
	Structure of the paper
	Notation and conventions

	Deformation invariance of the H^2-trivial automorphisms
	G-linearizability of a line bundle
	The automorphism sheaves and deformation invariance of the H^2-trivial automorphisms

	Abelian schemes associated with Lagrangian fibrations
	Abelian scheme associated with a Lagrangian fibration
	Examples
	Polarization type and divisibility of pi^* mathcal O_B(1)
	The polarization scheme and H^2-trivial automorphisms

	The minimal split covering and H^2-trivial automorphisms
	The H^2-trivial automorphisms and polarization scheme for generalized Kummer varieties
	Moduli of coherent sheaves on an abelian variety
	The H^2-trivial automorphisms of Kum_n-type moduli constructions
	Automorphisms respecting the Lagrangian fibration
	The polarization scheme of generalized Kummer varieties

	The dual Lagrangian fibration of a compact hyper-Kähler manifold
	Appendix A. Various notions of singular hyper-Kähler varieties
	Appendix B. Quotient of a hyper-Kähler manifold by H^2-trivial automorphisms
	References

