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Derived categories of families of Fano threefolds

Alexander Kuznetsov

Abstract

We construct S-linear semiorthogonal decompositions of derived categories of smooth
Fano threefold fibrations X/S with relative Picard rank 1 and rational geometric fibers
and discuss how the structure of components of these decompositions is related to
rationality properties of X/S.

1. Introduction

Fano varieties form one of the most interesting classes of algebraic varieties. Over an algebraically
closed field of characteristic zero and in dimensions up to 3, smooth Fano varieties have been
completely classified. In dimension 3 the classification, obtained by works of Fano, Iskovskikh,
and Mori–Mukai, counts up to 105 deformation families.

Geometry of Fano threefolds has been thoroughly investigated; in particular, quite a lot is
known about their derived categories. The most important case of threefolds of Picard rank 1
was discussed in [Kuz09], and in the general case one can use the minimal model program
to reduce the description to simpler Fano threefolds, or conic bundles, or del Pezzo surface
fibrations, which are also in many cases accessible to investigation. The goal of this paper is
to study derived categories of smooth Fano threefolds X over non-closed fields of characteristic
zero, as well as G-equivariant derived categories of G-Fano varieties and, more generally, derived
categories of smooth families X/S of Fano threefolds over arbitrary connected characteristic zero
base schemes S (the two cases above correspond to S = Spec(k), the spectrum of a non-closed
field, and S = BG, the classifying stack of a finite group G, respectively). Note that the case of
smooth families of Fano varieties of dimension 1 (that is, P1-bundles) is easy (see Theorem 3.1),
and the case of dimension 2 has been discussed in [AB18].

Of course, the main invariant of a family X/S of Fano threefolds is the deformation type of
its geometric fibers, that is, of the fibers of X → S over geometric points of the base (in the case
where S = Spec(k), this is just the deformation type of the Fano threefold Xk, and, if S = BG,
of the underlying threefold X). So, 105 deformation types in the Fano–Iskovskikh–Mori–Mukai
classification lead to 105 types of Fano threefold fibrations. As the number of types is rather large,
and since the methods we have to access the derived category are rather ad hoc, we restrict our
attention to smooth Fano threefold fibrations X/S which enjoy the following two properties:
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A. Kuznetsov

(a) The relative Picard rank of X/S is 1.

(b) The geometric fibers of X/S are rational.

The reasons to consider only such X are quite obvious: property (a) ensures that the study
of X/S does not reduce by the minimal model program to simpler cases, while property (b) is
relevant to potential applications to rationality problems.

Assumptions (a) and (b) reduce the number of deformation types significantly, leaving only:

– eight types of Fano threefolds of geometric Picard rank 1: P3, quadric Q3, del Pezzo three-
folds Yd with d ∈ {4, 5}, and prime Fano threefolds Xg with g ∈ {7, 9, 10, 12};

– six types of Fano threefolds with higher geometric Picard rank; over an algebraically closed
field, these varieties have the following explicit descriptions:

∗ X1,1,1 = P1 × P1 × P1;
∗ X2,2 ⊂ P2 × P2, a divisor of bidegree (1, 1);
∗ X2,2,2 ⊂ P2×P2×P2, a complete intersection of divisors of multidegree (1, 1, 0), (1, 0, 1),

and (0, 1, 1);
∗ X4,4 ⊂ P4 × P4, an intersection of the graph of the Cremona transformation P5 99K P5

(given by quadrics passing through the Veronese surface) with P4 × P4 ⊂ P5 × P5;
∗ X3,3 ⊂ P3 × P3, a complete intersection of three divisors of bidegree (1, 1);
∗ X1,1,1,1 ⊂ P1 × P1 × P1 × P1, a divisor of multidegree (1, 1, 1, 1).

Indeed, the case of geometric Picard rank 1 is classical, and in the case of higher geometric Picard
rank, the classification of threefolds with property (a) is contained in [Pro13], while the restriction
imposed by assumption (b) on the list from [Pro13] can be found in [AB92] (cf. [KP24]).

As already mentioned above, the goal of this paper is to study derived categories of smooth
Fano fibrations X/S of the 14 types listed above. More precisely, we will construct interesting S-
linear semiorthogonal decompositions of their derived categories (see Section 3.1 for a reminder
about the S-linear property).

As we also hinted, we expect the constructed semiorthogonal decompositions to have impli-
cations for rationality problems, although we have no results in this direction and never mention
rationality in the body of the paper. So, having in mind rationality criteria from [KP23, KP24]
in the case S = Spec(k) for Fano threefolds of the above types (which amount to the existence
of points or appropriate rational curves defined over k), we will discuss how the components of
our decompositions simplify when S is arbitrary and the natural generalizations of these criteria
(existence of sections of X/S or of appropriate relative Hilbert schemes over S) are satisfied.

Our results are summarized in the following theorems. We assume everywhere that S is
a scheme of finite type over the base field k of characteristic zero. However, our constructions
are sufficiently functorial, and therefore it is easy to generalize our results to the case where S is
a Deligne–Mumford stack of finite type over k, for example S = BG.

We denote by D(X) the bounded derived category of coherent sheaves on X and by D(Y,β)
the bounded derived category of β-twisted coherent sheaves on Y , where β ∈ Br(Y ) is a Brauer
class. We recall the definition and main properties of twisted sheaves in Section 2.2.

In the case where the geometric Picard rank of fibers of X/S is 1, the description we obtain
is similar to the description over algebraically closed fields from [Kuz09]. The main difference is
the appearance of various Brauer classes that could not be observed over k.

First, there are four types of Fano threefolds X/S, where all the components are twisted
derived categories of S. We write X(S) for the set of all sections S → X of the morphism X → S.
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Theorem 1.1. Let p : X → S be a smooth projective morphism with geometric fibers isomorphic
to P3, or Q3, or Y5, or X12. Then D(X) has an S-linear semiorthogonal decomposition

D(X) = ⟨D(S),D(S,β1),D(S,β2),D(S,β3)⟩ (1.1)

with four components equivalent to twisted derived categories of the base S, where the Brauer
classes βi ∈ Br(S) are the following:

(a) If the fibers have type Y5, then β1 = β2 = β3 = 1.

(b) If the fibers have type Q3 or X12, then β1 = β2 = 1 and β2
3 = 1.

(c) If the fibers have type P3, then βi = β
i, where β ∈ Br(S) is such that β4 = 1.

Moreover, if the fibers have type P3 and X(S) ̸= ∅, then β = 1, and if the fibers have type Q3

or X12 and X(S) ̸= ∅, then β3 can be represented by a conic bundle.

This theorem is a combination of Theorem 3.1 (and Example 3.2) and Theorems 4.4, 4.6, 5.2.

Remark 1.2. As we mentioned above, it is interesting to compare these results to rationality
criteria over non-closed fields k. Recall that Fano threefolds of type Y5 are always rational
over k, while those of type P3, Q3, and X12 are rational over k if and only if X(k) ̸= ∅; see [KP23,
Theorem 1.1]. We obtain a simple implication: if X is rational over k, then all Brauer classes
appearing on the right-hand side of (1.1) have order at most 2, and those of order 2 can be
represented by conic bundles. We will discuss the meaning of this observation at the end of the
introduction.

In the second case the category D(X) decomposes into two twisted derived categories of the
base and a twisted derived category of a smooth projective curve over S. In the statement of
the theorem below, Fd(X/S) denotes the relative Hilbert scheme of rational curves of degree d
(with respect to the primitive ample generator of the Picard group) in the fibers of X/S, and we
write Fd(X/S)(S) for the set of all sections S → Fd(X/S) of the morphism Fd(X/S)→ S.

Theorem 1.3. Let p : X → S be a smooth projective morphism with geometric fibers isomorphic
to Y4, or X10, or X9, or X7. Then D(X) has an S-linear semiorthogonal decomposition

D(X) = ⟨D(S),D(S,β1),D(Γ,βΓ)⟩ (1.2)

with two components equivalent to twisted derived categories of the base S and one component
equivalent to a twisted derived category of a smooth projective curve Γ→ S, where

(a) if the fibers have type Y4, then β2
1 = 1, g(Γ) = 2, and β4

Γ = 1;

(b) if the fibers have type X10, then β1 = 1, g(Γ) = 2, and β3
Γ = 1;

(c) if the fibers have type X9, then β1 = 1, g(Γ) = 3, and β2
Γ = 1;

(d) if the fibers have type X7, then β1 = 1, g(Γ) = 7, and βΓ = 1.

Moreover, when the fibers have type Y4, or X10, or X9 and one has

X(S) ̸= ∅ and Fd(X/S)(S) ̸= ∅ ,

where d = 1 for type Y4, d = 2 for type X10, and d = 3 for type X9, then β1 = 1 and βΓ = 1.

This theorem is a combination of Theorems 4.9, 5.5, 5.9, and 5.15.

Remark 1.4. As before, these results should be looked at from the perspective of the rationality
criteria. Indeed, threefolds of type X7 are rational over a non-closed field k if and only ifX(k) ̸= ∅,
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while Y4, X10, and X9 are rational over k if and only if X(k) ̸= ∅ and Fd(X)(k) ̸= ∅ (where d
is the same as in Theorem 1.3); see [BW23] and [KP23, Theorem 1.1]. Thus, as before, if X is
rational over k, then β1 = 1 and βΓ = 1.

As we mentioned above, the results of Theorems 1.1 and 1.3 are just extensions to the relative
case of the analogous results for Fano threefolds over algebraically closed fields. In the last part
of the paper, discussing the case of Fano fibrations with fibers of higher geometric Picard rank,
we can no longer use the easy semiorthogonal decompositions of the corresponding Fano three-
folds over algebraically closed fields because they are not invariant under possible monodromy
actions, and so they do not extend to S-linear decompositions. Accordingly, to construct an
S-linear semiorthogonal decomposition, we need to find sufficiently symmetric semiorthogonal
decompositions of the derived categories of these threefolds.

We were able to do this in four out of six cases. The new feature here is the appearance of
two components equivalent to (twisted) derived categories of finite étale coverings of the base of
degree equal to the geometric Picard rank of the fibers.

Theorem 1.5. Let p : X → S be a smooth projective morphism with geometric fibers isomorphic
to X1,1,1, or X2,2, or X2,2,2, or X4,4. Then D(X) has an S-linear semiorthogonal decomposition

D(X) = ⟨D(S),D(S,β1),D(S′,β′
0),D(S′,β′

1)⟩ , (1.3)

where S′ → S is a finite étale covering of degree equal to the geometric Picard rank of X/S, and

(a) if the fibers have type X1,1,1, then β
2
1 = 1, β′

0
2 = β′

1
2 = 1;

(b) if the fibers have type X2,2, then β1 = 1, β′
0
3 = β′

1
3 = 1;

(c) if the fibers have type X2,2,2, then β
2
1 = 1, β′

0 = β
′
1 = 1;

(d) if the fibers have type X4,4, then β1 = 1, β′
0 = 1, β′

1
2 = 1.

Moreover, if the fibers have type X1,1,1 or X2,2 and X(S) ̸= ∅, then β1 = β′
0 = β′

1 = 1, and if
the fibers have type X2,2,2 or X4,4 and X(S) ̸= ∅, then β1 and β′

1 can be represented by conic
bundles.

This theorem is a combination of Theorems 7.2, 7.4, 7.8, and 7.13.

Remark 1.6. For Fano threefolds of these types, the criterion of rationality over a non-closed
field k established in [KP24, Theorem 1.2(ii)] amounts to the existence of a k-point; as be-
fore if it holds, all Brauer classes appearing in (1.3) are trivial or can be represented by conic
bundles.

In the last two cases – Fano fibrations with fibers of types X3,3 and X1,1,1,1 – we have not
managed to find S-linear semiorthogonal decompositions in which all components are geometric.
The best we could achieve is the following result, where we use the notion of base change for
S-linear semiorthogonal decompositions developed in [Kuz11].

Theorem 1.7. Let p : X → S be a smooth projective morphism with geometric fibers isomorphic
to X3,3 or X1,1,1,1. Then D(X) has an S-linear semiorthogonal decomposition

D(X) = ⟨D(S),D(S′,β′),A⟩ , (1.4)

where S′ → S is a finite étale covering of degree equal to the geometric Picard rank of X/S, and
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(a) if the fibers have type X3,3, then β
′4 = 1 and the base change AS′ of A along S′ → S has

a semiorthogonal decomposition

AS′ =
〈
D
(
S′,β′2),D(Γ′)

〉
,

where Γ′ → S′ is a smooth projective curve of genus 3;

(b) if the fibers have type X1,1,1,1, then β
′2 = 1 and the base change AS′ of A along S′ → S has

a semiorthogonal decomposition

AS′ = ⟨D(S′′,β′′),D(Γ′)⟩ ,

where Γ′ → S′ is a smooth projective curve of genus 1, S′′ → S′ is a finite étale covering of
degree 3, and β′′ ∈ Br(S′′) is a Brauer class such that β′′2 = 1.

This theorem is a combination of Theorems 7.15 and 7.17.

The components A ⊂ D(X) appearing in (1.4) are very interesting. As the theorem tells
us, after an étale base change, they decompose into two geometric components, but over S this
decomposition is not defined. The appearance of categories of this new type seems to be related
to the new feature in the rationality behaviour over k observed in [KP24, Theorem 1.2(iii) and
Conjecture 1.3]: Fano threefolds X of type X3,3 (and conjecturally of type X1,1,1,1 as well) are
never rational over k (under the usual assumption that their Picard rank over k is 1).

As mentioned in Remarks 1.2, 1.4, and 1.6, our results are compatible with the rationality
criteria. The relation can be formulated in the language of hypothetical Griffiths components.
Generalizing [Kuz16, Definition 3.9] we say (see also Definition A.1) that an S-linear semiorthog-
onal component A ⊂ D(X) indecomposable over S is a Griffiths component if it does not have an
S-linear embedding into the derived category of a smooth projective variety over S of dimension
at most dim(X/S)−2. Such components are expected (see [Kuz16, § 3.3]) to provide obstructions
to rationality, in the same way as the Griffiths components of intermediate Jacobians of Fano
threefolds do. The main issue with this definition is that the Jordan–Hölder property is known
to fail for semiorthogonal decompositions (see [Kuz16, § 3.4] and [Kuz13]), so that it is not clear
if the set of Griffiths components of D(X) is independent of the choice of a semiorthogonal
decomposition.

It is easy to see that categories of the form D(S′) and D(Γ), where S′ → S is a finite étale
morphism and Γ→ S is a smooth projective curve over S, are non-Griffiths components for X of
dimension 3 over S. Moreover, for S′ as above if β′ ∈ Br(S′) is a 2-torsion Brauer class which can
be represented by a conic bundle over S′, then D(S′,β′) is also a non-Griffiths component (it can
be embedded into the derived category of the conic bundle). In Proposition A.3 we show that
these are the only possible non-Griffiths components. Therefore, our results imply the following.

Corollary 1.8. Let p : X → S be a smooth projective morphism as in Theorems 1.1, 1.3,
or 1.5. If S = Spec(k) and X is rational over S, then D(X) has an S-linear semiorthogonal
decomposition with no Griffiths components.

We consider this result as yet another confirmation of the Griffiths components philosophy.

Remark 1.9. Note that the converse of Corollary 1.8 is not true: for instance, a smooth Fano
fibration X → S with fibers of type P3 associated with a non-trivial 2-torsion Brauer class which
can be represented by a conic bundle has no Griffiths components but is not rational over S;
however, in this example X is stably birational to the conic bundle.
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The converse of Corollary 1.8 also fails in the case where S = BG is the classifying stack
of a finite group G, and we are interested in projective linearizability of a G-Fano threefold;
counterexamples can be found in [BvBT24, § 5].

Of course, it is natural to try to extend the study of Fano threefold fibrations from the smooth
case to the more general situation. First steps in this direction have been made in [Kuz22, KS23];
see also [Kuz23] for a survey.

The paper is organized as follows.

In Section 2 we discuss the relative Picard group and twisted sheaves. In Section 2.1 we define
the monodromy action of the étale fundamental group of the base of a Fano fibration on the
Picard group of its geometric fiber and identify the invariant classes for this action with global
sections of the Picard sheaf. In Section 2.2 we recall the notion of twisted sheaves with respect
to a Brauer class, and in Section 2.3 we discuss the special case of relative twisted line bundles
and their relation to morphisms to Severi–Brauer varieties.

In Section 3 we discuss derived categories and moduli spaces in the relative setting. In Sec-
tion 3.1 we review the notion of S-linear semiorthogonal decompositions and S-linear functors
and their properties, and we recall a result of Bernardara [Ber09] about derived categories of
Severi–Brauer varieties. In Section 3.2 we discuss the definition and basic properties of moduli
spaces and prove that in some cases universal sheaves exist as twisted sheaves. In Section 3.3 we
establish some general uniqueness results about stable vector bundles on Fano threefolds which
we use later to prove the uniqueness of Mukai bundles and to provide a modular interpretation
of the curves appearing in semiorthogonal decompositions.

After these preparations we pass to the main story of the paper and discuss the case of Fano
fibrations with fibers of geometric Picard rank 1: in Section 4 we discuss Fano fibrations of large
index, that is, smooth quadric fibrations and smooth del Pezzo fibrations of degrees 5 and 4 (that
is, fiber types Q3, Y5 and Y4), and in Section 5 we discuss prime Fano fibrations (that is, fiber
types X12, X10, X9, and X7).

For the case of higher geometric Picard rank, we first recall in Section 6 some material about
Weil restriction of scalars: in Section 6.1 we classify Fano fibrations whose geometric fibers are
powers of other Fano varieties (Proposition 6.2), and in Section 6.2 we prove a useful result
about derived categories of Weil restrictions (Theorem 6.3), which is interesting in itself. After
that in Section 7 we discuss the case of Fano fibrations with fibers of higher geometric Picard
rank.

Finally, in the appendix, we classify relative non-Griffiths components of threefold fibrations.

Conventions. All schemes in this paper are separated schemes of finite type over a field k of
characteristic zero. When we consider a morphism X → S, the base scheme S is usually assumed
to be connected; we denote by s0 ∈ S a fixed geometric point and by Xs0 the corresponding
geometric fiber of X.

Given a Grassmannian Gr(k, V ), we denote by U and U⊥ the tautological subbundles of
ranks k and n − k in V ⊗ O and V ∨ ⊗ O, respectively; we also use the same notation for the
relative Grassmannian GrS(k, V ), where V is a vector bundle on S.

Finally, as already mentioned before, D(X) stands for the bounded derived category of co-
herent sheaves on X, and D(Y,β) is the bounded derived category of β-twisted coherent sheaves
on Y , where β ∈ Br(Y ) is a Brauer class.
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2. Relative Picard group and twisted sheaves

In this section S is a connected separated scheme of finite type over the base field k of charac-
teristic zero; in particular, S is noetherian. If s0 ∈ S is a geometric point, we denote by π1(S, s0)
the étale fundamental group of S, so that there is an equivalence of categories between finite
étale morphisms S′ → S and finite π1(S, s0)-sets.

In Section 2.1 we describe the monodromy action of the fundamental group of the base on
the Picard group of geometric fibers of a smooth projective morphism and identify its invariants
with relative divisor classes. In Section 2.2 we recall the machinery of Brauer-twisted sheaves,
and in Section 2.3 we explain how relative divisor classes give rise to morphisms to Severi–Brauer
varieties.

2.1 Monodromy action on the Picard group

Let p : X → S be a smooth projective morphism with connected fibers. Consider the étale sheaf
of abelian groups

PicX/S := R1
étp∗(Gm) ,

where the direct image is taken in the étale topology. In other words, this is the étale sheafification
of the presheaf that associates with an étale morphism U → S the group Pic(X ×S U).

We will often consider elements of the group PicX/S(S) := H0(S,PicX/S) and call them relative
divisor classes. Note that for any geometric point s0 ∈ S, there is a natural restriction map

PicX/S(S) −→ Pic(Xs0) . (2.1)

One of the goals of this section is to interpret its image. We concentrate on the case of smooth
Fano fibrations, that is, smooth projective morphisms such that −KX/S is ample over S.

Proposition 2.1. Let p : X → S be a smooth Fano fibration with connected S. There exist a
finite étale morphism S′ → S and a geometric point s′0 ∈ S′ over s0 such that the restriction
morphism

PicX×SS′/S′(S′) −→ Pic((X ×S S′)s′0)
∼= Pic(Xs0)

is an isomorphism. Moreover, we can assume that S′ is connected.

Proof. By [Kle05, Theorem 9.4.8] the Picard functor is represented by the scheme PicX/S (that
is, there is an isomorphism PicX/S(T ) ∼= MapS(T,PicX/S) for all étale S-schemes T ), and the
scheme PicX/S is separated and locally of finite type over S. Since by Kodaira vanishing and
the Fano condition we have

H1(Xs,OXs) = H2(Xs,OXs) = 0

for each geometric point s ∈ S, applying [Kle05, Theorem 9.5.11, Remark 9.5.12, and Propo-
sition 9.5.19], we conclude that the morphism PicX/S → S is étale. Since S is connected, we
conclude that the restriction morphism

PicX/S(S) = MapS(S,PicX/S) −→ MapS(s0,PicX/S) = Pic(Xs0)

is injective, and the same argument shows that it stays injective after any base change. It remains
to find a finite étale morphism S′ → S and a geometric point s′0 ∈ S′ over s0 such that after base
change to S′, the above morphism is surjective at s′0.

Let L ∈ Pic(Xs0) be a line bundle, let φ be the Hilbert polynomial of L (with respect to the
anticanonical polarization), and let PicφX/S ⊂ PicX/S be the subfunctor that parameterizes line
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bundles on fibers of X/S with Hilbert polynomial φ. By [Kle05, Theorem 9.6.20] it is represented
by a quasiprojective subscheme PicφX/S ⊂ PicX/S . This scheme is proper over S by [Kle05,

Exercise and Answer 9.5.7], hence finite over S. Therefore, after base change to the finite étale
covering SL := PicφX/S → S with marked point sL,0 corresponding to the line bundle L on Xs0 ,

there is a section λ ∈ PicX×SSL/SL
(SL) with value at sL,0 equal to L. Thus, L belongs to the

image of the restriction morphism PicX×SSL/SL
(SL)→ Pic((X ×S SL)sL,0).

Now we choose a finite generating set {Li} with 1 ⩽ i ⩽ N for Pic(Xs0) (which is a finitely
generated abelian group; see, for example, [IP99, Proposition 2.1.2]), and applying the above con-
struction, we obtain a finite collection of finite étale morphisms SLi → S with marked points sLi,0

over s0 and sections λi ∈ PicXSLi
/SLi

(SLi) with value at sLi,0 equal to Li. It remains to take

S′ := SL1 ×S SL2 ×S · · · ×S SLN
and s′0 := (sL1,0, sL2,0, . . . , sLN ,0) .

Then the pullback of the section λi to Pic(X ×S S′/S′) takes value Li at s
′
0; hence the image of

the restriction morphism PicX×SS′/S′(S′) → Pic((X ×S S′)s′0) contains a generating set of the
group Pic((X ×S S′)s′0)

∼= Pic(Xs0), and therefore it is surjective.

Finally, if the scheme S′ constructed above is not connected, just replace it by the connected
component containing the point s′0.

Let S′ → S be the étale morphism constructed in Proposition 2.1. Let Ŝ → S be a Galois
étale covering which factors through S′. Then for any geometric point ŝ0 lying over s′0, the
restriction morphism Pic

X×S Ŝ/Ŝ

(
Ŝ
)
→ Pic

((
X ×S Ŝ

)
ŝ0

) ∼= Pic(Xs0) is bijective. Consider the
exact sequence

1 −→ π1
(
Ŝ, ŝ0

)
−→ π1(S, s0) −→ G

Ŝ/S
−→ 1 ,

where G
Ŝ/S

is the Galois group of Ŝ/S. The action of the group G
Ŝ/S

on Ŝ induces its action

on Pic
X×S Ŝ/Ŝ

(
Ŝ
)
and, via the restriction isomorphism, a G

Ŝ/S
-action on Pic(Xs0), that is,

a continuous π1(S, s0)-action on Pic(Xs0). We call it the monodromy action.

Remark 2.2. It is easy to check that the above definition of the monodromy action does not
depend on the choice of the morphism S′ → S. As we will not need this fact, we omit a verification.

We have the following immediate consequence.

Corollary 2.3. If p : X → S is a smooth Fano fibration with connected S and s0 ∈ S is
a geometric point, the restriction morphism (2.1) induces an isomorphism

PicX/S(S) ∼= Pic(Xs0)
π1(S,s0) ∼= Pic(Xs0)

G
Ŝ/S ⊂ Pic(Xs0) (2.2)

with the subgroup of monodromy-invariant line bundles in the Picard group of a geometric fiber.

Proof. The injectivity of the restriction morphism has been shown in the proof of Proposition 2.1,
and the description of the image follows from the above discussion taking into account an iden-
tification

PicX/S(S) ∼= Pic
X×S Ŝ/Ŝ

(
Ŝ
)G

Ŝ/S ∼= Pic(Xŝ0)
G

Ŝ/S ,

where the first isomorphism follows from the fact that PicX/S is an étale sheaf. Indeed, since the
morphism Ŝ → S is an étale covering, the G

Ŝ/S
-invariance condition for a relative divisor class

is equivalent to the equality of its pullbacks along the two projections Ŝ ×S Ŝ ∼= Ŝ ×G
Ŝ/S
→ Ŝ,

that is, to the étale descent condition for sections.
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Corollary 2.4. Let p : X → S be a smooth Fano fibration. For a geometric point s0 ∈ S and
a divisor class hs0 ∈ Pic(Xs0), let d denote the length of the monodromy orbit

π1(S, s0) · hs0 ⊂ Pic(Xs0) .

There exist a finite étale morphism f : S′ → S of degree d with connected S′ and a point
s′0 ∈ f−1(s0) such that the class hs0 |Xs′0

∈ Pic(Xs′0
) is monodromy invariant.

Proof. The covering S′ → S is associated with the orbit π1(S, s0) · hs0 considered as a π1(S, s0)-
set. The covering degree is equal to the length of the orbit, and the scheme S′ is connected because
the π1(S, s0)-action on this set is transitive. The point s′0 ∈ S′ corresponds to the point hs0 in
the orbit. Then the class hs0 is invariant under the action of the subgroup π1(S

′, s′0) ⊂ π1(S, s0),
which is equal to the stabiliser of hs0 in π1(S, s0); hence hs0 |Xs′0

is monodromy invariant.

The monodromy action preserves intrinsic geometric structures of Pic(Xs0).

Lemma 2.5. Let p : X → S be a smooth Fano fibration. The monodromy action of π1(S, s0)
on Pic(Xs0) preserves the canonical class and the nef cone in Pic(Xs0).

Proof. The relative canonical class KX/S provides a global section of PicX/S over S, and its
restriction to the geometric fiber Xs0 is the canonical class KXs0

. By Corollary 2.3 we conclude
that KXs0

is monodromy invariant.

To prove the invariance of the nef cone, we need to show that if L is a line bundle on X/S
and the restriction of L to Xs0 is nef, then the restriction of L to Xs1 is nef for any other
geometric point s1 of S. A standard argument reduces the general statement to the case where S
is a complex curve and s0, s1 are its closed points; in this case the required result is proved
in [Wís09, Theorem 1].

Recall the following standard invariants of a Fano variety X over an algebraically closed field:

– the Picard rank ρ(X) := rk(Pic(X)),

– the Fano index ι(X) := max{m ∈ Z>0 | KX ∈ mPic(X)},
– the fundamental divisor class HX := −KX/ι(X) ∈ Pic(X).

Note that HX is well defined because Pic(X) is torsion free; see [IP99, Proposition 2.1.2].

Furthermore, for a coherent sheaf F, we denote by χ(F) its Euler characteristic.

Corollary 2.6. If p : X → S is a smooth Fano fibration, the integers ρ(Xs), ι(Xs), χ(OXs(HXs))
are constant as functions of the geometric point s ∈ S. Moreover, there is a unique relative divisor
class HX ∈ PicX/S(S) that restricts to the fundamental divisor class of each geometric fiber.

The relative divisor class HX ∈ PicX/S(S) is called the fundamental class of the Fano fibra-
tion. It is not true in general that it comes from a divisor class in Pic(X); see sequence (2.5)
below.

Proof. Let s0, s1 ∈ S be two geometric points. Applying Proposition 2.1 we can find a finite étale
morphism S′ → S with connected S′ such that for points s′0 and s′1 over s0 and s1, respectively,
we have a chain of group isomorphisms

Pic(Xs1)
∼= Pic(Xs′1

) ∼= PicX×SS′/S′(S′) ∼= Pic(Xs′0
) ∼= Pic(Xs0) ,

where the middle isomorphisms are given by the restriction maps. We conclude from this that
the Picard ranks of Xs1 and Xs0 are the same. Moreover, under the above isomorphisms the
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canonical classes correspond to each other (because both correspond to the relative canonical
class of X/S); therefore, ι(Xs1) = ι(Xs0) and the fundamental divisors correspond to each other.
Finally, the Euler characteristics of these divisors are determined by the Hilbert polynomials of
the anticanonical classes, which agree because the morphism X → S is flat.

2.2 Brauer group and twisted sheaves

Recall that the Brauer group Br(S) of a scheme S is defined as the group of Morita-equivalence
classes of Azumaya algebras on S with the operation of tensor product. This group is closely
related to the torsion subgroup of H2

ét(S,Gm), which is known as the cohomological Brauer
group Br′(S); in fact, there is a natural injective morphism

Br(S) ↪−−→ Br′(S) ,

and for quasiprojective schemes the two groups coincide; see [dJo03]. We will not need this
result; however, we will widely use the language of twisted sheaves adopted in [dJo03] (see
also [Cal00, Lie08] for details). We recall the basic definitions in this subsection.

Let S be a scheme, and let β ∈ H2
ét(S,Gm) be an étale cohomology class. Assume for simplicity

that the class β can be represented by a Čech cocycle β ∈ Γ(U ×S U ×S U,Gm) in an étale
cover U → S. Then a (U, β)-twisted (quasi )coherent sheaf on S is defined as a (quasi)coherent
sheaf FU on U together with an isomorphism

φ : pr∗1 FU
∼−−→ pr∗2 FU

on U ×S U , where pr1,pr2 : U ×S U → U are the projections, satisfying the condition

pr∗1,2 φ ◦ pr∗2,3 φ ◦ pr∗1,3 φ−1 = β · id , (2.3)

where pri,j : U ×S U ×S U → U ×S U are the projections to the product of ith and jth factors.

If (FU , φ) is a (U, β)-twisted quasicoherent sheaf and β′ ∈ Γ(U ×S U ×S U,Gm) is another
representative of the same cohomology class, that is, β−1 · β′ = ∂γ for some γ ∈ Γ(U ×S U,Gm),
multiplying φ by γ, we obtain a (U, β′)-twisted quasicoherent sheaf (FU , γ · φ).

Similarly, if U ′ → U is a refining of the cover U → S and β′ is the pullback to U ′ of the Čech
cocycle β, then the pullback of (FU , φ) to U ′ is a (U ′, β′)-twisted quasicoherent sheaf.

We define a β-twisted (quasi )coherent sheaf on S as an equivalence class of (U, β)-twisted
(quasi)coherent sheaves, where U → S is an étale cover and β is a Čech cocycle representing β,
under the two above operations (modifying the Čech cocycle by a coboundary and passing to
a refinement of the cover). To define a morphism of β-twisted quasicoherent sheaves, we may
assume that they are represented by (U, β)-twisted quasicoherent sheaves (F1U , φ1) and (F2U , φ2)
for the same U and β. Then a morphism is given by a morphism f : F1U → F2U of quasicoherent
sheaves on U such that the equality φ2 ◦ pr∗1(f) = pr∗2(f) ◦ φ1 holds on U ×S U . We will denote
by Qcoh(S,β) and Coh(S,β) the abelian categories of β-twisted quasicoherent and coherent
sheaves on S, respectively, and by D(S,β) the bounded derived category of complexes of β-
twisted quasicoherent sheaves with coherent cohomology.

In contrast to the usual category of coherent sheaves, the category Coh(X,β) does not have
a monoidal structure, but there is a replacement for it described in the following lemma.

Lemma 2.7 ([Cal00, Proposition 1.2.10]). If F′ is a β′-twisted sheaf and F′′ is a β′′-twisted sheaf,
then F′ ⊗ F′′ is β′ · β′′-twisted and Hom(F′,F′′) is (β′)−1 · β′′-twisted. In particular, if F is a β-
twisted sheaf, then Hom(F,O) is β−1-twisted and Symd(F) and ∧d(F) are βd-twisted sheaves.
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The following corollary is standard.

Corollary 2.8. If F is a β-twisted vector bundle of rank r, then βr = 1.

Proof. First, assume r = 1. Let (FU , φ) be an (U, β)-twisted sheaf representing F. Refining the
cover U if necessary, we may assume FU

∼= OU . Then φ is an invertible function on U ×S U , and
the condition (2.3) means that β = ∂φ; hence the cohomology class of β is trivial.

Now for any r ⩾ 1 the line bundle ∧r(F) is βr-twisted by Lemma 2.7; hence βr = 1 by the
first part of the lemma.

Twisted sheaves are functorial for pullbacks and pushforwards if the twists are compatible.

Lemma 2.9 ([Cal00, §§ 2.2–2.3]). Let f : T → S be a morphism of schemes. If β ∈ H2
ét(S,Gm),

there is an adjoint pair of functors

f∗ : Qcoh(S,β) −→ Qcoh(T, f∗β) and f∗ : Qcoh(T, f∗β) −→ Qcoh(S,β) .

Under appropriate finiteness conditions (properness for f∗, finiteness of Tor-dimension for f∗),
these functors extend to an adjoint pair of derived functors between derived categories D(S,β)
and D(T, f∗β) such that the pullback functor is monoidal and the pushforward functor satisfies
the projection formula.

The notion introduced below may not seem very natural, but it appears often when dealing
with Severi–Brauer varieties (see Section 2.3) and universal sheaves on moduli spaces (see Sec-
tion 3.2).

Definition 2.10. If β ∈ H2
ét(S,Gm), we define a relative p∗(β)-twisted vector bundle on X/S

as an equivalence class of (X ×S U, p∗(β))-twisted vector bundles (FX×SU , φ) (where U → S is
an étale cover and β is a Čech cocycle representing β) with respect to the equivalence relation
coming from refining U (the cover of S) and replacing β by a coboundary. Note that we do not
allow the refinement of X ×S U by covers which are not pullbacks of covers of U .

First, consider the case of line bundles. We denote by Picβ(X/S) the set of isomorphism
classes of relative p∗(β)-twisted line bundles on X/S and set

Pictw(X/S) :=
⊕

β∈H2
ét(S,Gm)

Picβ(X/S)

to be the set of isomorphism classes of relative twisted line bundles on X/S, where the twist is
allowed to vary in the group H2

ét(S,Gm).

If L1 and L2 are relative p∗(β1)- and p∗(β2)-twisted line bundles on X/S, then as in Lem-
ma 2.7 one can define L1⊗L2 as a relative p∗(β1 ·β2)-twisted line bundle on X/S. This operation
endows the set Pictw(X/S) with a commutative group structure.

If L is an untwisted line bundle on X, it can be considered as a relative twisted line bundle
on X/S with the trivial twist; this defines a morphism Pic(X) → Pictw(X/S). Composing it
with the pullback p∗ : Pic(S) → Pic(X), we obtain a morphism Pic(S) → Pictw(X/S) which is
injective if p∗OX

∼= OS .

Lemma 2.11. If the morphism p : X → S is smooth and proper with p∗OX
∼= OS , then there is

a natural isomorphism Pictw(X/S)/Pic(S) ∼= PicX/S(S) of abelian groups.
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Proof. Assume that β ∈ H2
ét(S,Gm) and L is a relative p∗(β)-twisted line bundle on X/S. Then

there is an étale cover U → S such that β|U is trivial. Therefore, the pullback LU of L to X×SU
is an untwisted line bundle, that is, an element of PicX/S(S). This defines a group homomorphism

Pictw(X/S) −→ PicX/S(S) . (2.4)

If L is in the kernel, there is a cover U → S such that LU
∼= OU . Since p∗OX

∼= OS , it follows
that the gluing isomorphism φ : pr∗1LU

∼−→ pr∗2LU on (X ×S U) ×X (X ×S U) is a pullback of
an isomorphism φ̄ on U ×S U , which defines a (U, β)-twisted line bundle L̄ on S. It follows from
Corollary 2.8 that the cohomology class of β is trivial and that the line bundle L̄ is untwisted.
Furthermore, since φ = p∗(φ̄), it follows that L ∼= p∗(L̄). This argument proves that the kernel
of (2.4) is the subgroup p∗(Pic(S)) ⊂ Pic(X) ⊂ Pictw(X/S).

Now assume that a relative divisor class h ∈ PicX/S(S) is given. By definition there exist
an étale cover U → S and a line bundle LU on X ×S U such that we have pr∗1LU

∼= pr∗2LU

on (X×SU)×X (X×SU) (more precisely, the definition says that we have an isomorphism up to
a line bundle on U ×S U , but refining the cover U , we may assume this line bundle to be trivial).
Let us choose such an isomorphism φ and consider the composition on the left-hand side of (2.3).
It is an automorphism of a line bundle, hence given by an invertible function. Since p∗OX

∼= OS ,
it follows that this function can be written as p∗(β), where β is a Čech 2-cocycle on U . This
means that (LU , φ) is an (X ×S U, p∗(β))-twisted line bundle on X, and by the definition of the
morphism (2.4), the image of the corresponding relative twisted line bundle in PicX/S(S) is h.
This proves the surjectivity of the map (2.4).

Notation 2.12. Let p : X → S be a smooth and proper morphism with p∗OX
∼= OS . Given

a relative divisor class h ∈ PicX/S(S), we denote by OX(h) a relative twisted line bundle on X/S
(defined up to a twist by a line bundle on S) corresponding to it under the isomorphism of
Lemma 2.11.

Recall the standard exact sequence (see, for example, [Lie17, Proposition 2.5])

0 −→ Pic(S) −→ Pic(X) −→ PicX/S(S)
B−−→ H2

ét(S,Gm) . (2.5)

Comparing the proof of Lemma 2.11 with the definition of the morphism B, we can rewrite it as

0 −→ Pic(X)/Pic(S) −→ Pictw(X/S)/Pic(S)
B−−→ H2

ét(S,Gm) , (2.6)

where the second arrow takes a relative p∗(β)-twisted line bundle on X/S to the corresponding
cohomology class β.

Now we consider the more general situation of relative twisted vector bundles. We will often
use the restrictions they impose on the corresponding Brauer classes. The first is quite straight-
forward.

Lemma 2.13. If E is a relative p∗(β)-twisted vector bundle, then ∧d(E) is a relative p∗
(
βd

)
-twisted

vector bundle. In particular, if B(det(E)) ∈ H2
ét(S,Gm) is m-torsion and the morphism p : X → S

is smooth and proper with p∗OX
∼= OS , then β

m·rk(E) = 1.

Proof. The first part is analogous to Lemma 2.7, and the second follows from Lemma 2.11
combined with the above description of the map B.

The second restriction is a bit more involved.
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Lemma 2.14. Let p : X → S be a smooth and proper morphism with p∗OX
∼= OS , and let E be

a relative p∗(β)-twisted vector bundle. Assume that for each geometric point s ∈ S, we have an
equality dim

(
H0

(
Xs,E

∨
Xs

))
= 2 rk(E), the evaluation morphism extends to an exact sequence

0 −→ EXs −→ H0
(
Xs,E

∨
Xs

)
⊗ OXs −→ E∨

Xs
−→ 0 ,

and Hom(EXs ,EXs) is generated by the identity morphism. Then β2 = 1.

Proof. Set V := R0p∗
(
E∨). By assumption, the semicontinuity theorem, and Lemma 2.9, this is

a β−1-twisted vector bundle, and there is an exact sequence of p∗
(
β−1

)
-twisted vector bundles

0 −→ E′ −→ p∗V −→ E∨ −→ 0 .

The restrictions of this sequence to geometric fibers of p recover the exact sequences for EXs ;
hence E′

Xs
∼= EXs for each geometric point s ∈ S. Therefore, the space

H0
(
Xs,

(
E∨ ⊗ E′)|Xs

) ∼= Hom(EXs ,E
′
Xs

) ∼= Hom(EXs ,EXs)

is 1-dimensional, and hence R0p∗
(
E∨ ⊗ E′) is a β−2-twisted line bundle on S. Now we apply

Corollary 2.8 and conclude that β−2 = 1, hence the claim.

2.3 Relative divisor classes and morphisms to Severi–Brauer varieties

Recall that a Severi–Brauer variety over S is an étale locally trivial fibration p : Y → S with
fiber PN−1. As this is a Fano fibration, we can talk about the fundamental class HY of Y/S.
Note that by Corollary 2.3 and Lemma 2.5, we have PicY/S(S) ∼= Z · HY , and the restriction

of HY to any fiber PN−1 of Y → S is the hyperplane class of this fiber.

Using the language of twisted vector bundles, it is easy to give a description of all Severi–
Brauer varieties over a given scheme S. Indeed, let E be a β-twisted vector bundle on S (by
Corollary 2.8 this implies that β is torsion) represented by a (U, β)-twisted vector bundle (EU , φ),
where U → S is an étale cover. Then the isomorphism φ : pr∗1 EU

∼−→ pr∗2 EU induces an isomor-
phism

φ̄ : pr∗1(PU (EU ))
∼−−→ pr∗2(PU (EU )) ,

and (2.3) implies that pr∗1,2 φ̄◦pr∗2,3 φ̄◦pr∗1,3 φ̄−1 = id. Therefore, the isomorphism φ̄ can be used
to glue PU (EU ) into a scheme which we denote by PS(E) and which is endowed with a projection

p : PS(E) −→ S .

Moreover, if OPU (EU )(1) is the Grothendieck line bundle on PU (EU ) (so that its pushforward to U
is E∨

U ), the isomorphism φ provides it with the structure of a relative (PU (EU ), p
∗(β−1))-twisted

line bundle. We denote the corresponding relative p∗
(
β−1

)
-twisted line bundle by OPS(E)(1). Note

that

p∗OPS(E)(1)
∼= E∨ ;

this is easy to show by gluing the standard isomorphism over the étale cover U → S.

Lemma 2.15. If E is a twisted vector bundle on S, then p : PS(E)→ S is a Severi–Brauer variety
over S. Conversely, if p : Y → S is a Severi–Brauer variety, then Y ∼= PS(E) for a twisted vector
bundle on S, unique up to a twist by a line bundle on S.

Proof. By the construction of PS(E), the morphism p : PS(E) → S is étale locally (over S)
isomorphic to the projectivization of a trivial vector bundle; hence it is a Severi–Brauer variety.

Conversely, if p : Y → S is a Severi–Brauer variety, HY ∈ PicY/S(S) is its relative funda-
mental class, and OY (HY ) ∈ Pictw(Y/S) is the corresponding relative twisted line bundle (see
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Notation 2.12), then E := p∗(OY (HY ))
∨ is a twisted vector bundle on S (both OY (HY ) and E

are defined up to a twist by a line bundle on S), and it is clear that Y ∼= PS(E).

For a morphism of schemes p : X → S, we will say that a class h ∈ PicX/S(S) is relatively
ample, relatively globally generated, relatively has vanishing higher cohomology, and so on, if the
corresponding properties hold for the restrictions of this class to all geometric fibers of X/S. If p
is proper and flat, we denote by χX/S(h) the relative Euler characteristic of h, defined as the
Euler characteristic of the corresponding line bundle on any geometric fiber of X/S.

Recall the morphism B from (2.5) and Notation 2.12. The following observation is quite
useful.

Lemma 2.16. Let p : X → S be a smooth proper morphism with p∗OX
∼= OS . If h ∈ PicX/S(S)

is a relatively globally generated class with vanishing higher cohomology, then

B(h) ∈ Br(S) ⊂ Br′(S) ⊂ H2
ét(S,Gm)

and there exist a B(h)−1-twisted vector bundle E of rank N := χX/S(h) on S and an S-morphism

ϕh : X −→ PS(E)

such that ϕ∗
h(OPS(E)(1))

∼= OX(h) and the morphism (ϕh)s : Xs → (PS(E))s ∼= PN−1 coincides
with the morphism given by the complete linear system

∣∣h|Xs

∣∣ for every geometric point s ∈ S.

Proof. This is essentially the content of [Lie17]; however, for the readers’ convenience, we sketch
a proof. Choose an étale cover U → S such that h is represented by a line bundle L ∈ Pic(XU ),
and consider the sheaf EU := pU∗(L)

∨, where pU : XU → U is the base change of p. Then (since L
is globally generated and has no higher cohomology on the fibers of pU ) the sheaf EU is locally
free of rank N , and there is a unique morphism ϕL : XU → PU (EU ) such that the canonical
epimorphism p∗UE

∨
U → L is the pullback under ϕL of the tautological epimorphism. After gluing

we obtain the morphism ϕh : X → PS(E) that has all required properties.

Now let p : X → S be a smooth Fano fibration. Recall from Section 2.1 the definition of the
relative Fano index ι(X/S) and the relative fundamental class HX .

Corollary 2.17. Let p : X → S be a smooth Fano fibration with relative fundamental classHX .
Let m := gcd(ι(X/S),χX/S(HX)). Then B(HX)m = 1.

Proof. The class ι(X/S)HX = −KX/S ∈ PicX/S(S) comes from a class in Pic(X); hence its

image in Br(S) ⊂ H2
ét(S,Gm) under the map B in (2.5) is trivial, so B(HX)ι(X/S) = 1.

On the other hand, the vector bundle p∗(OX(HX)) is B(HX)-twisted (note that HX is rel-
atively ample by definition; hence by Kodaira vanishing it relatively has vanishing higher coho-
mology) and has rank χX/S(HX), so B(HX)χX/S(HX) = 1 by Corollary 2.8.

3. Derived categories and moduli spaces

In this section we recall some results about derived categories and moduli spaces of smooth fibra-
tions. In Section 3.1 we recall the notions of S-linear semiorthogonal decompositions and functors
and state a criterion for S-linear functors to be fully faithful and generate a semiorthogonal de-
composition. We also recall a result of Bernardara about derived categories of Severi–Brauer
varieties. In Section 3.2 we recall the definition and basic properties of (relative) moduli spaces
of sheaves. Finally, in Section 3.3 we prove some uniqueness results for stable sheaves.

Starting from this section all functors are derived.
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3.1 Linear semiorthogonal decompositions and forms of P3

Let p : X → S be a smooth projective morphism. Recall from [Kuz06] that D(X) = ⟨A1, . . . ,Ak⟩
is an S-linear semiorthogonal decomposition if the components Ai are preserved by tensor prod-
ucts with pullbacks of objects of Dperf(S), the category of perfect complexes, that is,

Ai ⊗ p∗Dperf(S) ⊂ Ai

for all i. One can think of S-linear semiorthogonal decompositions as families of semiorthogonal
decompositions of fibers of p. In particular, as was shown in [Kuz11], one can apply base change
along a point embedding {s} ↪→ S and obtain a semiorthogonal decomposition

D(Xs) = ⟨A1s, . . . ,Aks⟩

of the fiber, called the base change of the original decomposition.

Here is a sample example of S-linear semiorthogonal decomposition.

Theorem 3.1 ([Ber09]). If p : X → S is a Severi–Brauer variety, n = dim(X/S), HX is the
fundamental class of X/S, and β = B(HX) ∈ Br(S) is the corresponding Brauer class, then for
each i ∈ Z there is an S-linear semiorthogonal decomposition

D(X)=
〈
OX(iHX)⊗D

(
S,β−i

)
,OX((i+1)HX)⊗D

(
S,β−i−1

)
, . . . ,OX((i+n)HX)⊗D

(
S,β−i−n

)〉
.

In spite of the ambiguity in the choice of a twisted line bundle OX(HX), the components
of the above decomposition do not depend on this choice. Also note that if X/S has a section,
then β = 1, and therefore all the components of the above decomposition are equivalent to D(S).

Example 3.2. Let X → S be a 3-dimensional Severi–Brauer variety, and let β = B(HX) ∈ Br(S)
be the corresponding 4-torsion Brauer class. Then D(X) has the following S-linear semiorthog-
onal decomposition:

D(X) =
〈
OX ⊗D(S),OX(HX)⊗D

(
S,β−1

)
,OX(2HX)⊗D

(
S,β−2

)
,OX(3HX)⊗D

(
S,β−3

)〉
.

In the rest of this section, we state a result which is used for obtaining an S-linear semiorthog-
onal decomposition of D(X) from semiorthogonal decompositions of the fibers of X/S. We con-
centrate on the situation where the components are twisted derived categories; see Section 2.2.

Given a smooth projective morphism q : Y → S and a geometric point s ∈ S, we denote by

ηs : Xs × Ys ∼= (X ×S Y )s ↪−−→ X ×S Y

the natural embedding. Given an appropriately twisted object E on X ×S Y , we denote by

ΦE(−) := prX∗(E⊗ pr∗Y (−))

the corresponding S-linear Fourier–Mukai functor between the twisted derived categories.

Proposition 3.3. Let qi : Yi → S for 1 ⩽ i ⩽ k be smooth projective morphisms, let βi ∈ Br(Yi)
be Brauer classes, and let Ei ∈ D(X ×S Yi,pr

∗
Yi
(βi)) be pr∗Yi

(βi)-twisted objects.

(i) If for every geometric point s ∈ S, the functor Φη∗sEi
: D(Yis,β

−1
i |Yis

)→ D(Xs) is fully

faithful, then the functor ΦEi
: D(Yi,β

−1
i ) → D(X) is also fully faithful. Moreover, its

image is an S-linear admissible subcategory in D(X).

(ii) If for every geometric point s ∈ S, the subcategories Φη∗sEi
(D(Yis,β

−1
i |Yis

)) are semiorthog-

onal in D(Xs) for i = i1, i2, then the subcategories ΦEi
(D(Yi,β

−1
i )) are also semiorthogonal

in D(X) for i = i1, i2.
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(iii) If for every geometric point s ∈ S, there is a semiorthogonal decomposition

D(Xs) =
〈
Φη∗sE1

(
D
(
Y1s,β

−1
1 |Y1s

))
, . . . ,Φη∗sEk

(
D
(
Yks,β

−1
k |Yks

))〉
,

then there is also an S-linear semiorthogonal decomposition

D(X) =
〈
ΦE1

(
D
(
Y1,β

−1
1

))
, . . . ,ΦEk

(
D
(
Yk,β

−1
k

))〉
.

Proof. See [Kuz06, Proposition 2.44] and [Kuz21, proof of Theorem 5.2].

We will often use the special case of Proposition 3.3 where Yi = S. If p : X → S is a smooth
projective morphism and β1, . . . ,βk ∈ Br(S), we say that a collection of objects

E1 ∈ D(X, p∗(β1)), . . . ,Ek ∈ D(X, p∗(βk))

is a relative exceptional collection if the collection E1|Xs , . . . ,Ek|Xs ∈ D(Xs) is exceptional for
each geometric point s ∈ S.

Corollary 3.4. If Ei ∈ D(X, p∗(βi)) for 1 ⩽ i ⩽ k is a relative exceptional collection, then the
functors

ΦEi
: D(S,β−1

i ) −→ D(X), F 7−→ Ei ⊗ p∗(F)

are fully faithful and the subcategories Ei ⊗ D(S,β−1
i ) := ΦEi

(D(S,β−1
i )) for 1 ⩽ i ⩽ k form

a semiorthogonal collection of admissible S-linear subcategories in D(X). If E1|Xs , . . . ,Ek|Xs is
full in D(Xs) for each geometric point s ∈ S, this is a semiorthogonal decomposition.

3.2 Moduli spaces and universal bundles

Let p : X → S be a smooth projective morphism with p∗OX
∼= OS , let H ∈ Pic(X) be a relatively

ample divisor class, and let P(t) ∈ Q[t] be a polynomial. We denote by

f : MX/S,H(P) −→ S

the relative moduli space of Gieseker semistable sheaves on fibers of p with Hilbert polynomial P
(with respect to the polarization given by the restriction of H). This is the coarse moduli space
for (the étale sheafification of) the functor MX/S,H(P) from the category of schemes over S to
the category of groupoids that associates with a morphism T → S the groupoid of all sheaves E
on X ×S T which are flat over T and such that, for each geometric point t ∈ T , the sheaf Et

on Xt is H|Xt-semistable and has Hilbert polynomial P. Over the open subset of MX/S,H(P)
parameterizing stable bundles, the stack MX/S,H(P) is a Gm-gerbe.

We refer to [HL10, § 4] for the details of the definition and basic properties of the moduli
space (and [HL10, Theorem 4.3.7] for the existence) and to [Mar78, Sim94] for technical details
(especially in the relative case). Here we state some of the most important properties. The first
is immediate from the definition.

Theorem 3.5 ([HL10, Theorem 4.3.4]). The natural morphism f : MX/S,H(P)→ S is projective
and is compatible with base change; that is,

MX/S,H(P)×S S′ ∼= MX×SS′/S′,H(P)

for any morphism S′ → S. In particular, the geometric fibers of MX/S,H(P) are the moduli spaces
of semistable sheaves on the corresponding geometric fibers of X → S.

Remark 3.6. Note that the Hilbert polynomial of a sheaf is determined by its Chern classes via
the Hirzebruch–Riemann–Roch theorem. However, different values of Chern classes may give rise
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to the same Hilbert polynomials. Anyway, we will sometimes abuse notation by writing

MX/S,H(r; c1, c2, . . . , cn) := MX/S,H(Pr; c1,c2,...,cn) ,

where Pr; c1,c2,...,cn is the Hilbert polynomial of sheaves with the given rank and Chern classes,
even if the listed Chern classes are not determined by the Hilbert polynomial. Besides, when X/S
is a relative Fano threefold with the geometric Picard number of fibers equal to 1, we will often
use the notation LX := H2

X/dx (where dX := H3
X) for the class of a line on X and PX for the

class of a point.

We will need the following general result.

Theorem 3.7 ([Mar78, Proposition 6.7], [HL10, Corollary 4.5.2]). Let p : X → S be a smooth
projective morphism. Let E be a stable vector bundle on a geometric fiber Xs of p with Hilbert
polynomial P. Assume Ext2(E,E) = 0. Then

(i) the morphism f : MX/S,H(P)→ S is smooth at [E], and

(ii) the relative tangent space of f at [E] is isomorphic to Ext1(E,E).

The following two corollaries will be used in the paper to identify important moduli spaces.

Corollary 3.8. Let p : X → S be a smooth projective morphism. Let M◦ ⊂ MX/S,H(P) be an
open subscheme in the relative moduli space. Assume that

(a) the natural morphism M◦ → S is bijective on geometric points and

(b) every sheaf on a fiber of p corresponding to a geometric point of M◦ is exceptional.

Then the morphism M◦ → S is an isomorphism.

Proof. The morphism M◦ → S is smooth of relative dimension zero by Theorem 3.7, hence étale.
Since it is also bijective, it is an isomorphism by [Sta20, Tag 02LC].

Corollary 3.9. Let p : X → S be a smooth projective morphism. Let Γ → S be a smooth
projective curve, and let E ∈ Coh(X ×S Γ) be a family of H-stable sheaves on fibers of p with
Hilbert polynomial P parameterized by Γ. If the Fourier–Mukai functor ΦE : D(Γ) → D(X) is
fully faithful, then the corresponding morphism ϕE : Γ→ MX/S,H(P) is an isomorphism onto an
open subscheme.

Proof. Set M := MX/S,H(P). The morphism ϕE is étale because, for any point y ∈ Γ, the
functor ΦE is fully faithful, hence induces an isomorphism of the tangent spaces

Ty,Γ/S = Ext1(Oy,Oy)
ΦE−−−→∼ Ext1(Ey,Ey) = T[Ey ],M/S .

On the other hand, the morphism Γ → M is injective (again by the full faithfulness of ΦU).
Therefore, it is an open immersion, see [Sta20, Tag 02LC], that is, an isomorphism onto an open
subscheme.

We end this subsection with a discussion of the existence of a universal sheaf on the fiber
product X ×S MX/S,H(P); in fact, under appropriate assumptions we show that it exists as a
twisted sheaf. We use the following result.

Theorem 3.10 ([HL10, Proposition 4.6.2], [Sim94, Theorem 1.21(4)]). Assume that all sheaves
classified by the moduli space M = MX/S,H(P) are H-stable. Then étale locally on M there exists
a universal sheaf E.
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The precise meaning of the theorem is the following. There exist an étale cover M′ → M
and a sheaf E′ ∈MX/S,H(P)(M′) on X ×S M′ such that for any scheme T over S and any
sheaf F ∈MX/S,H(P)(T ) on X ×S T , there is a unique morphism T → M over S such that the
pullbacks of the sheaves F and E′ to (X ×S T )×M M′ ∼= (X ×S M′)×M T are isomorphic up to
a twist by a line bundle on T ×M M′.

Proposition 3.11 (cf. [Cal00, Proposition 3.3.2]). Assume that p∗OX
∼= OS and all sheaves

classified by the moduli space M = MX/S,H(P) are H-stable. Let prM : X ×S M → M be the
projection. There exist a Brauer class β ∈ Br(M) and a pr∗M(β)-twisted sheaf E on X ×S M such
that for each point m ∈ M of the moduli space, the sheaf Em on Xf(m) is the H-stable sheaf

corresponding to the point m. Moreover, βP(n) = 1 for n≫ 0.

Proof. Let M′ → M be an étale cover, and let E′ ∈ MX/S,H(P)(M′) be an étale local universal
sheaf on X ×S M′ that exists by Theorem 3.10. The universal property of E′ implies that the
sheaves pr∗1 E

′ and pr∗2 E
′ on the fiber product (X ×S M) ×M M′ ×M M′ ∼= X ×S (M′ ×M M′)

agree up to a line bundle twist. Refining the étale cover M′ → M, we may assume that the line
bundle is trivial and we have an isomorphism φ : pr∗1 E

′ ∼−→ pr∗2 E
′. Using the stability of sheaves

classified by M, it is easy to check that the cocycle condition (2.3) on X ×S (M′ ×M M′ ×M M′)
holds for appropriate β. Since X → S is smooth and proper with p∗OX

∼= OS , it follows that β
is a pullback from M′ ×M M′ ×M M′. If β ∈ H2

ét(M,Gm) is the corresponding cohomology class,
it follows that (E′, φ) defines a pr∗M(β) sheaf on X ×S M; by construction it has the universal
property.

Finally, to show that β is a Brauer class and βP(n) = 1 for n ≫ 0, it is enough to note that
the pushforward prM∗(E(nH)) ∈ Coh(M,β) is a β-twisted vector bundle of rank P(n).

3.3 Some uniqueness results

In this section we prove some uniqueness results for vector bundles on Fano threefolds over alge-
braically closed fields. In the next proposition stability, the slope µ, and the Hilbert polynomials
are taken with respect to the anticanonical polarization −KX (or, equivalently, with respect to
the fundamental class HX).

Proposition 3.12. Let X be a smooth Fano threefold. Let

0 −→ U −→ V −→W −→ 0 (3.1)

be an exact sequence of vector bundles, where

(a) U is stable with χ(U,U) > 0 and

(b) W is semistable with µ(W(KX)) < µ(U).

If E is a semistable bundle with

χ(U,E) = χ(U,U) , µ(E) = µ(U) , rk(E) = rk(U) , (3.2)

and Ext2(V,E) = 0, then E ∼= U.

Proof. We have µ(E) = µ(U) > µ(W(KX)). Since both E and W are semistable, we conclude
that Hom(E,W(KX)) = 0, and hence by Serre duality Ext3(W,E) = 0. Now applying the func-
tor Ext•(−,E) to (3.1) and using the assumption Ext2(V,E) = 0, we obtain

Ext2(U,E) = 0 .
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On the other hand, χ(U,E) = χ(U,U) > 0. Therefore, Hom(U,E) ̸= 0, and since the bundles U

and E are semistable of the same slope and rank, and U is stable, any non-trivial morphism
between them must be an isomorphism.

In practice, conditions (3.2) may be deduced from the numerical equivalence of Chern classes
of E and U. However, sometimes it is also possible to deduce these conditions from the equality
of the Hilbert polynomials of E and U.

Lemma 3.13. Let X be a smooth projective variety, and let H ∈ Pic(X) be an ample divisor
class. Assume that F1, F2, F are coherent sheaves on X such that

PH(F1, t) = PH(F2, t) and ch(F) ∈ Q[H] ⊂ CH•
num(X,Q) ,

where PH(Fp, t) is the Hilbert polynomial of Fp with respect to H, CH•
num(X,Q) is the Chow

ring with rational coefficients modulo numerical equivalence, and Q[H] is its subring generated
by H ∈ CH1(X). Then χ(F,F1) = χ(F,F2).

Proof. The assumption ch(F) ∈ Q[H] implies that ch(F) =
∑

aich(OX(iH)) for some ai ∈ Q,
hence by the Hirzebruch–Riemann–Roch theorem, χ(F,Fp) =

∑
aiPH(Fp,−i) for p = 1, 2. Thus,

the equality of the Hilbert polynomials implies the equality χ(F,F1) = χ(F,F2).

Another useful result is the following.

Proposition 3.14. Let X be a smooth Fano threefold. Let Γ be a smooth proper curve, and
let U be a vector bundle on X × Γ such that the Fourier–Mukai functor

ΦU : D(Γ) −→ D(X)

is fully faithful. Assume that for each point y ∈ Γ, the corresponding vector bundle Uy on X is
stable and fits into an exact sequence

0 −→ Uy −→ V′
y −→ V′′

y −→Wy −→ 0 . (3.3)

If E is a semistable bundle such that (3.2) holds for U = Uy and Ext2(V′
y,E) = Ext3(V′′

y,E) = 0

for all points y ∈ Γ, then either E ∼= Uy for some point y ∈ Γ, or E ∈ ΦU(D(Γ))⊥.

Proof. First, if Hom(Uy,E) ̸= 0 for some y ∈ Γ, then Uy
∼= E because the bundles are semistable

of the same slope and rank, and Uy is stable. So, assume

Hom(Uy,E) = 0

for all y ∈ Γ. Applying the functor Ext•(−,E) to the exact sequence (3.3) and using the assump-
tions Ext2(V′

y,E) = Ext3(V′′
y,E) = 0, we conclude that

Ext2(Uy,E) = 0

for all y ∈ Γ. Now from (3.2), the full faithfulness of ΦU, and the smoothness of Γ, we deduce

χ(Uy,E) = χ(Uy,Uy) = χ(ΦU(Oy),ΦU(Oy)) = χ(Oy,Oy) = 0 .

Combining this with the vanishing Hom(Uy,E) = Ext2(Uy,E) = 0 proved above, we see that

Ext1(Uy,E) = Ext3(Uy,E) = 0

for all y ∈ Γ; that is, by adjunction Ext•(Oy,Φ
!
U(E)) = 0 for all y ∈ Γ, where Φ!

U : D(X)→ D(Γ)
is the right adjoint functor of ΦU. We conclude that Φ!

U(E) = 0, hence E ∈ ΦU(D(Γ))⊥.
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4. Quadrics and del Pezzo threefolds

In this section we consider Fano fibrations with geometrically rational fibers of geometric Picard
number 1 and index greater than 1, excluding the well-known case of the projective space.
Sometimes we will loosely call such Fano fibrations “forms” of the corresponding varieties.

4.1 Forms of Q3

First, we consider forms of smooth quadrics. This, of course, is also a well-known case, but we
provide a proof relying on the results from the previous sections, as a warm-up before considering
other types of Fano threefold fibrations.

We start with a reminder of the situation over an algebraically closed field. In this case
if X is a smooth 3-dimensional quadric, there exist a vector space V of dimension 5 and an
embedding X ↪→ P(V ) as a hypersurface with equation given by a quadratic form Sym2 V → k.
Rephrasing this description, we may say that X is a hyperplane section of the second Veronese
embedding P(V ) ↪→ P

(
Sym2 V

)
by a hyperplane (defined by a quadratic form). The following

proposition provides an analogue of this description over any base.

Proposition 4.1. Let p : X → S be a smooth fibration in 3-dimensional quadrics. Then there
are a vector bundle V of rank 5 on S, a line bundle L on S, and an epimorphism φ : Sym2 V → L∨

such that

X = PS(V )×PS(Sym
2 V ) PS(Ker(φ)) ,

where the morphism PS(V ) → PS(Sym
2 V ) in the fiber product is the double Veronese embed-

ding.

Remark 4.2. Note that the vector bundle V and the line bundle L in this theorem are both
untwisted. Therefore, the fundamental class HX of X/S, which a priori is only a relative divisor
class, a posteriori can be represented by an untwisted line bundle OX(HX) ∈ Pic(X).

Proof. Let HX ∈ PicX/S(S) be the fundamental class of X/S, and set β := B(HX) ∈ Br(S).
Then

V := (p∗OX/S(HX))∨

is a β−1-twisted vector bundle on S of rank 5. Lemma 2.16 implies that the p∗(β)-twisted line
bundle OX/S(HX) defines a closed embedding X ⊂ PS(V ) as a hypersurface of relative degree 2.

Let further L := pV ∗IX(2HX), where IX is the ideal of X in PS(V ) and pV : PS(V ) → S is
the natural projection. Then L is a β2-twisted line bundle on S, and X has the prescribed form.

Finally, we conclude from Corollary 2.8 that β2 = 1 because the rank of L is 1, and β5 = 1
because the rank of V is 5; combining these observations, we see that β = 1.

Remark 4.3. The same argument works for any quadric fibration of odd relative dimension
(moreover, smoothness of the fibration can be relaxed to flatness). In the case of even relative
dimension, the class β may be a non-trivial 2-torsion class.

A semiorthogonal decomposition of the derived category of a smooth 3-dimensional quadricX
over an algebraically closed field k was constructed in [Kap88, § 4]; it takes the form

D(X) = ⟨S⊗D(k),OX ⊗D(k),OX(1)⊗D(k),OX(2)⊗D(k)⟩ , (4.1)

where S is a spinor bundle. Note that the spinor bundle fits into an exact sequence

0 −→ S −→ O⊕4
X −→ S(1) −→ 0 (4.2)

538



Derived categories of families of Fano threefolds

(see [Ott88, Theorem 2.8]), and it is stable (see [Ott88, Theorem 2.1]) and exceptional by (4.1).
Now we describe a relative analogue of (4.1); this result could also be extracted from [Kuz08],
but we provide an alternative argument to introduce the ideas used in other cases.

Theorem 4.4. If p : X → S is a form of a smooth 3-dimensional quadric over S, there is
a semiorthogonal decomposition

D(X) =
〈
S⊗D

(
S,β−1

S

)
,OX ⊗D(S),OX(HX)⊗D(S),OX(2HX)⊗D(S)

〉
,

where OX/S(HX) is a line bundle associated with the fundamental class of X/S, see Remark 4.2,
βS ∈ Br(S) is a 2-torsion Brauer class, and S is a p∗(βS)-twisted vector bundle of rank 2 on X.

Moreover, if X(S) ̸= ∅, then βS can be represented by a conic bundle.

Proof. Consider the moduli space

M := MX/S,HX

(
2
3 t(t+ 1)(t+ 2)

)
= MX/S,HX

(2;−HX , LX , 0) ,

where we use the convention of Remark 3.6 on the right-hand side. Also let M◦ ⊂ M be the open
subvariety parameterizing sheaves E on fibers Xs of X/S with the vanishing H•(Xs,E) = 0. Ap-
plying Proposition 3.12 to U = SXs , the spinor bundle on the quadric Xs, V = O⊕4

Xs
, W = SXs(1),

sequence (4.2), and a sheaf E as above (conditions (3.2) are satisfied because E is numerically
equivalent to U), we conclude that E ∼= SXs . This proves that the natural morphism f : M◦ → S
is bijective on geometric points. On the other hand, since the spinor bundle SXs on Xs is excep-
tional, the morphism f is an isomorphism by Corollary 3.8.

Furthermore, note that every sheaf parameterized by the moduli space M is H-stable. There-
fore, applying Proposition 3.11 and restricting to the open subscheme M◦ ⊂ M, we obtain
a Brauer class (which we denote by βS) on M◦ ∼= S and a p∗(βS)-twisted universal family (which
we denote by S) on X ×S M◦ = X.

Note that the restriction of S to Xs is the spinor bundle of Xs. Therefore, by (4.1) the bun-
dles (S,OX ,OX(HX),OX(2HX)) form a relative exceptional collection in the sense of Section 3.1.
Therefore, it follows from Corollary 3.4 that the corresponding Fourier–Mukai functors are fully
faithful and their images form the required semiorthogonal decomposition of D(X).

It remains to show that the Brauer class βS ∈ Br(S) is 2-torsion. For this note that (up
to a twist by a line bundle on S) we have an isomorphism ∧2S ∼= O(−HX); since the line
bundle O(HX) is untwisted by Proposition 4.1, we conclude from Lemma 2.13 that βS is indeed
2-torsion.

Finally, if X(S) ̸= ∅ and if i : S → X is a section of X → S, then i∗S is a βS-twisted vector
bundle of rank 2 on S, so βS is represented by the conic bundle PS(i

∗S).

4.2 Forms of Y5

Now consider quintic del Pezzo threefolds. Recall that over an algebraically closed field, every
such threefold X can be represented as a (transverse) complete intersection

X = Gr(2, V ) ∩ P6 ,

where V is a vector space of dimension 5 and the intersection is considered inside the Plücker
space P(∧2V ) = P9. The following proposition provides an analogue over any base.

Proposition 4.5. If p : X → S is a smooth fibration in quintic del Pezzo threefolds, there are
vector bundles V and A of respective ranks 5 and 3 on S and an epimorphism φ : ∧2 V → A∨
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such that

X = GrS(2, V )×PS(∧2V ) PS(Ker(φ)) , (4.3)

where the morphism GrS(2, V )→ PS(∧2V ) in the fiber product is the Plücker embedding.

Proof. Let HX ∈ PicX/S(S) be the relative fundamental class. Since over an algebraically closed
field, the Fano index of a quintic del Pezzo threefold is 2 and the Euler characteristic of its funda-
mental divisor class is 7, by Corollary 2.17 the Brauer classB(HX) is annihilated by gcd(2, 7) = 1,
hence vanishes. Therefore, the line bundle OX/S(HX) is untwisted.

Let W := (p∗OX/S(HX))∨. Then W is a vector bundle on S of rank 7, and the natural
morphismX → PS(W ) is a closed embedding. For every geometric point s of S, the corresponding
geometric fiber Xs ⊂ P(Ws) ∼= P6 is an intersection of a 5-dimensional space of Plücker quadrics,
so if pW : PS(W )→ S is the natural morphism and IX is the ideal sheaf of X in PS(W ), then

V := pW∗IX(2HX)

is a vector bundle of rank 5 and the natural morphism p∗WV → IX(2HX) is surjective. Consider
the restriction of this morphism to X, and denote by U the kernel bundle so that we have an
exact sequence

0 −→ U −→ p∗V −→ IX/I2X(2HX) −→ 0 .

This bundle is, up to a twist, the excess conormal bundle of X ⊂ PS(W ) as defined in [DK18,
Appendix A]. The rank of U is 2; hence it defines a morphism X → GrS(2, V ). To relate it to
the morphism X → PS(W ) defined above, we note that

det
(
IX/I2X

)
= det

(
N∨

X/PS(W )

) ∼= ω∨
X/PS(W )

is isomorphic to OX(−5HX) up to a twist by a line bundle on S; hence ∧2U∨ is isomorphic
to O(HX) up to a twist by a line bundle on S. Therefore, the morphism ∧2

(
p∗V ∨) → ∧2U∨

induces, after pushforward to S, a morphism ∧2V ∨ →W∨ ⊗L for an appropriate line bundle L

on S. This morphism is surjective on each geometric fiber; hence it is an epimorphism. Let A be
its kernel bundle (of rank 3), and let φ : ∧2 V → A∨ be the dual of the kernel morphism. Then
we obtain the equality X = GrS(2, V )×PS(∧2V ) PS(Ker(φ)), as required.

A semiorthogonal decomposition of the derived category of a quintic del Pezzo threefold X
over an algebraically closed field k has been described in [Orl91]; it takes the form

D(X) = ⟨OX ⊗D(k),U∨ ⊗D(k),OX(1)⊗D(k),U∨(1)⊗D(k)⟩ , (4.4)

where U is the restriction of the tautological bundle from Gr(2, V ). Now we describe a relative
analogue of (4.4).

Theorem 4.6. If X/S is a form of a quintic del Pezzo threefold, then there is a semiorthogonal
decomposition

D(X) = ⟨OX ⊗D(S),U∨ ⊗D(S),OX(HX)⊗D(S),U∨(HX)⊗D(S)⟩ ,

where U is the vector bundle of rank 2 on X constructed in Proposition 4.5.

Proof. By (4.4) the collection (OX ,U∨,OX(HX),U∨(HX)) is a relative exceptional collection;
hence the theorem follows from Corollary 3.4 and Proposition 3.3(iii).
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4.3 Forms of Y4

Now consider quartic del Pezzo threefolds. Recall that over an algebraically closed field, every
such threefold X can be represented as an intersection of two quadrics

X = Q1 ∩Q2 ⊂ P(V ) ,

where V is a vector space of dimension 6, or equivalently as a linear section of codimension 2
of the second Veronese embedding P(V ) ↪→ P(Sym2 V ). The following proposition provides an
analogue over any base.

Proposition 4.7. If p : X → S is a smooth fibration in quartic del Pezzo threefolds, there exist
a 2-torsion Brauer class β ∈ Br(S), a β-twisted vector bundle V of rank 6, an untwisted vector
bundle A of rank 2, and an epimorphism φ : Sym2 V → A∨ such that

X = PS(V )×PS(Sym
2 V ) PS(Ker(φ)) . (4.5)

If X(S) ̸= ∅, then β = 1.

Proof. Let HX ∈ PicX/S(S) be the relative fundamental class. Since over an algebraically closed
field, the Fano index of a quartic del Pezzo threefold is 2, we conclude from Corollary 2.17 that
the Brauer obstruction β := B(HX) is 2-torsion. Let

V := (p∗OX/S(HX))∨ .

Then V is a β−1-twisted vector bundle on S of rank 6, and by Lemma 2.16 there is a closed
embedding X → PS(V ) such that for every geometric point s of S, the corresponding geometric
fiber Xs ⊂ P(Vs) ∼= P5 is an intersection of a pencil of quadrics. So if pV : PS(V ) → S is the
natural morphism and IX is the ideal sheaf of X in PS(V ), then

A := pV ∗IX(2HX)

is a vector bundle of rank 2. It is untwisted because B(2HX) = β2 = 1. Moreover, the push-
forward of the natural morphism IX(2HX) ↪→ OX(2HX) gives an embedding A ↪→ Sym2 V ∨.
Then we have X = PS(V )×PS(Sym

2 V ) PS(Ker(φ)), where φ : Sym2 V → A∨ is the dual of the
embedding A ↪→ Sym2 V ∨.

Finally, if X(S) ̸= ∅, then PS(V )→ S has a section, so β = 1.

A semiorthogonal decomposition of the derived category of a quartic del Pezzo threefold X
over an algebraically closed field has been described in [BO95]. We summarize their results in
a slightly modified form that is convenient for our applications below.

Proposition 4.8. Let X be a quartic del Pezzo threefold over an algebraically closed field k.
Consider the moduli space

M := MX,HX

(
2
3 t(t+ 1)(2t+ 1)

)
= MX,HX

(2;−HX , 2LX , 0)

and the open subscheme M◦ ⊂ M parameterizing sheaves E on X such that

H•(X,E) = H•(X,E(−1)) = 0.

Then ΓX := M◦ is a smooth projective curve of genus 2, there exists a universal family U of
sheaves on X ×M◦ = X × ΓX , the Fourier–Mukai functor ΦU : D(ΓX)→ D(X) is fully faithful,
and there is a semiorthogonal decomposition

D(X) = ⟨ΦU(D(ΓX)),OX ⊗D(k),OX(1)⊗D(k)⟩ . (4.6)
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Proof. Let P1 ⊂ P
(
Sym2 V ∨) be the line spanned by Q1 and Q2, and let ΓX → P1 be the double

covering of this line branched at the six points of its intersection with the discriminant hyper-
surface; this is a smooth curve of genus 2. A family U of vector bundles on X × ΓX has been
constructed in [BO95, § 2] (it is denoted there by S), the full faithfulness of the corresponding
Fourier–Mukai functor was proved in [BO95, Theorem 2.7] (see also [FK18]), and the semiorthog-
onal decomposition (4.6) was established in [BO95, Theorem 2.9]. So, we only need to provide
the curve ΓX and the bundle U with a modular interpretation.

For this we note that by [BO95, § 2] the bundles Uy for y ∈ ΓX in the above family are
restrictions of spinor bundles from quadrics in the pencil defining X, and so their Chern classes
have been computed in [Ott88, Remark 2.9], and they match Chern classes in the definition
of M. Furthermore, these bundles have the required cohomology vanishings (because of the
semiorthogonal decomposition (4.6)) and are all stable (since the stability of E is equivalent
to the vanishing of H0(X,E)). Therefore, there is a unique morphism ΓX → M◦ such that the
family U is the pullback of a universal family, and it is an open immersion by Corollary 3.9.

Now let E be a sheaf on X corresponding to a geometric point of M◦. Applying Proposi-
tion 3.14 to the exact sequences

0 −→ Uy −→ O⊕4
X −→ OX(1)⊕4 −→ Uy(2) −→ 0

(obtained from [Ott88, Theorem 2.8]) and using the cohomology vanishings in the definition of E,
we conclude that if E ̸∼= Uy for y ∈ ΓX , then E belongs to the orthogonal of the right-hand side
of (4.6), which is impossible. Thus E ∼= Uy; hence the open immersion ΓX → M◦ is surjective, so
it is an isomorphism.

Now we describe a relative analogue of (4.6). Recall that F1(X/S) denotes the Hilbert scheme
of lines (with respect to HX) in the fibers of X → S.

Theorem 4.9. If X/S is a form of a quartic del Pezzo threefold, then there is a semiorthogonal
decomposition

D(X) = ⟨D(Γ,βΓ),OX ⊗D(S),OX(HX)⊗D(S,β)⟩ ,
where β ∈ Br(S) is the 2-torsion Brauer class constructed in Proposition 4.7, Γ/S is a smooth
projective family of curves of genus 2, and βΓ ∈ Br(Γ) is a 4-torsion Brauer class.

Moreover, if X(S) ̸= ∅, then β = 1 and β2
Γ = 1, and if F1(X/S)(S) ̸= ∅, then βΓ = 1.

Proof. Consider the same moduli space as in Proposition 4.8, but in the relative setting

M := MX/S,HX

(
2
3 t(t+ 1)(2t+ 1)

)
= MX/S,HX

(2;−HX , 2LX , 0)

(where we use the convention of Remark 3.6 on the right-hand side) and its open subscheme
M◦ ⊂ M parameterizing sheaves E on fibers Xs of X/S with the vanishing

H•(Xs,E) = H•(Xs,E(−1)) = 0 .

By Theorem 3.5 and Proposition 4.8, the geometric fibers of the morphism M◦ → S are the
smooth projective curves ΓXs of genus 2 associated with the fibers Xs of X/S. Moreover, all
sheaves parameterized by M◦ have the form

Ey = ΦUs(Oy) ,

where y is a point of the smooth curve ΓXs and Us is the universal bundle on Xs×ΓXs from the
proposition. In particular, since the functor ΦUs is fully faithful and ΓXs is smooth, we have

Ext2(Ey,Ey) ∼= Ext2(Oy,Oy) = 0 and Ext1(Ey,Ey) ∼= Ext1(Oy,Oy) = Ty,ΓXs
.
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Applying Theorem 3.7 we see that the morphism M◦ → S is smooth of relative dimension 1;
that is, it is a smooth family of curves. Since M◦ is open in M and M is projective over S, it
follows that M◦ is quasiprojective over S. Finally, since M◦ → S is a quasiprojective morphism
with proper fibers, the morphism is projective. From now on we will use the notation

Γ := M◦ .

By construction this is a smooth projective family of curves of genus 2 over S.

Further, as the proof of Proposition 4.8 shows, every sheaf parameterized by M◦ is stable and
locally free. Hence by Proposition 3.11 there exist a Brauer class βΓ ∈ Br(Γ) and a pr∗Γ(βΓ)-
twisted universal bundle U on X ×S Γ = X ×S M◦ (where prΓ : X ×S Γ → Γ is the natural
projection). By construction, the restriction of U to every fiber of the morphism X ×S Γ→ S is
isomorphic (up to a twist by a line bundle on the curve ΓXs) to the bundle on Xs × ΓXs from
Proposition 4.8.

Applying Proposition 3.3(i) we conclude that the S-linear functor

ΦU : D(Γ,βΓ) −→ D(X)

is fully faithful and its image is admissible. Furthermore, by (4.6) the pair (OX ,OX(HX)) is
relative exceptional, and combining Corollary 3.4 with Proposition 3.3(ii)–(iii), we obtain the
required semiorthogonal decomposition of D(X).

Now by the definition of M we have an isomorphism ∧2U ∼= O(−HX) on X ×S Γ (up to a
twist by a line bundle on Γ), and applying Lemma 2.13 we deduce the 4-torsion property of βΓ

from the 2-torsion property of β. Similarly, if X/S has a section, the equality β = 1 (established
in Proposition 4.7) implies β2

Γ = 1.

Finally, assume that the morphism F1(X/S) → S has a section. Then there is a relative
line L ↪→ X, that is, an S-flat subscheme with the appropriate Hilbert polynomial. Then, denot-
ing by prX : X ×S Γ→ X and prΓ : X ×S Γ→ Γ the projections, it is easy to see that

L := prΓ∗(U⊗ pr∗X OL) ∈ D(Γ,βΓ)

is a βΓ-twisted line bundle. Therefore, the Brauer class βΓ vanishes by Corollary 2.8.

One could also construct the curve Γ directly, as an appropriate double covering of the
projective bundle PS(A), the projectivization of the vector bundle of rank 2 from Proposition 4.7.

5. Prime Fano threefolds

In this section we describe smooth proper morphisms p : X → S with prime Fano threefolds
as fibers. In other words, we assume Pic(Xs) = Z · KXs (by Corollary 2.6 if this holds for one
geometric point in S, the same is true for any geometric point), so the fundamental class of X/S
is equal to the relative anticanonical class,

HX = −KX/S ,

and generates the relative Picard group PicX/S(S). In particular, the line bundle OX(HX) is
untwisted and canonically defined.

Throughout this section we make extensive use of exceptional vector bundles on Fano three-
folds constructed by Mukai and the induced descriptions of Fano threefolds as zero loci of global
sections of vector bundles on Grassmannians; see [BKM24, BKM25] for a recent treatment.
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5.1 Forms of X12

Recall that over an algebraically closed field, every prime Fano threefold X of genus 12 (type X12)

can be represented as the zero locus of a global section of the vector bundle
(
∧2

(
U∨))⊕3

on Gr(3, 7) (we recall that U denotes the tautological bundle on the Grassmannian), or equiva-
lently as the linear section

X = Gr(3, V ) ∩ P13 ,

where V is a vector space of dimension 7, the intersection is considered inside the Plücker
space P

(
∧3V

)
= P34, and the subspace P13 ⊂ P34 is the projectivization of the kernel of the

epimorphism ∧3(V )→ V ⊕3 given by the global section of
(
∧2

(
U∨))⊕3

.

Furthermore, recall the full exceptional collection in the derived category of X (see [Kuz96])

D(X) =
〈
OX ,U∨,E,∧2U∨〉 , (5.1)

where U is the restriction of the tautological bundle from the Grassmannian (of rank 3) and E

is an exceptional vector bundle of rank 2; these are called the Mukai bundles of X.

The following proposition provides an analogue of the description of X and the construction
of (twisted) vector bundles on X for families over any base.

Proposition 5.1. If p : X → S is a smooth Fano fibration with fibers of type X12, there exist
a vector bundle V of rank 7, a vector bundle A of rank 3, and an epimorphism φ : ∧2 V → A∨

such that

X = GrS(3, V )×PS(∧3V ) PS(Ker(φ̃)) , (5.2)

where φ̃ : ∧3 V → V ⊗A∨ is the morphism induced by φ.

Proof. The main step in the proof is a construction of the vector bundle U on X (that would give
a morphism to the Grassmannian); as we will see, the rest follows from a fiberwise description
of X. As an intermediate step we construct a twisted bundle E of rank 2.

Consider the relative moduli space

M2 := MX/S(2;HX , 7LX , 0) ,

where we use the convention of Remark 3.6 on the right-hand side. By [KPS18, Theorem B.1.1,
Proposition B.1.5] the natural proper morphism f : M2 → S is bijective on geometric points,
and for every geometric point [E] ∈ M2, the bundle E is exceptional by [KPS18, Lemma B.1.9].
Therefore, f is an isomorphism by Corollary 3.8.

Note that every sheaf parameterized by the moduli space M2 isHX -stable. Therefore, applying
Proposition 3.11 we obtain a Brauer class β ∈ Br(S) on M2

∼= S and a p∗(β)-twisted universal
family (which we denote by E) on X ×S M2 = X. Since ∧2E ∼= O(HX) (up to a twist by a
line bundle on S) and since the line bundle O(HX) is untwisted, it follows from Lemma 2.13
that β2 = 1.

Similarly, consider the relative moduli space

M3 := MX/S(3;−HX , 10LX ,−2PX) .

Also let M◦
3 ⊂ M3 be the open subscheme parameterizing bundles U on Xs with the vanishing

Ext•
(
Es,U

∨) = Ext•(Es,U) = H•(Xs,U) = 0 ,

where E is the universal bundle constructed above. By [KP21, Corollary 5.6] the natural mor-
phism M◦

3 → S is bijective on geometric points, and for every geometric point [U ] ∈ M◦
3, the bun-
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dle U is exceptional. As before we conclude that M◦
3 → S is an isomorphism and that there exist

a Brauer class βU ∈ Br(M◦
3) = Br(S) and a p∗(βU)-twisted universal bundle U on X×S M

◦
3
∼= X.

Since ∧3U ∼= O(−HX) (up to a twist by a line bundle on S), it follows from Lemma 2.13
that β3

U = 1. On the other hand, it follows from [KP21, Proposition 5.5] that

V :=
(
p∗U

∨)∨
is a βU-twisted vector bundle on S of rank 7. Therefore, β7

U = 1 by Corollary 2.8. Combining
the above equalities for βU, we conclude that βU = 1; hence the bundles U and V are untwisted.

By [KP21, Proposition 5.5] the bundle U induces a closed embedding X → GrS(3, V ). More-
over, if pV : GrS(3, V ) → S is the natural morphism and IX is the ideal of X in GrS(3, V ), it
follows that

A := pV ∗
(
IX ⊗ ∧2U∨)

is a vector bundle on S of rank 3, and if φ : ∧2V → A∨ denotes the dual morphism of the natural
embedding A ↪→ ∧2V ∨, then (5.2) holds.

Theorem 5.2. If X/S is a form of a prime Fano threefold of genus 12, then there is a semiorthog-
onal decomposition

D(X) =
〈
OX ⊗D(S),U∨ ⊗D(S),E⊗D(S,β),∧2U∨ ⊗D(S)

〉
.

Moreover, if X(S) ̸= ∅, then β can be represented by a conic bundle.

Proof. By (5.1) the collection
(
OX ,U∨,E,∧2U∨) is a relative exceptional collection; hence the

first part of the theorem follows from Corollary 3.4 and Proposition 3.3(iii).

If X(S) ̸= ∅ and if i : S → X is a section of X → S, then i∗E is a β-twisted vector bundle of
rank 2 on S, so β is represented by the conic bundle PS(i

∗E).

5.2 Forms of X10

Recall that over an algebraically closed field, every prime Fano threefold X of genus 10 (type X10)
can be represented as the zero locus of a global section of the vector bundle U⊥(1)⊕ O(1)⊕2

on Gr(2, 7), or equivalently as the linear section

X = Gr(2, V ) ∩ P11 ,

where V is a vector space of dimension 7, the intersection is considered inside the Plücker
space P

(
∧2V

)
= P20, and the subspace P11 ⊂ P20 is the projectivization of the kernel of the

morphism ∧2(V ) → V ∨ ⊕ k2 given by the global section of U⊥(1) ⊕ O(1)⊕2 defining X (note
that H0

(
Gr(2, V ),U⊥(1)

)
= ∧3V ∨, so a global section of U⊥(1) induces a map ∧2(V ) → V ∨).

The restriction to X of the tautological bundle U is called the Mukai bundle.

The following proposition provides an analogue of the above description over any base.

Proposition 5.3. If p : X → S is a smooth Fano fibration with fibers of type X10, there ex-
ist a vector bundle V of rank 7, a vector bundle A of rank 2, a line bundle L, and epimor-
phisms φ1 : ∧3 V → L∨ and φ2 : Ker

(
∧2V φ1−→ V ∨ ⊗ L∨)→ A∨ such that

X = GrS(2, V )×PS(∧2V ) PS(Ker(φ2)) . (5.3)

Proof. Consider the relative moduli space

M := MX/S(2;HX , 6LX , 0) ,
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where we use the convention of Remark 3.6 on the right-hand side. By [KPS18, Theorem B.1.1,
Proposition B.1.5] the natural projective morphism f : M → S is bijective on geometric points,
and for every geometric point [U ] ∈ M, the bundle U is exceptional by [KPS18, Lemma B.1.9].
Therefore, f is an isomorphism by Corollary 3.8.

Note that every sheaf parameterized by the moduli space M is HX -stable. Therefore, applying
Proposition 3.11 we obtain a Brauer class β ∈ Br(S) on M ∼= S and a p∗(β)-twisted universal
family (which we denote by U) on X ×S M = X. Since ∧2U ∼= O(−HX) (up to a twist by a line
bundle on S) and since the line bundle O(HX) is untwisted, Lemma 2.13 implies β2 = 1.

On the other hand,

V :=
(
p∗U

∨)∨
is a β-twisted vector bundle on S of rank 7. Therefore, β7 = 1 by Corollary 2.8. Combining the
above equalities for β, we conclude that β = 1; hence the bundles U and V are untwisted.

The bundle U induces a closed embedding X → GrS(2, V ). Moreover, it follows that

L := pV ∗
(
IX ⊗ U⊥(1)

)
and A := pV ∗(I

′
X ⊗ O(1))

are vector bundles of respective ranks 1 and 2, where IX is the ideal of X in GrS(2, V ), while I′X
is the ideal of X in GrS(2, V ) ×PS(∧2V ) PS

(
Ker

(
∧2V → V ∨ ⊗ L∨)) and pV : GrS(2, V ) → S is

the natural projection. Now (5.3) easily follows.

A semiorthogonal decomposition of the derived category of prime Fano threefolds X of
genus 10 over an algebraically closed field has been described in [Kuz06, § 6.4]. We summarize it
in a form that is convenient for our applications below.

Proposition 5.4. Let X be a prime Fano threefold of genus 10 over an algebraically closed
field k. Let U be the Mukai bundle on X. Consider the moduli space

M := MX,HX
(3;−HX , 9LX ,−2PX)

and the open subscheme M◦ ⊂ M parameterizing sheaves E on X such that

H•(X,E) = Ext•
(
U∨,E

)
= 0 .

Then ΓX := M◦ is a smooth projective curve of genus 2, there exists a universal family E of
sheaves on X ×M◦ = X × ΓX , the Fourier–Mukai functor ΦE : D(ΓX)→ D(X) is fully faithful,
and there is a semiorthogonal decomposition

D(X) =
〈
ΦE(D(ΓX)),OX ⊗D(k),U∨ ⊗D(k)

〉
. (5.4)

Proof. By [Kuz06, § 6.4 and § 8], see also [KPS18, §B.5] and [KP23, § 9.2], there exist a smooth
curve ΓX of genus 2 and a ΓX -flat family E of stable vector bundles on X with the same rank
and Chern classes as in the definition of the moduli space M (see also [KPS18, Remark B.5.3]),
such that the Fourier–Mukai functor

ΦE : D(ΓX) −→ D(X)

is fully faithful and its image together with the exceptional vector bundles OX and U∨ give the
semiorthogonal decomposition (5.4). It remains to provide the curve ΓX and the bundle E with
a modular interpretation.

As we already observed, the bundles Ey parameterized by the curve ΓX have the correct
Chern classes and are stable. Moreover, (5.4) implies that they satisfy the vanishing conditions
defining M◦. Therefore, there is a morphism ΓX → M◦ such that E is the pullback of a universal
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family. Applying Corollary 3.9 we conclude that it is an open immersion. On the other hand,
let E be a sheaf on X corresponding to a geometric point of M◦. Applying Proposition 3.14 to
the exact sequences

0 −→ Ey −→ O⊕6
X −→ (U∨)⊕3 −→ Ey(1) −→ 0 (5.5)

(see [KPS18, (B.5.2)]) and using the cohomology vanishings in the definition of M◦, we conclude
that if E ̸∼= Ey for y ∈ ΓX , then E belongs to the orthogonal of the right-hand side of (5.4),
which is impossible. Thus E ∼= Ey; hence the open immersion ΓX → M◦ is surjective, so it is an
isomorphism.

Recall that F2(X/S) denotes the relative Hilbert scheme of conics on X/S.

Theorem 5.5. If X/S is a form of a prime Fano threefold of genus 10, then there is a semiorthog-
onal decomposition

D(X) =
〈
D(Γ,βΓ),OX ⊗D(S),U∨ ⊗D(S)

〉
,

where Γ/S is a smooth family of curves of genus 2 and βΓ ∈ Br(Γ) is a 3-torsion Brauer class.

Moreover, if the natural morphism F2(X/S)→ S has a section, then βΓ = 1.

Proof. The proof of the first part is analogous to the proof of Theorem 4.9, with Proposition 4.8
replaced by Proposition 5.4. To prove the second part, assume that the morphism F2(X/S)→ S
has a section. Then there is a conic C ↪→ X, that is, an S-flat subscheme with the appropriate
Hilbert polynomial. Then, denoting by prX : X×S Γ→ X and prΓ : X×S Γ→ Γ the projections,
one can deduce from the proof of [KPS18, Lemma B.5.4] that

L := prΓ∗(E⊗ pr∗X OC) ∈ D(Γ,βΓ)

is a line bundle. Therefore, the Brauer class βΓ vanishes by Corollary 2.8.

5.3 Forms of X9

Recall that over an algebraically closed field, every prime Fano threefold X of genus 9 (type X9)
can be represented as a linear section

X = LGr(3, V ) ∩ P10 ,

where V is a vector space of dimension 6 endowed with a symplectic form and the intersection
is considered inside the space P

(
Ker

(
∧3V → V

))
= P13, where the morphism is induced by the

symplectic form. The restriction U of the tautological bundle from LGr(3, V ) ⊂ Gr(3, V ) to X is
called the Mukai bundle of X. The following observation is crucial for the results of this section.

Lemma 5.6. Let X be a prime Fano threefold of genus 9 over an algebraically closed field of
characteristic zero. The Mukai bundle U on X is stable with c1 = −HX , c2 = 8LX , c3 = −2PX ,
and the pair (U,OX) is exceptional. Moreover, any semistable vector bundle U of rank 3 on X
with H2(X,U) = 0 and ci(U) = ci(U) for 1 ⩽ i ⩽ 3 is isomorphic to the Mukai bundle.

Proof. The exceptionality of the Mukai bundle U and semiorthogonality of the pair (U,OX) are
proved in [Kuz06, Lemma 7.1]. The stability of U is equivalent to the vanishings

H0(X,U) = 0 and H0
(
X,∧2U

)
= H0

(
X,U∨(KX)

)
= H3(X,U)∨ = 0 ,

which follow from the semiorthogonality of the pair (U,OX). The computation of the Chern
classes of U can be performed on the Lagrangian Grassmannian and is straightforward.
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Now let U be a semistable vector bundle of rank 3 with the same Chern classes. Applying
Proposition 3.12 to E = U and U (conditions (3.2) are satisfied because E is numerically equivalent
to U) and the exact sequence

0 −→ U −→ O⊕6
X −→ U∨ −→ 0 (5.6)

obtained by restriction from LGr(3, 6), we conclude that U ∼= U.

The following proposition provides a description of families of prime Fano threefolds of genus 9
over any base.

Proposition 5.7. If p : X → S is a smooth fibration with fibers of type X9, there exist
a vector bundle V of rank 6, a vector bundle A of rank 3, a line bundle L, and epimor-
phisms φ1 : ∧2 V → L∨ and φ2 : Ker

(
∧3V φ1−→ V ⊗ L∨)→ A∨ such that

X = GrS(3, V )×PS(∧3V ) PS(Ker(φ2)). (5.7)

Proof. Consider the relative moduli space

M := MX/S(3;−HX , 8LX ,−2PX) ,

where we use the convention of Remark 3.6 on the right-hand side. Also let M◦ ⊂ M be the open
subscheme parameterizing bundles U on Xs with the vanishing

H•(Xs, U) = 0 .

By Lemma 5.6 the natural morphism f : M◦ → S is bijective on geometric points, and for every
geometric point [U ] ∈ M◦, the bundle U is exceptional. Therefore, f is an isomorphism by
Corollary 3.8.

Note that every sheaf parameterized by the moduli space M◦ isHX -stable. Therefore, applying
Proposition 3.11 we obtain a Brauer class β ∈ Br(S) on M◦ ∼= S and a p∗(β)-twisted universal
family (which we denote by U) on X ×S M◦ = X. Since ∧3U ∼= O(−HX) (up to a twist by a line
bundle on S) and since the line bundle O(HX) is untwisted, Lemma 2.13 implies β3 = 1.

On the other hand, let

V :=
(
p∗U

∨)∨ ;

this is a β-twisted vector bundle on S of rank 6. Applying Lemma 2.14 and (5.6), we ob-
tain β2 = 1. Combining the above equalities for β, we deduce β = 1; hence the bundles U and V
are untwisted.

The bundle U induces a closed embedding X ↪→ GrS(3, V ). Moreover, it follows that

L := pV ∗
(
IX ⊗ ∧2U∨) and A := pV ∗(I

′
X ⊗ O(HX))

are vector bundles of respective ranks 1 and 3, where IX is the ideal of X in GrS(3, V ) and I′X is
the ideal of X in GrS(3, V )×PS(∧3V ) PS

(
Ker

(
∧3V → V ⊗ L∨)), and where pV : GrS(3, V )→ S

is the natural projection. Now (5.7) easily follows.

A semiorthogonal decomposition of the derived category of prime Fano threefoldsX of genus 9
over an algebraically closed field has been described in [Kuz06, § 6.3]. We summarize it in a form
that is convenient for our applications below.

Proposition 5.8. Let X be a prime Fano threefold of genus 9 over an algebraically closed field k.
Let U be the Mukai bundle on X. Consider the moduli space

M := MX,HX
(2;−HX , 6LX , 0)
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and the open subscheme M◦ ⊂ M parameterizing sheaves E on X such that

H•(X,E) = Ext•
(
U∨,E

)
= 0 .

Then ΓX := M◦ is a smooth projective curve of genus 3, there exists a universal family E of
sheaves on X ×M◦ = X × ΓX , the Fourier–Mukai functor ΦE : D(ΓX)→ D(X) is fully faithful,
and there is a semiorthogonal decomposition

D(X) =
〈
ΦE(D(ΓX)),OX ⊗D(k),U∨ ⊗D(k)

〉
. (5.8)

Proof. By [Kuz06, § 6.3 and § 7], see also [KP23, § 9.1], there exist a smooth curve ΓX of genus 3
and a ΓX -flat family E of stable vector bundles on X with the same rank and Chern classes as
in the definition of the moduli space M such that the Fourier–Mukai functor

ΦE : D(ΓX) −→ D(X)

is fully faithful and its image together with the exceptional vector bundles OX and U∨ give the
semiorthogonal decomposition (5.8). The rest of the proof is analogous to that of Proposition 5.4
with (5.5) replaced by the exact sequence

0 −→ Ey −→ O⊕6
X −→

(
U∨)⊕2 −→ Ey(HX) −→ 0 (5.9)

(see [KP23, (9.1.4)]).

Recall that F3(X/S) denotes the relative Hilbert scheme of rational cubic curves on X/S.

Theorem 5.9. If X/S is a form of a prime Fano threefold of genus 9, there is a semiorthogonal
decomposition

D(X) =
〈
D(Γ,βΓ),OX ⊗D(S),U∨ ⊗D(S)

〉
,

where Γ/S is a smooth curve of genus 3 and βΓ ∈ Br(Γ) is a 2-torsion Brauer class.

Moreover, if the natural morphism F3(X/S)→ S has a section, then βΓ = 1.

Proof. The proof of the first part is analogous to the proof of Theorem 4.9, with Proposi-
tion 4.8 replaced by Proposition 5.8. To prove the second part, assume that the natural morphism
F3(X/S)→ S has a section. Then there is a rational cubic curve C ↪→ X, that is, an S-flat
subscheme with the appropriate Hilbert polynomial. Then, denoting by prX : X ×S Γ → X
and prΓ : X ×S Γ → Γ the projections, one can deduce from (5.9) (see [KP23, Proposition 9.7])
that

L := prΓ∗(E⊗ pr∗X OC)[1] ∈ D(Γ,βΓ)

is a line bundle. Therefore, the Brauer class βΓ vanishes by Corollary 2.8.

5.4 Forms of X7

Recall that over an algebraically closed field, every prime Fano threefold X of genus 7 (type X7)
can be represented as a linear section

X = OGr+(5, V ) ∩ P8 ,

where V is a vector space of dimension 10 endowed with a non-degenerate quadratic form,
OGr+(5, V ) is one (of the two) connected component of the Grassmannian of 5-dimensional
isotropic subspaces in V , and the intersection is considered in the half-spinor space P(S+) = P15.
The restriction U of the tautological bundle from OGr+(5, V ) ⊂ Gr(5, V ) to X is called the
Mukai bundle of X. The following observation is crucial for the results of this section.
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Lemma 5.10. Let X be a prime Fano threefold of genus 7 over an algebraically closed field
of characteristic zero. The Mukai bundle U on X is stable with Chern classes c1 = −2HX ,
c2 = 24LX , c3 = −14PX , and the pair (U,OX) is exceptional. Moreover, any semistable vector
bundle U of rank 5 on X with H2(X,U) = 0 and ci(U) = ci(U) for 1 ⩽ i ⩽ 3 is isomorphic to
the Mukai bundle.

Proof. The exceptionality of the Mukai bundle U and the semiorthogonality of the pair (U,OX)
are easy to prove by the Borel–Bott–Weil theorem (see [Kuz05, Lemma 3.1]). The stability of U
is equivalent to the vanishings

H0(X,U) = H0
(
X,∧2U

)
= H0

(
X,∧3U(HX)

)
= H0

(
X,∧4U(HX)

)
= 0 ,

which can be proved by a similar computation. The computation of the Chern classes of U can
be performed on the orthogonal Grassmannian and is straightforward.

Now let U be a semistable vector bundle of rank 5 with the same Chern classes. Applying
Proposition 3.12 to E = U and U (conditions (3.2) are satisfied because E is numerically equivalent
to U) and the exact sequence

0 −→ U −→ O⊕10
X −→ U∨ −→ 0 (5.10)

obtained by restriction from OGr+(5, 10), we conclude that U ∼= U.

The following proposition provides a description of families of prime Fano threefolds of genus 7
over any base.

Proposition 5.11. If p : X → S is a smooth fibration with fibers of type X7, there exist a vector
bundle V of rank 10, a line bundle L, and a self-adjoint isomorphism φ1 : V → V ∨⊗L∨ such that
X ⊂ OGrS(5, V ), where the orthogonal Grassmannian is considered with respect to the family
of symmetric bilinear forms φ1. Furthermore, the canonical double covering over S induced by
the Stein factorization of the morphism OGrS(5, V )→ S splits, and the relative Plücker class on
the component OGrS,+(5, V ) of OGrS(5, V ) containing X is divisible by 2 in PicOGrS,+(5,V )/S(S).
Finally, there exist a vector bundle A of rank 7 and an epimorphism φ2 : S+ → A∨ such that

X = OGrS,+(5, V )×PS(S+) PS(Ker(φ2)) , (5.11)

where S+ is the half-spinor bundle of rank 16 over S obtained as the pushforward to S of the line
bundle O(H), where H ∈ PicOGrS,+(5,V )/S(S) is half of the relative Plücker class on OGrS,+(5, V ).

Proof. Consider the relative moduli space

M := MX/S(5;−2HX , 24LX ,−14PX) ,

where we use the convention of Remark 3.6 on the right-hand side. Also let M◦ ⊂ M be the open
subscheme parameterizing bundles U on Xs with the vanishing

H•(Xs, U) = 0 .

By Lemma 5.10 the natural morphism f : M◦ → S is bijective on geometric points, and for
every geometric point [U ] ∈ M◦, the bundle U is exceptional. Therefore, f is an isomorphism by
Corollary 3.8.

Note that every sheaf parameterized by the moduli space M◦ isHX -stable. Therefore, applying
Proposition 3.11 we obtain a Brauer class β ∈ Br(S) on M◦ ∼= S and a p∗(β)-twisted universal
family (which we denote by U) on X ×S M◦ = X. Since ∧5U ∼= O(−2HX) (up to a twist by a
line bundle on S) and since the line bundle O(2HX) is untwisted, Lemma 2.13 implies β5 = 1.
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On the other hand, let

V :=
(
p∗U

∨)∨ ;

this is a β-twisted vector bundle on S of rank 10. Applying Lemma 2.14 and (5.10), we ob-
tain β2 = 1. Combining the above equalities for β, we deduce β = 1; hence the bundles U and V
are untwisted.

The bundle U defines a closed embedding X ↪→ GrS(5, V ). Moreover, it follows that

L := pV ∗
(
IX ⊗ Sym2U∨)

is a line bundle, where IX is the ideal of X in GrS(5, V ) and pV : GrS(5, V )→ S is the natural
projection. Furthermore, we have a canonical morphism L→ pV ∗ Sym

2U∨ = Sym2 V ∨, which can
be considered as a family of quadratic forms. Note that this family is everywhere non-degenerate.

Let OGrS(5, V ) ⊂ GrS(5, V ) be the zero locus of the natural section of p∗V L
∨⊗Sym2U∨; this

is a family of orthogonal Grassmannians for the above family of quadratic forms. Let

p′V : OGrS(5, V ) −→ S̃
f−→ S

be the Stein factorization so that f : S̃ → S is an étale double covering. Since X ⊂ OGrS(5, V ),
the natural morphism f∗OS̃

∼= p′V ∗OOGrS(5,V ) → p∗OX
∼= OS gives a regular section of this double

covering; hence the covering splits.

Let OGrS,+(5, V ) ⊂ OGrS(5, V ) be the connected component containing X. Let H be the
fundamental class of the Fano fibration p+V : OGrS,+(5, V ) → S, and set β := B(H). Since the
fibers of p+V have index 8, it follows from Corollary 2.17 that β8 = 1. Let

S+ :=
(
p+V ∗O(H)

)∨
;

this a β-twisted vector bundle of rank 16 on S. Let, furthermore,

A := p+V ∗(I
′
X ⊗ O(H)) ,

where I′X is the ideal of X on OGrS,+(5, V ); this a β-twisted vector bundle of rank 7 on S.
The existence of A implies that β7 = 1. Combining this with the previous observation, we
deduce β = 1; hence the bundles S+ and A are untwisted. Finally, the required formula (5.11)
also follows.

Remark 5.12. One could also construct the bundle U on X as the twisted normal bundle for the
relative anticanonical embedding of X, similarly to the proof of Proposition 4.5.

A semiorthogonal decomposition of the derived category of prime Fano threefoldsX of genus 7
over an algebraically closed field has been described in [Kuz05] and [Kuz06, § 6.2]. We summarize
it in a form that is convenient for our applications below.

Proposition 5.13. Let X be a prime Fano threefold of genus 7 over an algebraically closed
field k. Let U be the Mukai bundle on X. Consider the moduli space

M := MX,HX
(2;−HX , 5LX , 0)

and the open subscheme M◦ ⊂ M parameterizing sheaves E on X such that

H•(X,E) = Ext•(U∨,E) = 0 .

Then ΓX := M◦ is a smooth projective curve of genus 7, there exists a universal family E of
sheaves on X ×M◦ = X × ΓX , the Fourier–Mukai functor ΦE : D(ΓX)→ D(X) is fully faithful,
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and there exists a semiorthogonal decomposition

D(X) =
〈
ΦE(D(ΓX)),OX ⊗D(k),U∨ ⊗D(k)

〉
. (5.12)

Proof. By [Kuz06, § 6.2], see also [Kuz05, Theorem 4.4], there exist a smooth curve ΓX of genus 7
and a ΓX -flat family E of stable vector bundles on X with the same rank and Chern classes as
in the definition of the moduli space M and such that the Fourier–Mukai functor

ΦE : D(ΓX) −→ D(X)

is fully faithful and its image together with the exceptional vector bundles OX and U∨ give the
semiorthogonal decomposition (5.12). The rest of the proof is analogous to that of Proposition 5.4
with (5.5) replaced by the exact sequence

0 −→ Ey −→ O⊕5
X −→ U∨ −→ Ey(HX) −→ 0 (5.13)

(see [Kuz05, (3)]).

Remark 5.14. One could also construct the curve Γ as the relative linear section

Γ := OGrS,−(5, V )×PS(S−) PS(A)

of the second component of the relative orthogonal Grassmannian with respect to its embedding
into the projectivization of the other half-spinor bundle S− on S.

Theorem 5.15. If X/S is a form of a prime Fano threefold of genus 7, then there is a semiorthog-
onal decomposition

D(X) =
〈
D(Γ),OX ⊗D(S),U∨ ⊗D(S)

〉
,

where Γ/S is a smooth curve of genus 7.

Proof. The proof is analogous to the proof of Theorem 4.9, with Proposition 4.8 replaced by
Proposition 5.13. The only difference is the absence of the Brauer class βΓ, which is due to the
two facts: first, ∧2E ∼= O(−HX) up to a twist by a line bundle on Γ, so β2

Γ = 1; and second, the
pushforward of E∨ to Γ has rank 5 (this follows, for example, from the dual of (5.13)), so β5

Γ = 1.
A combination of these facts implies βΓ = 1.

6. Weil restriction of scalars

Let S be a connected scheme, and let f : S′ → S be a finite étale morphism. The Weil restriction
of scalars functor

ResS′/S : Sch /S′ −→ Sch /S

is defined (see, for example, [BLR90, § 7.6]) as the right adjoint functor of the extension of scalars
functor

Sch /S −→ Sch /S′ , X 7−→ X ×S S′ .

By definition, we have a natural isomorphism

MapS(X,ResS′/S(Y )) ∼= MapS′(X ×S S′, Y ) (6.1)

between the sets of morphisms in the categories of S-schemes and S′-schemes, respectively. It is
well known that Weil restriction commutes with base change [BLR90, § 7.6].
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6.1 Forms of powers of Fano varieties

Recall from [CS21, § 3.8] the corestriction map

coresS′/S : H
2
ét(S

′,Gm) −→ H2
ét(S,Gm)

as well as its restriction coresS′/S : Br(S′)→ Br(S). Also recall the sequence (2.5).

Lemma 6.1. If f : S′ → S is a finite étale morphism of degree d, β′ ∈ Br(S′), and V is a β′-
twisted vector bundle of rank r on S′, then there exist a coresS′/S(β

′)-twisted vector bundle W

of rank rd on S and a closed embedding

σ : ResS′/S(PS′(V )) ↪−−→ PS(W )

which restricts to the Segre embedding (Pr−1)d ↪→ Prd−1 on each geometric fiber.

We will write W := coresS′/S(V ) and call W the Segre bundle of V and σ the Segre embedding.

Proof. Let s0 ∈ S be a base point. The compatibility of Weil restriction with base change implies

ResS′/S(PS′(V ))s0
∼= Resf−1(s0)/s0(Pf−1(s0)(Vf−1(s0)))

∼=
∏

s′∈f−1(s0)

P(Vs′) .

The fundamental group π1(S, s0) acts on the Picard group Zd on the right-hand side by permu-
tations, the fundamental divisor class of ResS′/S(PS′(V )) corresponds to the sum of hyperplane
classes of the factors, and its space of global sections on the fiber over s0 is isomorphic to the
dual of the Segre space

Ws0 :=
⊗

s′∈f−1(s0)

Vs′ .

Comparing this with the definition of the corestriction map in [CS21, § 3.8], it is easy to see that
the Brauer class of W is equal to coresS′/S(β

′). The rest follows from Lemma 2.16.

The following result will be used quite a few times in Section 7.

Proposition 6.2. Let p : X → S be a smooth Fano fibration with PicX/S(S) ∼= Z. Assume that
for each geometric point s ∈ S, there exist a smooth Fano variety Ys of Picard rank 1 and a
closed embedding ξs : Xs ↪→ Y d

s such that

(a) the projections prs,i : Xs → Ys are surjective with prs,i∗OXs
∼= OYs , and

(b) if hs ∈ Pic(Ys) is an ample generator and hs,i := pr∗s,i(hs) ∈ Pic(Xs), then

Pic(Xs) =

d⊕
i=1

Zhs,i

and the hs,i generate the nef cone of Xs.

Then there exist a finite étale covering f : S′ → S of degree d with connected S′, a smooth
projective Fano fibration Z → S′, and a closed embedding

ψ : X ↪−−→ ResS′/S(Z)
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such that for each geometric point s′ ∈ S′, there is an isomorphism Zs′
∼= Yf(s′) and the diagram

Xs
ψs //

ξs
��

(ResS′/S(Z))s

Y d
s

∏
s′∈f−1(s) Zs′

∼oo

(6.2)

commutes for any s ∈ S, where the bottom isomorphism is the product of the above isomor-
phisms.

Proof. Let s0 ∈ S be a geometric point. Since the hs0,i are the generators of the nef cone of Xs0 ,
it follows from Lemma 2.5 that the monodromy action of π1(S, s0) on Pic(Xs0) permutes the
classes hs0,i. Moreover, since Pic(Xs0)

π1(S,s0) ∼= PicX/S(S) ∼= Z, the action of π1(S, s0) on the
set {hs0,1, . . . , hs0,d} is transitive; in particular, the π1(S, s0)-orbit of hs0,1 has length d.

Let f : S′ → S be the finite étale morphism of degree d with connected S′ constructed by
applying Corollary 2.4 to the class hs0,1, set X ′ := X ×S S′, and let s′0 ∈ S′ be the point such
that hs0,1|Xs′0

is monodromy invariant. By Corollary 2.3 there is a unique class h′ ∈ PicX′/S′(S′)
that restricts to hs0,1 ∈ Pic(Xs′0

). By Lemma 2.5 for each geometric point s′ ∈ S′, the restric-
tion h′|X′

s′
is a generator of the nef cone; therefore,

h′|X′
s′
= hf(s′),i ∈ Pic(X ′

s′) = Pic(Xf(s′))

for some 1 ⩽ i ⩽ d. On the other hand, since hf(s′0) ∈ Pic(Yf(s′0)) is an ample class, there exists
an integer m(s′0) ∈ Z such that the class m(s′0)hf(s′0) is very ample (hence is globally generated
and has vanishing higher cohomology). Assumption (a) implies that the class m(s′0)h

′|X′
s′0

is

globally generated and has vanishing higher cohomology as well, and since both properties are
open and the map f is proper, the same holds in the preimage U ′ = f−1(U) of a Zariski
neighbourhood U of the point f(s′0) in S.

Replacing S′ and S with U ′ and U and applying Lemma 2.16 to the class m(s′0)h
′, we obtain

a morphism to a Severi–Brauer variety over S′

ϕ : X ′ −→ PU ′(V )

such that for any geometric point s′ ∈ U ′, its fiber ϕs′ coincides with the map

X ′
s′ = Xf(s′)

prf(s′),i−−−−−→ Yf(s′) ↪−−→ PN ,

where the last arrow is the map given by the very ample class mhf(s′) on Yf(s′). Define the
subvariety ZU ′ ⊂ PU ′(V ) as the image of the morphism ϕ. Then it follows from the above that
for each point s′ ∈ U ′, we have

ZU ′,s′
∼= Yf(s′) ;

in particular, ZU ′ → U ′ is a smooth Fano fibration.

Replacing the point s0 with other geometric points of S and applying the same construction,
we obtain an open cover {U} of S, the induced open cover {U ′} of S′, and a family of Fano fibra-
tions ZU ′ → U ′. The construction shows that these Fano fibrations agree over the intersections
of the opens of the cover; hence they can be glued into a single Fano fibration Z → S′.

The morphism ϕ : X ′ → Z induces by adjunction a morphism ψ : X → ResS′/S(Z) of S-
schemes. The commutativity of (6.2) follows by construction. In particular, ψs is a closed em-
bedding for each s ∈ S, and since it is a projective S-morphism, it is a closed embedding
globally.
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6.2 Semiorthogonal decomposition for Weil restriction of scalars

Let f : S′ → S be a finite étale morphism, and let q : Y → S′ be a smooth projective morphism.
SetX := ResS′/S(Y ), and let p : X → S be the natural morphism. In this subsection we construct,
under appropriate assumptions, a semiorthogonal decomposition for D(X).

Consider the diagram of maps of S-schemes

X ×S S′

prY

$$

prX

{{
X Y ,

(6.3)

where prY : X×SS
′ → Y corresponds by (6.1) to the identity morphismX → ResS′/S(Y ) and prX

is the projection to the first factor. Recall the notion of relative exceptionality from Section 3.1.

Theorem 6.3. Assume that the structure sheaf OY is relative exceptional over S′. Then OX is
relative exceptional over S, the S-linear Fourier–Mukai functor

Φ := prX∗ ◦ pr∗Y : D(Y ) −→ D(X)

is fully faithful on the subcategories (OY ⊗D(S′))⊥ and ⊥(OY ⊗D(S′)) in D(Y ), and the pairs
of subcategories

Φ
(
(OY ⊗D(S′))⊥

)
,OX ⊗D(S) and OX ⊗D(S),Φ

(⊥(OY ⊗D(S′))
)

(6.4)

in D(X) are semiorthogonal, S-linear, and admissible.

Proof. By Proposition 3.3(i)–(ii) it is enough to verify the result in the case where S = {s} is
a geometric point (that is, the spectrum of an algebraically closed field) and S′ = {s′1, . . . , s′d}
is a finite union of reduced points. In this case Y = Y1 ⊔ · · · ⊔ Yd is a disjoint union of d
smooth projective components, the structure sheaf OYk

is exceptional for each 1 ⩽ k ⩽ d,
and X ∼= Y1 × · · · × Yd. Moreover, the diagram (6.3) takes the form

(Y1 × · · · × Yd) ⊔ · · · ⊔ (Y1 × · · · × Yd)
(pr1,...,prd)

++

(id,...,id)

ss
Y1 × · · · × Yd Y1 ⊔ · · · ⊔ Yd ,

where prk is the projection to the kth factor. Thus, the functor Φ is isomorphic to the direct
sum

Φ ∼=
d⊕

k=1

pr∗k :
d⊕

k=1

D(Yk) −→ D(Y1 × · · · × Yd) .

It remains to show that this functor is fully faithful on the left and right orthogonals of the object

OY =
d⊕

k=1

OYk
∈

d⊕
k=1

D(Yk) .

So, let F1 ∈ D(Yk1) and F2 ∈ D(Yk2). If k1 ̸= k2, then Ext•(Φ(F1),Φ(F2)) can be rewritten
as

Ext•(pr∗k1(F1), pr
∗
k2(F2)) ∼= H•(Y1 × · · · × Yd,pr

∗
k1

(
F∨
1

)
⊗ pr∗k2(F2)

)
∼= H•(Yk1 ,F

∨
1 )⊗H•(Yk2 ,F2) ∼= Ext•(F1,OYk1

)⊗ Ext•(OYk2
,F2) , (6.5)

where the second isomorphism follows from the Künneth formula combined with the exception-
ality of OYk

for each k ̸= k1, k2. Now if F1 ∈ O⊥
Yk1

and F2 ∈ O⊥
Yk2

, the second factor on the
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right-hand side vanishes, and similarly if F1 ∈ ⊥OYk1
and F2 ∈ ⊥OYk2

, the first factor on the
right-hand side vanishes. Thus, in both cases the right-hand side is zero, which agrees with the
fact that F1 and F2 are orthogonal on Y1 ⊔ · · · ⊔ Yd as they are supported on different connected
components.

Similarly, if k1 = k2, an analogous computation gives

Ext•(pr∗k1(F1), pr
∗
k2(F2)) ∼= Ext•(F1,F2) ,

so the full faithfulness of Φ on the orthogonals of OY ⊗D(S′) follows.

Finally, the orthogonality of the components in (6.4) follows from (6.5) with either F1 or F2

replaced by O, and the S-exceptionality of OX follows from (6.5) with both F1 and F2 replaced
by O.

Remark 6.4. On the entire category D(Y ), the functor Φ is not fully faithful (of course, if d > 1).
Indeed, the S-linear subcategory of D(Y ) generated by OY is equivalent to D(S′), while the S-
linear subcategory of D(X) generated by OX is equivalent to D(S).

Remark 6.5. The components of (6.4) do not generate D(X) even in the simplest example
where S′ → S has degree 2 and Y = P1

S′ . In this case the orthogonal is equal to OX(HX)⊗D(S).
The case where S′ → S has degree 3 and Y → S′ is a P1-fibration will be discussed in Sec-
tion 7.1.

7. Fano threefolds of higher geometric Picard number

In this section we describe Fano fibrations p : X → S with geometric Picard rank of fibers
greater than 1. We keep the notation HX = −KX ∈ Pic(X) for the relative fundamental class.
Throughout this section we assume

PicX/S(S) = Z ·HX .

7.1 Forms of X1,1,1

Recall that according to the notation from the introduction, over an algebraically closed field,
every Fano threefold of type X1,1,1 is isomorphic to P1×P1×P1. Using Proposition 6.2 we easily
obtain a description of all Fano fibrations of this type.

Proposition 7.1. If p : X → S is a smooth Fano fibration with fibers of type X1,1,1, there exist
a finite étale covering S′ → S of degree 3 with connected S′, a 2-torsion Brauer class β′ ∈ Br(S′),
and a β′-twisted vector bundle V on S′ of rank 2 such that

X = ResS′/S(PS′(V )) . (7.1)

Moreover, if X(S) ̸= ∅, then β′ = 1.

Proof. We apply Proposition 6.2, where Ys = P1, d = 3, and ξs is an isomorphism. Then Z → S′

is a smooth P1-fibration, so Z ∼= PS′(V ) by Lemma 2.15, where V is a β′-twisted vector bundle
of rank 2 and β′2 = 1 by Corollary 2.8. The isomorphism (7.1) follows.

If X(S) ̸= ∅, then Z(S′) ̸= ∅ by (6.1), so β′ = 1.

To describe the derived category of X, we will use the functor Φ from Theorem 6.3. We
denote by HV the fundamental class of PS′(V ).

556



Derived categories of families of Fano threefolds

Theorem 7.2. If X/S is a form of a Fano threefold of type X1,1,1, then there is a semiorthogonal
decomposition

D(X) = ⟨OX ⊗D(S),Φ(OPS′ (V )(HV )⊗D(S′,β′)),

OX(HX)⊗D(S,β),OX(HX)⊗ Φ(OPS′ (V )(HV )⊗D(S′,β′ · f∗(β)))⟩ ,
where f : S′ → S and β′ ∈ Br(S′) are described in Proposition 7.1 and β := coresS′/S(β

′).

Note that if X(S) ̸= ∅, then β′ = 1 by Proposition 7.1, and therefore also β = 1, so in this
case all the components of D(X) are untwisted.

Proof. By Theorem 3.1 we have D(PS′(V )) = ⟨OPS′ (V ) ⊗D(S′),OPS′ (V )(HV ) ⊗D(S′,β′)⟩. Ap-
plying Theorem 6.3 we obtain the first two components in the required semiorthogonal decom-
position of D(X). Tensoring them by the β-twisted line bundle O(HX) (note that the Brauer
twist of HX is equal to coresS′/S(β

′) by Lemma 6.1) and modifying the Brauer twists of the com-
ponents appropriately, we obtain the last two components. To check the semiorthogonality and
generation, we apply Proposition 3.3(ii)–(iii). Accordingly, we need to consider the case where S
is the spectrum of an algebraically closed field. In this case X ∼= P1 × P1 × P1, and the required
semiorthogonal decomposition follows from the exceptional collection

D
(
P1 × P1 × P1

)
= ⟨O,O(1, 0, 0),O(0, 1, 0),O(0, 0, 1),O(1, 1, 1),O(2, 1, 1),O(1, 2, 1),O(1, 1, 2)⟩ ,

which has been proved in [Mir21]; see also [Kuz21, Appendix D].

7.2 Forms of X2,2

Recall that according to the notation from the introduction, over an algebraically closed field,
every Fano threefold of type X2,2 is isomorphic to a divisor of bidegree (1, 1) in P2 × P2. Using
Proposition 6.2 we obtain a description of all Fano fibrations of this type.

For an étale double covering S′ → S, we denote the action of the Galois involution of S′

over S on Br(S′) by β′ 7→ β̄′. Recall the Segre embedding defined in Lemma 6.1.

Proposition 7.3. If p : X → S is a smooth Fano fibration with fibers of type X2,2, there exist
a finite étale covering S′ → S of degree 2 with connected S′, a 3-torsion Brauer class β′ ∈ Br(S′)
such that

β̄′ = (β′)−1 , (7.2)

and a β′-twisted vector bundle V on S′ of rank 3 such that X ⊂ ResS′/S(PS′(V )). Moreover,
if W := coresS′/S(V ) is the Segre bundle, then W is untwisted and there exist a line bundle L

and an epimorphism φ : W ↠ L∨ such that

X = ResS′/S(PS′(V ))×PS(W ) PS(Ker(φ)) , (7.3)

where the morphism ResS′/S(PS′(V ))→ PS(W ) in the fiber product is the Segre embedding.

Moreover, if X(S) ̸= ∅, then β′ = 1.

Proof. We apply Proposition 6.2, where Ys = P2, d = 2, and ξs is the natural embedding.
Then Z → S′ is a smooth P2-fibration; hence Z ∼= PS′(V ) by Lemma 2.15, where V is a β′-
twisted vector bundle of rank 3 and β′3 = 1 by Corollary 2.8. In this way we obtain a divisorial
embedding ψ : X ↪→ ResS′/S(PS′(V )).

Let HW be the fundamental class of ResS′/S(PS′(V )). By Lemma 6.1 it is p∗
(
β−1

)
-twisted,

where β := coresS′/S(β
′). So, if pW : ResS′/S(PS′(V ))→ S is the projection, then

L := pW∗(IX ⊗ O(HW ))
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is a β−1-twisted line bundle on S; hence β = 1 by Corollary 2.8 and β′ · β̄′ = f∗(β) = 1, which
implies (7.2). Denoting by φ the dual of the embedding L ↪→ pW∗O(HW ) = W∨, we deduce (7.3).

Finally, if X(S) ̸= ∅, the morphism PS′(V )→ S′ has a section by (6.1), so β′ = 1.

Theorem 7.4. If X/S is a form of a Fano threefold of type X2,2, then there is a semiorthogonal
decomposition

D(X) = ⟨OX ⊗D(S),ψ∗(Φ(OPS′ (V )(HV )⊗D(S′,β′))
)
,

OX(HX)⊗D(S),OX(HX)⊗ψ∗(Φ(OPS′ (V )(HV )⊗D(S′,β′))
)
⟩ .

Note that if X(S) ̸= ∅, then β′ = 1 by Proposition 7.3 and all the components are untwisted.

Proof. The proof is analogous to the proof of Theorem 7.2. The only difference is that this
time the Brauer class β = coresS′/S(β

′) is trivial by Proposition 7.3, and for the geometric
fibers Xs

∼= Fl(1, 2; 3) of X → S, we use the exceptional collection

D(Fl(1, 2; 3)) = ⟨O,O(1, 0),O(0, 1),O(1, 1),O(2, 1),O(1, 2)⟩ (7.4)

established in [Kuz21, Appendix C].

7.3 Forms of X2,2,2

Recall that according to the notation from the introduction, over an algebraically closed field,
every Fano threefold of type X2,2,2 is isomorphic to a complete intersection of divisors of mul-
tidegree (1, 1, 0), (1, 0, 1), and (0, 1, 1) in P2 × P2 × P2. It has Picard number 3, anticanonical
degree 30, and number 3.13 in the Mori–Mukai classification. Using Proposition 6.2 we obtain
a description of all Fano fibrations of this type.

Proposition 7.5. If p : X → S is a smooth Fano fibration with fibers of type X2,2,2, there exist
a finite étale covering S′ → S of degree 3 with connected S′, a vector bundle V on S′ of rank 3,
and a closed embedding

ψ : X ↪−−→ ResS′/S(PS′(V ))

which over each geometric point s ∈ S coincides with the natural embedding Xs ↪→ P2×P2×P2.

Proof. We apply Proposition 6.2, where Ys = P2, d = 3, and ξs is the natural embedding.
Then Z → S′ is a smooth P2-fibration; hence Z ∼= PS′(V ) by Lemma 2.15, where V is a β′-
twisted vector bundle of rank 3 and β′3 = 1 by Corollary 2.8. In this way we obtain the required
closed embedding ψ : X ↪→ ResS′/S(PS′(V )), so it remains to show that β′ = 1.

For this let HV be the fundamental class of PS′(V ), and let HX be the fundamental class
of X. Consider the fiber product X ×S S′ and the diagram (6.3) for ResS′/S(PS′(V )). It takes
the form

ResS′/S(PS′(V ))
pr1←−− ResS′/S(PS′(V ))×S S′ pr2−−→ PS′(V ) ,

where pr1 is the projection to the first factor and pr2 corresponds by adjunction (6.1) to the
identity morphism of ResS′/S(PS′(V )). Finally, let pV : ResS′/S(PS′(V ))×SS

′ → S′ be the natural
projection. Now let IX be the ideal of X in ResS′/S(PS′(V )), and consider the sheaf

L := pV ∗(pr
∗
1(IX(HX))⊗ pr∗2 O(−HV )) .

If s′ ∈ S′ is a geometric point and s = f(s′) ∈ S, then p−1
V (s′) ∼= P2 × P2 × P2, and if we denote

the hyperplane classes of the factors by hi, then

(pr∗1(IX(HX))⊗ pr∗2O(−HV ))|p−1
V (s′)

∼= IXs(hi + hj) ,

558



Derived categories of families of Fano threefolds

the ideal ofXs ⊂ P2×P2×P2 twisted by O(hi+hj), where 1 ⩽ i < j ⩽ 3 and the point s′ ∈ f−1(s)
corresponds to the class hk with k ̸∈ {i, j} (this follows from the construction of S′ in the proof
of Proposition 6.2). Using the Koszul resolution

0 −→ O(−2h1 − 2h2 − 2h3)

−→ O(−2h1 − h2 − h3)⊕ O(−h1 − 2h2 − h3)⊕ O(−h1 − h2 − 2h3)

−→ O(−h1 − h2)⊕ O(−h1 − h3)⊕ O(−h2 − h3) −→ IXs −→ 0 ,

it is easy to check that H0(P2 × P2 × P2, IXs(hi + hj)) is 1-dimensional. As this holds for any s′,
we conclude that L is a line bundle, and since HX is p∗

(
β−1

)
-twisted, where β := coresS′/S(β

′),

while HV is β′−1-twisted, we see that L is β′ · f∗(β−1
)
-twisted. Therefore, β′ = f∗(β) by

Corollary 2.8, and we deduce from [CS21, § 3.8] the equality

β = coresS′/S(β
′) = coresS′/S(f

∗(β)) = β3 .

But β′3 = 1 by construction, so β3 = 1, so β = 1, and so β′ = f∗(β) = 1.

Now to describe the derived category, we start with the case of a variety X ⊂ P2 × P2 × P2

of type X2,2,2 over an algebraically closed field. Let hi for 1 ⩽ i ⩽ 3 be the pullbacks to X of the
hyperplane classes of the P2-factors.

Lemma 7.6. Let X ⊂ P2 × P2 × P2 be a variety of type X2,2,2 over an algebraically closed field.
Each projection

pri,j : X −→ P2 × P2 , 1 ⩽ i < j ⩽ 3 ,

is the blowup of a smooth Fano threefold Yi,j ⊂ P2 × P2 of type X2,2 along a smooth rational
curve Γi,j ⊂ Yi,j ⊂ P2 × P2 of bidegree (2, 2). The Picard group of X is freely generated by h1,
h2, h3, and if Ei,j is the exceptional divisor of the projection pri,j , we have

E1,2 = h1+h2−h3 , E1,3 = h1+h3−h2 , E2,3 = h2+h3−h1 , KX = −h1−h2−h3 . (7.5)

The cone of effective divisors of X is generated by the classes h1, h2, h3, E1,2, E1,3, E2,3, and
each of these has intersection product 1 with the symmetric curve class

δX :=
1

10
(h1 + h2 + h3)

2 . (7.6)

Proof. The first part is easy; see [KP24, Lemmas 2.4(i) and 2.3].

To describe the cone of effective divisors, let fi,j denote the class of a fiber of the projec-
tion Ei,j → Γi,j . Note that if (i, j, k) is a permutation of (1, 2, 3), we have

hi · fi,j = hj · fi,j = 0 , hk · fi,j = −Ei,j · fi,j = 1 .

Also note that curves of type fi,j sweep the divisor Ei,j , so if an effective divisor D ⊂ X has nega-
tive intersection with fi,j , it contains Ei,j , so we can writeD = D′+Ei,j , whereD

′ is also effective.
Iterating this observation, we eventually obtain an effective divisor D̄ such that D̄ · fi,j ⩾ 0 for
all 1 ⩽ i < j ⩽ 3. If D̄ = a1h1 + a2h2 + a3h3, then

0 ⩽ D̄ · fi,j = (a1h1 + a2h2 + a3h3) · fi,j = ak ;

that is, now D̄ is a non-negative linear combination of the hi, while D by construction is a sum
of D̄ and a non-negative linear combination of Ei,j .

Finally, the equalities hi · δX = 1 and Ei,j · δX = 1 are straightforward.

In the next key proposition, we use freely the notation introduced in Lemma 7.6.
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Proposition 7.7. Let X ⊂ P2×P2×P2 be a Fano threefold of type X2,2,2 over an algebraically
closed field k. Set HX := h1 + h2 + h3. Then there is a semiorthogonal decomposition

D(X) =
〈
OX ,E∨

X ,OX(h1),OX(h2),OX(h3),OX(h1 + h2),OX(h1 + h3),OX(h2 + h3)
〉
, (7.7)

where EX is an HX -stable exceptional vector bundle of rank 4 with det(EX) ∼= OX(−HX).

Moreover, there are unique self-dual (up to a twist) exact sequences

0 −→ EX −→ O⊕8
X −→ E∨

X −→ 0 (7.8)

and

0 −→ E∨
X −→ OX(h1)

⊕2 ⊕ OX(h2)
⊕2 ⊕ OX(h3)

⊕2

−→ OX(HX − h3)
⊕2 ⊕ OX(HX − h2)

⊕2 ⊕ OX(HX − h1)
⊕2 −→ EX(HX) −→ 0 . (7.9)

The bundles EX and FX (the latter appears in the proof) should be thought of as the Mukai
bundles of ranks 4 and 2 on the Fano threefold X of genus 16.

Proof. Using the blowup formula for pr1,2 : X → Y1,2, we obtain a semiorthogonal decomposition

D(X) = ⟨pr∗1,2(D(Y1,2)), i∗q
∗D(Γ1,2)⟩ ,

where q : E1,2 → Γ1,2 is the exceptional divisor of the blowup pr1,2 and i : E1,2 ↪→ X is its embed-
ding. Now we choose exceptional collections in the two components of the above decomposition.
Mutating the last two bundles in the exceptional collection (7.4) of D(Y1,2) to the far left and
taking into account that KY1,2 = −2h1 − 2h2, we obtain

D(Y1,2) = ⟨O(−h2),O(−h1),O,O(h1),O(h2),O(h1 + h2)⟩ .

Combining this collection with D(Γ1,2) = ⟨OΓ1,2(3),OΓ1,2(4)⟩ and denoting by f = f1,2 the class
of a fiber of q, we obtain a semiorthogonal decomposition

D(X) = ⟨O(−h2),O(−h1),O,O(h1),O(h2),O(h1 + h2),OE1,2(3f),OE1,2(4f)⟩ .

Now we find a sequence of mutations that transforms it into the form (7.7).

First, we mutate O(−h1) and O(−h2) to the far right. Since −KX = HX = h1 + h2 + h3, we
obtain the collection

D(X) = ⟨O,O(h1),O(h2),O(h1 + h2),OE1,2(3f),OE1,2(4f),O(h1 + h3),O(h2 + h3)⟩ .

Now we mutate OE1,2(3f) three steps to the left. Since Γ1,2 has bidegree (2, 2) in Y1,2, we have

Ext•(O(h1 + h2),OE1,2(3f)) = Ext•(O(h1 + h2),OΓ1,2(3)) = H•(Γ1,2,OΓ1,2(−1)) = 0 ;

hence the first step is just the transposition. Similarly, Ext•(O(hi),OE1,2(3f)) = k2; hence the
result of the mutation, which we denote by E∨

X , fits into a distinguished triangle

E∨
X −→ O(h1)

⊕2 ⊕ O(h2)
⊕2 −→ OE1,2(3f) . (7.10)

The morphism on the right is given by evaluation and is therefore surjective; hence E∨
X is an ex-

ceptional vector bundle of rank 4, the triangle is an exact sequence, and we obtain an exceptional
collection

D(X) =
〈
O,E∨

X ,O(h1),O(h2),O(h1 + h2),OE1,2(4f),O(h1 + h3),O(h2 + h3)
〉
.

Finally, we mutate OE1,2(4f) one step to the left. We have Ext•(O(h1 + h2),OE1,2(4f)) = k. On
the other hand, using (7.5) we deduce an exact sequence

0 −→ O(h3 − h1 − h2) −→ O −→ OE1,2 −→ 0 .
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Clearly, its twist by O(h1+h2) gives the required mutation; hence we obtain the required excep-
tional collection (7.7).

The determinant of EX is easy to compute from (7.10) and (7.5), so it remains to show the
stability of EX and to construct the exact sequences (7.8) and (7.9).

We start by constructing the exact sequences. First, note that the construction of the bun-
dle EX described above depends on a choice of the projection pr1,2 : X → Y1,2. The same con-
struction applied to other projections produces two other vector bundles, say E1,3 and E2,3,
on X, which fit into the same exceptional collection (7.7). Therefore, these bundles are isomor-
phic to EX . In other words, besides the triangle (in fact exact sequence) (7.10), we have two
other triangles

E∨
X −→ O(h1)

⊕2 ⊕ O(h3)
⊕2 −→ OE13(3f13) and E∨

X −→ O(h2)
⊕2 ⊕ O(h3)

⊕2 −→ OE23(3f23) .

Note that all these triangles are mutation triangles; in particular, we have

Ext•(E∨
X ,O(hi)) ∼= k2

for all 1 ⩽ i ⩽ 3, and the first morphisms in all these triangles are the coevaluation morphisms.

Now let FX be the right mutation of E∨
X through the triple of mutually completely orthogonal

line bundles OX(hi) for 1 ⩽ i ⩽ 3 so that we have a distinguished triangle

E∨
X −→ O(h1)

⊕2 ⊕ O(h2)
⊕2 ⊕ O(h3)

⊕2 −→ FX , (7.11)

where FX is an exceptional object and det(FX) ∼= OX(HX). Note that (7.11) implies that the
second arrow is the evaluation morphism. Comparing (7.11) to (7.10) and the other two defining
triangles of E∨

X , we obtain triangles

OX(hi)
⊕2 −→ FX −→ OEj,k

(3fj,k) (7.12)

for all permutation (i, j, k) of (1, 2, 3), and dualizing them we obtain triangles

F∨
X −→ OX(−hi)⊕2 −→ OEj,k

(fj,k − hi|Ej,k
) . (7.13)

Each arrow in these triangles is the evaluation or coevaluation morphism. It follows that the
second arrow in (7.13) is surjective; hence F∨

X is a vector bundle of rank 2. Therefore, its dual FX

is also a vector bundle of rank 2, and the triangles (7.11) and (7.12) are exact sequences.

Since FX is a vector bundle of rank 2 and det(FX) ∼= OX(HX), we have

FX
∼= F∨

X(HX) . (7.14)

Therefore, merging the exact sequence (7.11) with its dual twisted by OX(HX), we obtain (7.9).
Since the isomorphism (7.14) is skew-symmetric, so is the sequence (7.9).

Now note that (7.11) is a mutation sequence by construction; hence the same is true for its
twisted dual, as well as for the sequence (7.9) obtained by merging these two. Therefore, the
result of the right mutation of E∨

X to the far right in (7.7) is EX(HX)[−2]. On the other hand,
the left mutation of E∨

X through OX is isomorphic to this right mutation composed with the Serre
functor −⊗OX(−HX)[3] of D(X), and thus the result of this left mutation is EX [1]. Therefore,
the corresponding left mutation triangle looks like

EX −→ Ext•
(
OX ,E∨

X

)
⊗ OX −→ E∨

X .

Since the first and last terms are vector bundles of rank 4, the middle term must be isomorphic
to O⊕8

X ; hence the triangle gives the sequence (7.8).
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Now it remains to prove the stability of EX . By Lemma 7.6 the normalized slope of EX is

µ(EX) :=
c1(EX) · δX
rk(EX)

= −(h1 + h2 + h3) · δX
4

= −3

4
.

Therefore, to verify the stability of EX or E∨
X , it is enough to exclude the following possibilities:

(a) There is a reflexive subsheaf G ⊂ EX of rank 1 with µ(G) ⩾ 0.

(b) There is a stable reflexive subsheaf G ⊂ E∨
X of rank 2 with µ(G) ⩾ 1.

(c) There is a reflexive subsheaf G ⊂ E∨
X of rank 1 with µ(G) ⩾ 1.

Assume that we are in case (a). Then G is a line bundle, and by (7.8) it has a non-trivial
morphism to OX ; therefore, G ∼= OX(−D) with effective D. Furthermore, D · δX = −µ(G) ⩽ 0;
hence D = 0 by Lemma 7.6 and G ∼= OX . But Hom(OX ,EX) = 0 by the semiorthogonality
in (7.7), so case (a) is impossible.

A similar argument (with sequence (7.8) replaced by (7.9)) shows that if we are in case (c),
we have G ∼= O(hi), which contradicts the semiorthogonality of (7.7). Thus, case (c) is also
impossible.

Finally, assume that we are in case (b). Combining (7.10) and (7.13), we obtain an exact
sequence

0 −→ FX(−h1) −→ E∨
X −→ OX(h1)

⊕2 −→ 0 .

Since µ(G) ⩾ 1 = µ(OX(h1)) and G is stable and reflexive, while µ(FX(−h1)) = 1
2 , the composi-

tion G ↪→ E∨
X ↠ OX(h1)

⊕2 must be an isomorphism, which contradicts the stability of G. Thus,
case (b) is impossible.

Now that we know a good symmetric exceptional collection for X over algebraically closed
fields, we can pass to fibrations over any base scheme S.

Theorem 7.8. If X/S is a form of a Fano threefold of type X2,2,2, there is a semiorthogonal
decomposition

D(X) = ⟨OX ⊗D(S),E∨
X ⊗D(S,βE),

ψ∗(Φ(OPS′ (V )(1)⊗D(S′))
)
,OX(HX)⊗ψ∗(Φ(OPS′ (V )(−1)⊗D(S′))

)
⟩ ,

where βE ∈ Br(S), β2
E = 1, and EX is an S-exceptional βE-twisted vector bundle of rank 4 on X.

Moreover, if X(S) ̸= ∅, then βE can be represented by a conic bundle.

Proof. First, we construct a global version of the bundle EX by using the argument of Proposi-
tion 5.7. Consider the relative moduli space

M := MX/S,HX
(4;−HX , 5δX ,−4PX) ,

where HX is the fundamental class, the class δX is defined in (7.6), and PX is the class of a
point. Also let M◦ ⊂ M be the open subscheme parameterizing bundles E on Xs with vanishing

H•(Xs, E) = 0 .

By Propositions 7.7 and 3.12 (conditions (3.2) are satisfied by Lemma 3.13) applied to the exact
sequence (7.8), the natural morphism f : M◦ → S is bijective on geometric points, and for every
geometric point [E] ∈ M◦, the bundle E is exceptional. Therefore, f is an isomorphism by
Corollary 3.8.
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By Proposition 7.7 every sheaf parameterized by the moduli space M◦ isHX -stable. Therefore,
applying Proposition 3.11 we obtain a Brauer class βE ∈ Br(S) on M◦ ∼= S and a p∗(βE)-twisted
universal family EX on X ×S M◦ = X. Applying Lemma 2.14 and (7.8), we obtain β2

E = 1.

Next, the proof of the semiorthogonal decomposition follows easily from (7.7) by the argument
used in the proofs of Theorems 7.2 and 7.4.

Finally, if X(S) ̸= ∅, if i : S → X is a section of X → S, and if FX is the right mutation of EX

through ψ∗(Φ(OPS′ (V )(1) ⊗D(S′))
)
(this is a global version of the vector bundle from (7.11)),

then i∗FX is a βE-twisted vector bundle of rank 2 on S, so βE is represented by the conic
bundle PS(i

∗FX).

7.4 Forms of X4,4

Recall that according to the notation from the introduction, over an algebraically closed field,
every Fano threefold of type X4,4 is isomorphic to an intersection of the graph of the Cremona
transformation P5 99K P5 with P4×P4 ⊂ P5×P5. It has Picard number 2, anticanonical degree 28,
and number 2.21 in the Mori–Mukai classification. It is easy to see (see, for example, [KP24,
Lemma 2.4(ii)]) that each of the projectionsX → P4 is birational onto a smooth quadric Q3 ⊂ P4.
Using Proposition 6.2 we obtain a description of all Fano fibrations of this type.

Proposition 7.9. If p : X → S is a smooth Fano fibration with fibers of type X4,4, there exist
a finite étale covering S′ → S of degree 2 with connected S′, a smooth proper morphism Z → S′

with fiber Q3, and a closed embedding

ψ : X ↪−−→ ResS′/S(Z)

which over each geometric point s ∈ S coincides with the natural embedding Xs ↪→ Q3 ×Q3.

Proof. We apply Proposition 6.2, where Ys = Q3, d = 2, and ξs is the natural embedding.
Then Z → S′ is a smooth fibration with fiber Q3, and we obtain the required closed embed-
ding ψ : X ↪→ ResS′/S(Z).

Now to describe the derived category, we start with the case of a variety X ⊂ Q3 × Q3 of
type X4,4 over an algebraically closed field. Let hi for i = 1, 2 be the pullbacks to X of the
hyperplane classes of the factors and HX := h1 + h2.

Lemma 7.10. Let X ⊂ Q1 × Q2 be a variety of type X4,4 over an algebraically closed field,
where Q1 and Q2 are smooth 3-dimensional quadrics. Each projection

pri : X −→ Qi , i = 1, 2 ,

is the blowup of Qi along a smooth rational quartic curve Γi ⊂ Qi. The Picard group of X is
freely generated by h1 and h2, and if Ei is the exceptional divisor of the projection pri, we have

E1 = 2h1 − h2 , E2 = 2h2 − h1 , KX = −h1 − h2 = −HX . (7.15)

The cone of effective divisors of X is generated by the classes h1, h2, E1, E2, and each of these
has intersection product 1 with the symmetric curve class

δX :=
1

14
(h1 + h2)

2 . (7.16)

Proof. The first part is easy, see [KP24, Lemmas 2.4(ii) and 2.3], and the second is analogous to
Lemma 7.6.
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We denote by fi the class of a fiber of Ei → Γi and by Si the spinor bundle on the quadric Qi

and its pullback to X. We will also need the following result.

Lemma 7.11. Let X ⊂ Q1 × Q2 be a Fano threefold of type X4,4 over an algebraically closed
field k. Then there are exact sequences

0 −→ S∨2 −→ OX(h1)
⊕2 −→ OE1(5f1) −→ 0 , 0 −→ S∨1 −→ OX(h2)

⊕2 −→ OE2(5f2) −→ 0 ,

where the second arrows are the twists of the evaluation morphisms O⊕2
X → OEi(fi).

Proof. We prove the first sequence; the proof of the second is analogous. Denote the kernel of
the evaluation morphism OX(h1)

⊕2 → OE1(5f1) by K so that we have an exact sequence

0 −→ K −→ OX(h1)
⊕2 −→ OE1(5f1) −→ 0 . (7.17)

Let us check that the bundleK isHX -stable. Indeed, using (7.17) and (7.15) we see that rk(K) = 2
and c1(K) = 2h1 − E1 = h2; hence the normalized slope of K is

µ(K) =
c1(K) · δX
rk(K)

=
1

2
.

Assume that G ⊂ K is a destabilizing reflexive sheaf. Then rk(G) = 1, so G is a line bundle, and G

has a non-trivial morphism to OX(h1) by (7.17). Consequently, G ∼= OX(h1 − D), where D is
effective. But the slope of Gmust be positive, so (h1−D)·δX = 1−D·δX ⩾ 1, and thereforeD = 0.
Thus, G ∼= O(h1), which is absurd because Hom(OX(h1),K) = 0 by the definition of K.

Next we note that K is numerically equivalent to S∨2 ; indeed, the Chern classes of K can
be computed from (7.17), and it is easy to see that they are the same as those of S∨2 (we have
already seen this for c1). Now we apply Proposition 3.12 to U = S2 ∼= S∨2 (−h2), E = K(−h2),
and the pullback to X of the sequence (4.2), and conclude that K ∼= S∨2 , as we need.

In the next proposition we use freely the notation introduced in Lemmas 7.10 and 7.11.

Proposition 7.12. Let X ⊂ Q1 × Q2 be a Fano threefold of type X4,4 over an algebraically
closed field k. Then there is a semiorthogonal decomposition

D(X) =
〈
EX ,O, S∨1 , S

∨
2 ,OX(h1),OX(h2)

〉
, (7.18)

where EX is a stable exceptional vector bundle of rank 3 with det(EX) ∼= OX(−HX). Moreover,
there are unique exact sequences

0 −→ EX −→ O⊕8
X −→ S∨1

⊕2 ⊕ S∨2
⊕2 −→ E∨

X −→ 0 (7.19)

and

0 −→ E∨
X −→ OX(h1)

⊕3 ⊕ OX(h2)
⊕3 −→ EX(HX) −→ 0 . (7.20)

The bundle EX is the Mukai bundle of rank 3 on the Fano threefold X of genus 15.

Proof. Consider the projection pr1 : X → Q1, which, recall, is the blowup of a smooth rational
quartic curve Γ1 ⊂ Q1. Using the blowup formula we obtain a semiorthogonal decomposition

D(X) = ⟨pr∗1(D(Q1)), i∗q
∗D(Γ1)⟩ ,

where q : E1 → Γ1 is the exceptional divisor of the blowup pr1 and i : E1 ↪→ X is its embedding.

Now we choose exceptional collections in the two components of the above decomposition. In
the first component we choose one of the standard exceptional collections

D(Q1) = ⟨O(−h1),O, S∨1 ,O(h1)⟩ .
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Combining it with D(Γ1) = ⟨OΓ1(5),OΓ1(6)⟩, we obtain a semiorthogonal decomposition

D(X) =
〈
O(−h1),O, S∨1 ,O(h1),OE1(5f1),OE1(6f1)

〉
.

Now we find a sequence of mutations that transforms it into the form (7.18).

First, we mutate O(−h1) to the far right. Since −KX = h1 + h2, we obtain the collection

D(X) =
〈
O, S∨1 ,O(h1),OE1(5f1),OE1(6f1),O(h2)

〉
.

Now we mutate OE1(6f1) to the right. Using relations (7.15) and O∨
E1
∼= OE1(E1)[−1], we obtain

Ext•(OE1(6f1),O(h2))
∼= Ext•

(
O(h2)

∨,OE1(6f1)
∨)

∼= Ext•(O(E1 − 2h1),OE1(E1 − 6f1)[−1])
∼= H•(X,OE1(2f1))[−1] ∼= k3[−1] ;

therefore, the mutation triangle takes the form of the canonical extension

0 −→ OX(h2)
⊕3 −→ EX(h1 + h2) −→ OE1(6f1) −→ 0 , (7.21)

where we denote the middle term (the result of the mutation) by EX(h1 + h2) for further con-
venience. Note that EX is a coherent sheaf by construction. Moreover, taking the dual of (7.21)
and using the above identifications, we obtain a triangle

E∨
X(−h1 − h2) −→ OX(E1 − 2h1)

⊕3 −→ OE1(E1 − 6f1) , (7.22)

where the second arrow is the evaluation morphism and is therefore surjective. This proves
that E∨

X is locally free; hence the same is true for EX .

Now we mutate EX(h1 + h2) to the far left, and, using again the equality KX = −h1 − h2,
obtain the exceptional collection

D(X) =
〈
EX ,O, S∨1 ,O(h1),OE1(5f1),O(h2)

〉
.

Finally, we mutate OE1(5f1) one step to the left. We have Ext•(O(h1),OE1(5f1)) = k2, so applying
Lemma 7.11 we conclude that the corresponding mutation is given by the dual spinor bundle S∨2 ;
hence we obtain the required exceptional collection (7.18).

The rank and determinant of EX are easy to compute from (7.21), so it remains to show the
stability of EX and to construct the exact sequences (7.19) and (7.20).

We start by constructing the exact sequences. For this we take (7.18), mutate EX to the
far right, and then mutate the obtained object EX(h1 + h2)[−3] two steps to the left. The first
mutation (through O(h2)) is given by the exact sequence (7.21); hence the result of this mutation
is the object OE1(6f1)[−3]. Furthermore,

Ext•(O(h1),OE1(6f1))
∼= H•(X,OE1(2f1)) = k3 ,

and the evaluation morphism is surjective, so the second mutation triangle takes the form

0 −→ FX −→ OX(h1)
⊕3 −→ OE1(6f1) −→ 0 (7.23)

so that the result of the mutation is FX [−2]. Note that this triangle coincides with a twist
of (7.22) by h1 +h2 = 3h1−E1; hence FX

∼= E∨
X . So, merging (7.23) with (7.21) and taking into

account the equality Ext1(O(h1),O(h2)) = 0, we obtain the exact sequence (7.20).

To construct (7.19) it remains to note that the mutation of E∨
X [−2] through ⟨OX , S∨1 , S

∨
2 ⟩

is EX ; therefore, there is a distinguished triangle

A• ⊗ OX −→ B•
1 ⊗ S∨1 ⊕B•

2 ⊗ S∨2 −→ Cone
(
E∨
X −→ EX [2]

)
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for some graded vector spaces A•, B•
1 , and B•

2 . In other words, the cone of the first arrow has
two cohomology sheaves, EX in degree −1 and E∨

X in degree 0. Looking at the cohomology exact
sequence and taking into account the semiorthogonality of the pairs

(
OX ,E∨

X

)
and

(
EX , S∨i

)
for

i = 1, 2, we conclude that the triangle implies an exact sequence

0 −→ EX −→ A0 ⊗ OX −→ B0
1 ⊗ S∨1 ⊕B0

2 ⊗ S∨2 −→ E∨
X −→ 0 .

Comparing the first Chern classes and ranks, we deduce that dim
(
B0

1

)
= dim

(
B0

2

)
= 2 and

dim(A0) = 8, so this sequence takes the form (7.19).

Now it remains to prove the stability of EX . By Lemma 7.10 the normalized slope of EX is

µ(EX) :=
c1(EX) · δX
rk(EX)

= −(h1 + h2) · δX
3

= −2

3
.

Therefore, to check the stability of EX or E∨
X , it is enough to exclude the following possibilities:

(a) There is a reflexive subsheaf G ⊂ EX of rank 1 with µ(G) ⩾ 0.

(b) There is a reflexive subsheaf G ⊂ E∨
X of rank 1 with µ(G) ⩾ 1.

Assume that we are in case (a). Then G is a line bundle, and by (7.19) it has a non-trivial
morphism to OX ; therefore, G ∼= OX(−D) with effective D. Furthermore, D · δX = −µ(G) ⩽ 0,
so D = 0 by Lemma 7.10 and thus G ∼= OX . But Hom(OX ,EX) = 0 by the semiorthogonality
in (7.18); hence case (a) is impossible.

A similar argument (with (7.19) replaced by (7.20)) shows that if we are in case (b), we
have G ∼= O(hi), which contradicts the semiorthogonality of (7.18). Thus, case (b) is also impos-
sible.

Now that we know a good symmetric exceptional collection for X over algebraically closed
fields, we can pass to fibrations over any base scheme S. Recall the description of X given in
Proposition 7.9, in particular the double covering S′ → S and the quadric fibration q : Z → S′.

Theorem 7.13. If X/S is a form of a Fano threefold of type X4,4, there is a semiorthogonal
decomposition

D(X) =
〈
EX ⊗D(S),OX ⊗D(S),ψ∗(Φ(S∨ ⊗D(S′,βS)

))
,ψ∗(Φ(OZ(HZ)⊗D(S′)))

〉
,

where βS is a 2-torsion Brauer class on S′, S is a q∗(βS)-twisted spinor bundle of rank 2 on Z,
and EX is an S-exceptional vector bundle of rank 3 on X.

Moreover, if X(S) ̸= ∅, then βS ∈ Br(S′) can be represented by a conic bundle.

Proof. First, we construct a global version of the bundle EX by using the argument of Proposi-
tion 5.7. Consider the relative moduli space

M := MX/S(3;−HX , 6δX ,−2PX) ,

where HX is the fundamental class, the class δX is defined in (7.16), and PX is the class of
a point. Also let M◦ ⊂ M be the open subscheme parameterizing bundles E on Xs with the
vanishings

H•(Xs, E
∨(−h1)) = H•(Xs, E

∨(−h2)) = 0.

By Propositions 7.12 and 3.12 (conditions (3.2) follow from numerical equivalence) applied to
the exact sequence (7.20), the natural morphism f : M◦ → S is bijective on geometric points, and
for every geometric point [E] ∈ M◦, the bundle E is exceptional. Therefore, f is an isomorphism
by Corollary 3.8.
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By Proposition 7.7 every sheaf parameterized by the moduli space M◦ isHX -stable. Therefore,
applying Proposition 3.11 we obtain a Brauer class βE ∈ Br(S) on M◦ ∼= S and a p∗(βE)-twisted
universal family EX on X ×S M◦ = X. Let

W := (p∗E
∨
X)∨ ;

this is a βE-twisted vector bundle on S of rank 8. Therefore, β8
E = 1. On the other hand,

∧3EX
∼= OX(−HX) is untwisted, so β3

E = 1. From these two observations it follows that βE = 1;
hence EX is untwisted.

Now let βS ∈ Br(S′) be the 2-torsion Brauer class, and let S be the q∗(βS)-twisted spinor
bundle on the smooth 3-dimensional quadric bundle q : Z → S′, constructed in Theorem 4.4.
Then we have a semiorthogonal collection of S′-admissible subcategories〈

OZ ⊗D(S′), S∨ ⊗D(S′,βS),OZ(HZ)⊗D(S′)
〉
⊂ D(Z) .

Applying Theorem 6.3 we obtain the last three components in the required semiorthogonal de-
composition of D(X). Using the bundle EX constructed above, we obtain the first component. To
check full faithfulness, semiorthogonality, and generation, we apply Proposition 3.3. Accordingly,
we need to consider the case where S is the spectrum of an algebraically closed field. In this case
the required semiorthogonal decomposition was constructed in Proposition 7.12.

Finally, if X(S) ̸= ∅, then Z(S′) ̸= ∅ by (6.1), and if i : S′ → Z is a section of the mor-
phism Z → S′, then i∗S is a βS-twisted vector bundle of rank 2 on S′, so βS is represented by
the conic bundle PS′(i∗S).

7.5 Forms of X3,3

Recall that according to the notation from the introduction, over an algebraically closed field,
every Fano threefold of type X3,3 is isomorphic to a linear section of P3 × P3 of codimension 3.
Using Proposition 6.2 we obtain a description of all Fano fibrations of this type.

Recall that for an étale double covering S′ → S, we denote the action of the Galois involution
of S′ over S on Br(S′) by β′ 7→ β̄′.

Proposition 7.14. If p : X → S is a smooth Fano fibration with fibers of type X3,3, there exist
a finite étale covering S′ → S of degree 2 with connected S′, a 4-torsion Brauer class β′ ∈ Br(S′)
such that

β̄′ = (β′)−1 , (7.24)

and a β′-twisted vector bundle V on S′ of rank 4 such that X ⊂ ResS′/S(PS′(V )). Moreover,
if W := coresS′/S(V ) is the Segre bundle, then W is untwisted and there exist a vector bundle A
of rank 3 on S and an epimorphism φ : W ↠ A∨ such that

X = ResS′/S(PS′(V )))×PS(W ) PS(Ker(φ)) , (7.25)

where the morphism ResS′/S(PS′(V ))→ PS(W ) in the fiber product is the Segre embedding.

Proof. The proof is analogous to that of Proposition 7.3.

Using this description and Theorem 6.3, we can construct a semiorthogonal decomposition.
Recall that HV denotes the fundamental class of PS′(V ).

Theorem 7.15. If X/S is a form of a Fano threefold of type X3,3, there is a semiorthogonal
decomposition

D(X) =
〈
AX ,OX ⊗D(S),ψ∗(Φ(OPS′ (V )(HV )⊗D(S′,β′)))

〉
,
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where AX ⊂ D(X) is an S-linear admissible triangulated subcategory. Moreover, the base change
of AX along the double covering S′ → S has a semiorthogonal decomposition

(AX)S′ =
〈
D(Γ′),E⊗D

(
S′,β′2)〉 , (7.26)

where Γ′/S′ is a smooth curve of genus 3 and E is a p∗
(
β′2)-twisted S′-exceptional vector bundle

of rank 3 on X ×S S′.

Proof. The proof of the first part is analogous to the proof of Theorem 7.2. More precisely,
we use Theorem 6.3 to construct the last two components and define the category AX as their
orthogonal.

Now we prove the second part. The embedding ψ : X → ResS′/S(PS′(V )) constructed in
Proposition 7.14 after base change along f : S′ → S gives an embedding

ψ′ : X ′ := X ×S S′ ↪−−→ ResS′/S(PS′(V ))×S S′ ∼= PS′(V )×S′ PS′(τ∗V ) ,

where τ : S′ → S′ is the involution of the double covering f . Consider the first projection

pr1 : X
′ −→ PS′(V ) .

On each geometric fiber over S′, this is the blowup of P3 along a smooth sextic curve of genus 3
(see, for example, [KP24, Lemma 2.4(iii)]). Hence the same is true globally; that is, there exist
a smooth projective morphism Γ′ → S′ whose geometric fibers are curves of genus 3 and an
embedding Γ′ ↪→ PS′(V ) (of relative degree 6) such that

X ′ ∼= BlΓ′(PS′(V )) .

Using the blowup formula, we obtain a semiorthogonal decomposition

D(X ′) = ⟨i∗q∗D(Γ′)⊗ ωX′/S′ , pr∗1(D(PS′(V )))⟩ ,

where q : E1 → Γ′ is the exceptional divisor of the blowup pr1 and i : E1 ↪→ X ′ is its embedding.
Let h1 and h2 denote the fundamental classes of PS′(V ) and PS′(τ∗V ), respectively, as well as their
pullbacks to X ′. Then, using one of the standard (twisted) exceptional collections for PS′(V ), we
can rewrite the above semiorthogonal decomposition as

D(X ′) = ⟨i∗q∗D(Γ′)⊗ ωX′/S′ ,O(−h1),T1(−2h1),O,O(h1)⟩

(recall from Example 3.2 that O(kh1) is (β′)−k-twisted, while T1 is the relative tangent bundle
for X ′/S′, and so T1(−2h1) is (β′)−2-twisted, and we omit the derived categories D(S′,β′k)
which should appear as the corresponding factors) and apply a couple of mutations. First, we
mutate i∗q

∗D(Γ′)⊗ ωX′/S′ one step to the right, obtaining the decomposition

D(X ′) = ⟨O(−h1),RO(−h1)(i∗q
∗D(Γ′)⊗ ωX′/S′),T1(−2h1),O,O(h1)⟩ .

After that we mutate O(−h1) to the far right, and since KX′ = −h1 − h2, we obtain the decom-
position

D(X ′) = ⟨RO(−h1)(i∗q
∗D(Γ′)⊗ ωX′/S′),T1(−2h1),O,O(h1),O(h2)⟩ .

We note that the base change to S′ of ψ∗(Φ(OPS′ (V )(HV )⊗D(S′,β′))
)
is the S′-linear subcategory

of D(X ′) generated by O(h1) and O(h2); therefore, we obtain (7.26) with E = T1(−2h1).

7.6 Forms of X1,1,1,1

Recall that according to the notation from the introduction, over an algebraically closed field,
every Fano threefold of type X1,1,1,1 is isomorphic to a hyperplane section of P1 × P1 × P1 × P1.
Using Proposition 6.2 we easily obtain a description of all Fano fibrations of this type.
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Proposition 7.16. If p : X → S is a smooth Fano fibration with fibers of type X1,1,1,1, there
exist a finite étale covering f : S′ → S of degree 4 with connected S′, a 2-torsion class β′ ∈ Br(S′)
such that

coresS′/S(β
′) = 1 ,

and a β′-twisted vector bundle V of rank 2 on S′ such that X ⊂ ResS′/S(PS′(V )). Moreover,
if W := coresS′/S(V ) is the Segre bundle, then W is untwisted and there exist an untwisted line
bundle L on S and an epimorphism φ : W → L∨ such that

X = ResS′/S(PS′(V ))×PS(W ) P(Ker(φ)) , (7.27)

where the morphism ResS′/S(PS′(V ))→ PS(W ) in the fiber product is the Segre embedding.

Proof. The proof is analogous to the proofs of Propositions 7.3 and 7.14.

Using this description and Theorem 6.3, we can construct a semiorthogonal decomposition.
Recall that HV denotes the fundamental class of PS′(V ).

Theorem 7.17. If X/S is a form of a Fano threefold of type X1,1,1,1, then there is a semiorthog-
onal decomposition

D(X) = ⟨AX ,OX ⊗D(S),ψ∗(Φ(OPS′ (V )(HV )⊗D(S′,β′)))⟩ ,

where AX ⊂ D(X) is an S-linear admissible triangulated subcategory. Moreover, the base change
of AX along the covering S′ → S has a semiorthogonal decomposition

(AX)S′ = ⟨D(Γ′),D(S′′, g∗1(β
′) · g∗2(β′))⟩ , (7.28)

where Γ′/S′ is a smooth curve of genus 1, the scheme S′′ ⊂ S′ ×S S′ is the complement of the
diagonal, and g1, g2 : S

′′ → S′ are the projections.

Proof. The proof of the first part is analogous to the proof of Theorem 7.2. More precisely,
we use Theorem 6.3 to construct the last two components and define the category AX as their
orthogonal.

Now we prove the second part. The embedding ψ : X → ResS′/S(PS′(V )) constructed in
Proposition 7.14 after base change along f : S′ → S gives an embedding

ψ′ : X ′ := X ×S S′ ↪−−→ ResS′/S(PS′(V ))×S S′ ∼= PS′(V )×S′ Y ,

where

Y = Resg1
(
PS′′

(
g∗2V

))
,

S′′ is defined as the complement of the first (diagonal) component in

S′ ×S S′ = S′ ⊔ S′′ , (7.29)

and the maps g1, g2 : S
′′ → S′ are induced by the projections S′ ×S S′ → S′ so that they are

étale coverings of degree 3. Note that Y → S′ is a Fano fibration of type X1,1,1; see Section 7.1.
Also note that the Brauer class of the bundle g∗2(V ) on S′′ is g∗2(β

′). Therefore, using (7.29) and
the compatibility of corestriction with base change, we obtain

β′ · coresg1(g∗2(β′)) = coresS′×SS′/S′(β′) = f∗(coresS′/S(β
′)) = f∗(1) = 1 ,

and since β′ is a 2-torsion class, we conclude that coresg1(g
∗
2(β

′)) = β′.

Now consider the composition of ψ′ with the second projection PS′(V )×S′ Y → Y :

pr2 : X
′ −→ Y .
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On each geometric fiber over S′, this is a blowup of P1×P1×P1 along a smooth curve of genus 1
(see, for example, [KP24, Lemma 2.4(iv)]). Hence the same is true globally; that is, there exist
a smooth projective morphism Γ′ → S′ whose geometric fibers are curves of genus 1 and an
embedding Γ′ ↪→ Y such that

X ′ ∼= BlΓ′(Y ) .

Using the blowup formula, we obtain a semiorthogonal decomposition

D(X ′) = ⟨i∗q∗D(Γ′)⊗ ωX′/S′ , pr∗2(D(Y ))⟩ ,
where q : E2 → Γ′ is the exceptional divisor of the blowup pr2 and i : E2 ↪→ X is its embedding.
Using the semiorthogonal decomposition of Theorem 7.2 twisted by the opposite of the funda-
mental class HY (note that B(HY ) = β′ by the above computation together with Lemma 6.1),
we obtain

D(X ′) =
〈
i∗q

∗D(Γ′)⊗ O(−HX′),O(−HY )⊗D(S′,β′),

O(−HY )⊗ Φ′(OPS′′ (g∗2V )(HV )⊗D(S′′, g∗1(β
′) · g∗2(β′))),

OX′ ⊗D(S′),Φ′(OPS′′ (g∗2V )(HV )⊗D(S′′, g∗2(β
′)))

〉
,

where Φ′ is the functor from Theorem 7.2.

Next, we apply some mutations. First, we mutate i∗q
∗D(Γ′)⊗O(−HX′) one step to the right.

We obtain the decomposition

D(X ′) =
〈
O(−HY )⊗D(S′,β′),RO(−HY )(i∗q

∗D(Γ′)⊗ O(−HX′)),

O(−HY )⊗ Φ′(OPS′′ (g∗2V )(g
∗
2HV )⊗D(S′′, g∗1(β

′) · g∗2(β′))),

OX′ ⊗D(S′),Φ′(OPS′′ (g∗2V )(g
∗
2HV )⊗D(S′′, g∗2(β

′)))
〉
.

Next, we mutate the first component to the far right. Since KX′ = −HX′ , we obtain the decom-
position

D(X ′) =
〈
RO(−HY )(i∗q

∗D(Γ′)⊗ O(−HX′)),

O(−HY )⊗ Φ′(OPS′′ (g∗2V )(g
∗
2HV )⊗D(S′′, g∗1(β

′) · g∗2(β′))),OX′ ⊗D(S′),

Φ′(OPS′′ (g∗2V )(g
∗
2HV )⊗D(S′′, g∗2(β

′))),O(HX′ −HY )⊗D(S′,β′)
〉
.

Finally, we note that the base change to S′ of ψ∗(Φ(OPS′ (V )(HV )⊗D(S′,β′))
)
coincides with the

S′-linear subcategory ofD(X ′) generated by the last two components of the above decomposition.
Therefore, we obtain (7.28).

Appendix. Relative Griffiths components for threefold fibrations

Let p : X → S be a morphism of schemes. Recall that an admissible subcategory A ⊂ D(X) is
S-linear if for any perfect complex F on S, one has

A⊗ p∗F ⊂ A .

Note that this condition for any perfect complex F is equivalent to the same condition for a single
object G if it is a classical generator of the category of perfect complexes, that is, if the minimal
triangulated subcategory of D(S) containing G and closed under direct summands coincides with
the perfect derived category of S.

Similarly, a semiorthogonal decomposition D(X) = ⟨A1, . . . ,An⟩ is S-linear if each compo-
nent Ai is S-linear.
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Definition A.1. Let p : X → S be a smooth proper morphism to a connected scheme S. Let

D(X) = ⟨A1, . . . ,An⟩

be an S-linear semiorthogonal decomposition. A component Ai is called a relative Griffiths com-
ponent if it does not have further (non-trivial) S-linear semiorthogonal decompositions and does
not have a fully faithful S-linear embedding into the derived category of a smooth proper S-
variety Y with dim(Y/S) ⩽ dim(X/S)− 2.

In general it is quite hard to characterize explicitly Griffiths components. However, in the case
where dim(X/S) = 3, this is easy (the easier case of relative dimension 2 is left to the interested
reader). We start with a useful lemma.

Lemma A.2. Let f : S′ → S be a finite morphism, and let Y be a scheme over S′. Then any
S-linear subcategory in D(Y ) is also S′-linear.

Proof. Let p : Y → S′ be a morphism, let A ⊂ D(Y ) be an S-linear subcategory, and let G be
a classical generator of the perfect derived category of S. Then A ⊗ p∗f∗G ⊂ A because A is
S-linear. But f∗G is a classical generator of the perfect derived category of S′ (see, for example,
[Pir23, Lemma 2.2]); hence the above inclusion also implies that A is S′-linear.

Proposition A.3. Let Y → S be a smooth proper morphism with dim(Y/S) ⩽ 1. If A ⊂ D(Y ) is
an S-linearly indecomposable S-linear semiorthogonal component, then A is S-linearly equivalent
to one of the following categories:

(i) D(S′), where S′ is a connected finite étale covering of S;

(ii) D(S′,β), where S′ is as above and β ∈ Br(S′) is the Brauer class of a conic bundle;

(iii) D(C), where C → S is a smooth proper fibration such that each connected component of
any geometric fiber of C → S is a curve of positive genus.

Proof. First, note that if Y is not connected, then D(Y ) has a completely orthogonal decomposi-
tion and every indecomposable admissible subcategory of Y is contained in the derived category
of one of the components. Thus, without loss of generality, we may assume that Y is connected.

Let Y → S′ → S be the Stein factorization, so that Y → S′ has geometrically connected
fibers, S′ is connected, and f : S′ → S is a finite étale morphism. By Lemma A.2 any S-linear
semiorthogonal component in D(Y ) is also S′-linear. Therefore, we can replace S by S′, or, in
other words, we can assume that the fibers of Y → S are geometrically connected.

Now let p : Y → S be a smooth fibration with all geometric fibers either connected curves
of the same genus or points. Let A ⊂ D(Y ) be an S-linear semiorthogonal component. For
each point s ∈ S, by base change [Kuz11] we obtain a semiorthogonal component As ⊂ D(Ys).
By [Oka11] we have the following possibilities:

(a) As = 0,

(b) As = D(Ys),

(c) Ys ∼= P1 and As = ⟨O(i)⟩ for some i ∈ Z.

Let Sa, Sb, and Sc
i be the subsets of points of S for which the corresponding possibilities hold

(the subsets Sc
i are only defined if Y → S is a P1-fibration; otherwise, we set Sc

i := ∅). Clearly,

S = Sa ⊔ Sb ⊔
(⊔

i∈Z
Sc
i

)
.
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On the other hand, as we will show below, each of subsets Sa, Sb, and Sc
i is open in S. Since S

is connected, it follows that S coincides with one of these sets.

Let G be a classical generator of A, and let G′ be a classical generator of A⊥. Note that G⊕G′

is a classical generator of D(Y ). Now, the situations (a), (b), and (c) are equivalent to the
vanishings at the point s of the objects p∗G, p∗G

′, or p∗(G(−i− 1)) and p∗(G
′(−i)), respectively.

But the supports of these objects are closed in S (because p is proper); hence the openness of
the corresponding subsets follows.

If S = Sa, then evidently A = 0, and if S = Sb, then A⊥ = 0, so A = D(Y ). Finally,
if S = Sc

i (hence Y is a P1-fibration over S), then D(Y ) = ⟨A⊥,A⟩ is one of the standard
decompositions from Theorem 3.1. Thus, either A ≃ D(S), or (if Y is a non-trivial Severi–
Brauer variety associated with a Brauer class β and i is odd) A ≃ D(S,β), and β is represented
by the conic bundle Y .
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