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Abstract

The family of smooth Fano 3-folds with Picard rank 1 and anticanonical volume 4 con-
sists of quartic 3-folds and of double covers of the 3-dimensional quadric branched along
an octic surface. They can all be parametrised as complete intersections of a quadric and
a quartic in the weighted projective space P(1, 1, 1, 1, 1, 2), denoted by X2,4 ⊂ P

(
15, 2

)
;

all such smooth complete intersections are K-stable. With the aim of investigating the
compactification of the moduli space of quartic 3-folds given by K-stability, we ex-
hibit three phenomena: (i) there exist K-polystable complete intersection Fano 3-folds
X2,2,4 ⊂ P

(
15, 22

)
which deform to quartic 3-folds and are neither quartic 3-folds nor

double covers of quadric 3-folds – in other words, the closure of the locus parametrising
complete intersections X2,4 ⊂ P

(
15, 2

)
in the K-moduli contains elements that are not

of this type; (ii) any quasi-smooth X2,2,4 ⊂ P
(
15, 22

)
is K-polystable; (iii) the closure in

the K-moduli space of the locus parametrising complete intersections X2,2,4 ⊂ P
(
15, 22

)
which are not complete intersections X2,4 ⊂ P

(
15, 2

)
contains only points which corre-

spond to complete intersections X2,2,4 ⊂ P
(
15, 22

)
.

1. Introduction

A Fano variety is a normal projective variety over C for which the anticanonical divisor is
Q-Cartier and ample. There has been spectacular recent progress on constructing moduli spaces
of Fano varieties using K-stability [ABHX20, Xu20, BLX22, Jia20, BX19, XZ20, BHLX21,
LXZ22, LWX21]. For each positive integer n and for every positive rational number v, there
exists an Artin stackMKss

n,v , called the K-moduli stack, which is of finite type over C and which
parametrises K-semistable n-dimensional Fano varieties with anticanonical volume v. More-
over, this stack admits a good moduli space MKps

n,v , called the K-moduli space, which is pro-
jective over C. The closed points of MKps

n,v are in one-to-one correspondence with K-polystable
n-dimensional Fano varieties with anticanonical volume v. We refer to [Xu21] for a survey on
these topics.
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On K-moduli of quartic threefolds

The next natural step is to investigate the geometry of K-moduli spaces, providing ex-
plicit descriptions when possible. K-moduli of smooth(able) 2-dimensional Fano varieties have
been studied by Mabuchi–Mukai [MM93] and by Odaka–Spotti–Sun [OSS16]. More generally,
one of the most well-known classes of Fano varieties consists of hypersurfaces of degree d in
n-dimensional projective space Pn, with d ⩽ n; all smooth Fano hypersurfaces are conjec-
tured to be K-polystable [Xu21, Part 3]. Substantial progress has made towards clarifying this
conjecture [AZ23, Theorem B]; however, very little is currently known about their K-moduli.
One readily available compact moduli space for Fano hypersurfaces is the geometric invariant
theory (GIT) moduli space, and Liu–Xu [LX19] showed that, for cubic 3-folds, the K-moduli
space coincides with the GIT moduli space. An analogous result for cubic 4-folds was re-
cently proved by Liu [Liu22]. There are additional results in dimension 2 and in other set-
tings [ADL24, ADL23a, ADL23b, LP22]. A particular observation is the following conjecture,
which is verified up to dimension 4.

Conjecture. K-polystable limits of cubic hypersurfaces are cubic hypersurfaces.

The simplest case in higher dimensions where the expected agreement between GIT moduli
and K-moduli fails, or equivalently the conjecture above is invalid, is the moduli space of quar-
tic 3-folds. Here it is known that their K-moduli space contains elements that are not in the
GIT moduli.

1.1 K-moduli of quartic 3-folds

Let V4 denote the family of smooth Fano 3-folds with Picard rank 1 and anticanonical volume 4.
Members of V4 are either:

(i) smooth quartic hypersurfaces in P4, simply called smooth quartic 3-folds; or

(ii) double covers of the smooth quadric 3-fold with branch divisor of degree 8, often called hy-
perelliptic.

By [Che01, Fuj19a, Der16] each smooth Fano 3-fold in the family V4 is K-stable. It is not known
how to characterise singular quartic 3-folds which are K-(poly/semi)stable. Since not every mem-
ber of V4 is a quartic 3-fold, the connected component of the K-moduli space MKps

3,4 containing
the members of V4 does not coincide with the GIT moduli space of quartic 3-folds. However,
every smooth member of V4 is a complete intersection of type (2, 4) in P

(
15, 2

)
; this can be

seen as follows (see also [Mor75, Example 4.3], the introduction of [OS20], and [ACC+23, Exam-
ple 3.5.2]). Let x0, . . . , x4, y be the homogeneous coordinates of P

(
15, 2

)
with degrees 1, . . . , 1, 2,

respectively. A (2, 4)-complete intersection X is given by the vanishing of

f4(x0, . . . , x4) + f2(x0, . . . , x4)y + ay2 and g2(x0, . . . , x4) + by ,

where f2 and g2 are quadrics, f4 is a quartic, and a, b ∈ C. If X is smooth, then a ̸= 0 or b ̸= 0.
If b ̸= 0, from the second equation we can express y in terms of the xi; therefore, y is a redundant
variable. This implies that X is a quartic hypersurface in P4. If b = 0, then a ̸= 0, so up to
scaling, a = 1. By completing the square (that is, applying the automorphism of P

(
15, 2

)
given

by y 7→ y + 1
2f2(x)), we can assume that f2 = 0; in this case X is the double cover of the

quadric 3-fold {g2(x) = 0} ⊂ P4 branched along the surface {f4(x) = g2(x) = 0}.
It is natural to ask whether the connected component of the K-moduli spaceMKps

3,4 containing
the members of V4 parametrises (2, 4)-complete intersections in P

(
15, 2

)
. If this were true, it might

suggest that this component of K-moduli can be constructed via some form of non-reductive GIT
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by taking the moduli space of such complete intersections. We first prove that this is not the
case.

Theorem A (cf. Proposition 2.1, Theorems 3.1 and 4.1). There exist K-polystable non-smooth
Fano 3-folds that are smoothable to a quartic 3-fold and that are not (2, 4)-complete intersections
in P

(
15, 2

)
.

An immediate consequence is the following.

Corollary. Let M be the connected component of the K-moduli space MKps
3,4 containing the

members of V4. Then in M there are points corresponding to K-polystable Fano 3-folds that are
not (2, 4)-complete intersections in P

(
15, 2

)
.

We provide two types of examples of Fano 3-folds which satisfy Theorem A: three toric
examples that we study in Section 2, and an infinite family that we study in Section 3. These
examples are all (2, 2, 4)-complete intersections in the weighted projective 6-space P

(
15, 22

)
.

We have seen that some K-polystable degenerations of smooth quartic 3-folds are hyperellip-
tics; in other words, K-moduli limits of quartics include hyperelliptics. In Theorem A we have
seen that K-moduli limits of hyperelliptics include Fano 3-folds which are (2, 2, 4)-complete inter-
sections in P

(
15, 22

)
which are not (2, 4)-complete intersections in P

(
15, 2

)
. We call such 3-folds

pure (2, 2, 4)-complete intersections. It is natural to wonder whether pure (2, 2, 4)-complete in-
tersections degenerate further in the K-moduli space. Surprisingly, the K-moduli limits of pure
(2, 2, 4)-complete intersections are pure (2, 2, 4)-complete intersections.

Theorem B (cf. Proposition 4.4 and Corollary 4.5). In the K-moduli space MKps
3,4 , the locus of

pure (2, 2, 4)-complete intersections in P
(
15, 22

)
is closed.

This is proved in Section 4 by showing that the K-moduli locus of pure (2, 2, 4)-complete
intersections in P

(
15, 22

)
is determined by the K-moduli space of pairs

(
S, 1

16∆
)
, where S is

a degree 4 del Pezzo surface and ∆ ∼ −4KS . In Section 5 we provide a complete study of the
wall crossing for the pairs (S, c∆), as c is a rational number in

(
0, 1

16

]
.

1.2 Degenerations of quartic 3-folds inside P
(
15, 22

)
Denote the variables of the weighted projective space P

(
15, 22

)
by x0, . . . , x4, y0, y1, where y0

and y1 are the two variables of weight 2. Let X ⊂ P
(
15, 22

)
be a complete intersection of two

quadrics and a quartic. If X is not a cone, then after a suitable change of coordinates, it is defined
by equations

y0y1 = f(x0, x1, x2, x3, x4) ,

g(x0, x1, x2, x3, x4) = ay0 + by1 ,

h(x0, x1, x2, x3, x4) = cy0 + dy1 ,

where f has degree 4, g and h have degree 2, and a, b, c, d ∈ C. There are three possibilities
depending on the rank of the matrix

A =

(
a b
c d

)
.

If rkA = 2, then X is a quartic hypersurface in P4. If rkA = 1, then X is hyperelliptic, that is,
a (2, 4)-complete intersection in P

(
15, 2

)
. If A is the null matrix, then X has two singular points
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at p0 = [0 : 0 : 0 : 0 : 0 : 1 : 0] and p1 = [0 : 0 : 0 : 0 : 0 : 0 : 1]. Let us now assume that we are in
the latter case, so that X ⊂ P

(
15, 22

)
is defined by

y0y1 = f(x0, x1, x2, x3, x4) ,

g(x0, x1, x2, x3, x4) = 0 ,

h(x0, x1, x2, x3, x4) = 0 ,

where f is a quartic and g and h are quadrics. In Section 2 we consider special binomials
for f , g, h, and we study certain toric varieties X. In Section 3 we study the infinite family of
varieties X obtained by picking general f , g, h. In Section 4 we first show that if the surface
{g= h= 0} ⊂ P4 and the curve {f = g= h= 0} ⊂ P4 are smooth, then X is K-polystable. We
then prove that K-polystable degenerations of these complete intersection X2,2,4⊂P(15, 22) are
also complete intersections of these types.

1.3 Overview of the proof

There are several methods available to verify K-(poly)stability of a given Fano variety. For the
toric examples, we use the most natural tool: a toric variety is K-polystable if and only if the
barycentre of its anticanonical polytope is the origin. This translates the algebro-geometric con-
dition into a combinatorial one amenable to computer-assisted investigation. The toric examples
which satisfy Theorem A were found via a computer search amongst Fano polytopes using tech-
niques from mirror symmetry [ACC+16, CCGK16, CCG+13]. This is explained in Section 1.4;
the examples are studied in Section 2.

For the infinite family of examples satisfying Theorem A, we first use estimates on stability
thresholds. Two of the most useful tools in K-stability are the Fujita–Li valuative criterion [Li17,
Fuj19b] and the stability threshold, also called the δ-invariant, introduced in [FO18]. It follows
that a Fano variety X is K-stable if and only if δ(X) > 1. Although δ(X) is extremely difficult
to compute in general, a method to find lower bounds for δ(X) is described in [AZ22]. Roughly
speaking, one chooses a flag over X and computes the refinement of the anticanonical linear
system with respect to this flag [AZ22, § 2]; the refinement provides a lower bound for δ(X).
With a little care, one can choose the flag so that the stability threshold of the refinement is
greater than 1, implying K-stability. We do this for the infinite family in Section 3. In Section 4 we
use techniques of cyclic covers, cone construction, degeneration, and interpolation to obtain two
results: we first prove that all complete intersections X2,2,4 as described above are K-polystable
as long as {g = h = 0} ⊂ P4 and {f = g = h = 0} ⊂ P4 are smooth; then we prove that the
closure in the K-moduli space of the locus of complete intersections X2,2,4 ⊂ P(15, 22) which are
not complete intersections X2,4 ⊂ P(15, 2) contains only points which correspond to complete
intersections X2,2,4 ⊂ P(15, 22).

1.4 Connection to mirror symmetry

The three toric 3-folds presented in Proposition 2.1 and Remark 2.2 were found using a com-
puter-assisted search guided by expectations arising from mirror symmetry for Fano varieties
[ACC+16, CCGK16, CCG+13]. It is expected that deformation families of smooth (or maybe
mildly singular, that is, with orbifold terminal singularities) Fano varieties of dimension n are in
one-to-one correspondence with mutation-equivalence classes of certain ‘special’ Laurent polyno-
mials in n variables. We need to specify: (i) the meaning of the word mutation, (ii) the meaning
of the adjective ‘special’, and (iii) how the correspondence works.
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(i) By mutation we mean a generalisation, introduced in [ACGK12], of the notion of muta-
tion in cluster algebra theory [FZ02]. We do not give the definition here; see [ACGK12,
Definition 2] for details. It is sufficient to know that, under certain circumstances, a Lau-
rent polynomial f ∈ Q

[
x±1
1 , . . . , x±1

n

]
can be mutated to another Laurent polynomial

g ∈ Q
[
x±1
1 , . . . , x±1

n

]
. Two Laurent polynomials f and g are said to be mutation-equivalent

if there exists a finite sequence of mutations transforming f to g.

(ii) In place of ‘special’ we should have written rigid maximally mutable. The class of rigid maxi-
mally mutable Laurent polynomials (or rigid MMLPs for short) was introduced in [ACC+16]
for dimension 2 and in [CKPT21] for any dimension. We remark that if f ∈ Q

[
x±1
1 , . . . , x±1

n

]
is a rigid MMLP in n variables, then its Newton polytope P := Newt(f) ⊂ Rn is an n-dimen-
sional lattice polytope such that the origin lies in the interior of P , and each vertex of P is
a primitive lattice vector: P is an example of a Fano polytope. One can consider the spanning
fan (or face fan) whose cones are generated by the faces of P , and the (possibly singular)
Fano toric variety XP associated to this spanning fan.

(iii) The correspondence between deformation families of Fano varieties and mutation-equiva-
lence classes of rigid MMLPs is described in [ACC+16, CKPT21, CHK22]. Briefly, we expect
it to work as follows: given a rigid MMLP f with Newton polytope P , we consider the
Fano toric variety XP and associate a (partial) smoothing of XP . The reason why this
assignment should be well defined is the following result due to Ilten [Ilt12]: if f and g are
Laurent polynomials related via a mutation, then the Fano toric varieties XP and XQ are
deformation-equivalent (here Q is the Newton polytope of g); that is, there exists a flat
proper family X → P1 such that the fibre over 0 ∈ P1 is XP and the fibre over ∞ ∈ P1

is XQ. Notice that a singular Fano toric variety can have many different smoothings (see for
example [KP21, Theorem 3.1] or [Pet20]); one needs to select the smoothing of XP which
is compatible with the mutations of f .

Now we explain how we found the toric examples. We start from the polytope P ′ whose
vertices are the vectors in (2.2) in Remark 2.3. The toric variety XP ′ associated to the spanning
fan of P ′ is the singular quartic hypersurface

{
x1x2x3x4 = x40

}
⊂ P4, which clearly deforms to

members of V4. There exists a unique rigid MMLP f such that P ′ = Newt(f), namely

f =
(1 + x+ y + z)4

xyz
− 24 .

We used the computer algebra systemMagma [BCP97] to construct many Laurent polynomials g
which are mutation-equivalent to f . Each of these polynomials g gives a Fano toric variety XQ,
where Q := Newt(g), which, according to the mirror symmetry expectations described above,
should be a degeneration of quartic 3-folds. We then filter for those g such that the polar of Q
has barycentre at the origin; this is equivalent to requiring that the Fano toric variety XQ is
K-polystable. In this way we found three Laurent polynomials, one of which is given by

g = x3y2z4 + 2x2y3z2 + 4x2y2z2 + 8x2yz3 + 2x2yz2 + xy4 + 4xy3 + 8xy2z + 6xy2

+ 16xyz + 4xy + 28xz2 + 8xz + x+ 12y + 56z/y + 12/y + 8/(xz) + 16/(xyz) + 70/(xy2)

+ 8/(xy2z) + 2/(x2yz2) + 4/(x2y2z2) + 56/(x2y3z) + 2/(x2y3z2) + 28/(x3y4z2)

+ 8/(x4y5z3) + 1/(x5y6z4).

The Newton polytope P := Newt(g) is the Fano polytope given in Proposition 2.1. The Newton
polytopes of the remaining two Laurent polynomials found using this method are described in
Remark 2.2.
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Notation and conventions

We work over an algebraically closed field of characteristic zero, denoted by C. Every toric variety
or toric singularity is assumed to be normal.

2. The toric examples

We begin by analysing a toric Fano 3-fold satisfying Theorem A.

Proposition 2.1. Let P be the polytope with vertices3
2
4

 ,

1
4
0

 ,

1
0
0

 ,

−5−6
−4

 (2.1)

in the lattice N = Z3, and let X be the toric variety associated to the spanning fan of P . Then:

(1) The variety X is a Q-factorial K-polystable Fano 3-fold.

(2) We have Pic(X) ≃ Z and Cl(X) ≃ Z⊕ Z/2Z⊕ Z/8Z.
(3) The variety X is the quotient P3/(µ2 × µ8), where µ2 acts linearly with weights (0, 1, 0, 1)

and µ8 acts linearly with weights (0, 5, 1, 6).

(4) The singular locus of X consists of six rational curves generically along which X has trans-
verse A1, A3, or A7 singularities.

(5) There are exactly two non-Gorenstein points on X, and both of them have Gorenstein
index 2 and are not canonical.

(6) The variety X is not a (2, 4)-complete intersection in P
(
15, 2

)
.

(7) The variety X is the (2, 2, 4)-complete intersection in P
(
15, 22

)
given by the equations

x40 − y0y1 = 0 , x22 − x0x3 = 0 , x23 − x1x4 = 0 ,

where x0, . . . , x4, y0, y1 are the homogeneous coordinates of P
(
15, 22

)
with degrees 1, . . . , 1,

2, 2, respectively.

(8) The variety X deforms to a quartic 3-fold.

Proof. (1) Let Σ be the spanning fan of P . It is clear that X is a Fano 3-fold. Since P is
a tetrahedron, each cone of Σ is simplicial; therefore, X is Q-factorial. Let M be the lattice dual
to N , and let ⟨·, ·⟩ : M×N → Z be the dual pairing. We denote by the same symbol its extension
to the associated real vector spaces, that is, MR ×NR → R. Consider the polar P ◦ of P :

P ◦ := {u ∈MR | ⟨u, v⟩ ⩾ −1 for all v ∈ P}.

This is the polytope associated to the toric boundary of X, which is an anticanonical divisor. One
can show that P ◦ is the rational polytope in MR with vertices

(
−1, 0, 32

)
, (−1, 1, 0), (3,−1,−2),(

−1, 0, 12
)
. Since the barycentre of P ◦ is the origin, X is K-polystable by [Ber16].

(2)–(3) Consider the linear map ρ : Z4 → N = Z3 which maps the ith standard basis vector
to the ith vertex of P in (2.1). Consider the transpose tρ : M = Z3 → Z4. This is injective, and
its cokernel is isomorphic to Z⊕ Z/2Z⊕ Z/8Z via the homomorphism Z4 → Z⊕ Z/2Z⊕ Z/8Z
given by the matrix  1 1 1 1

0
2

1
2

0
2

1
2

0
8

5
8

1
8

6
8

 ,
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where ·2 (respectively, ·8) denotes the reduction modulo 2 (respectively, 8). The short exact
sequence

0 −→M
tρ−→ Z4 −→ Z⊕ Z/2Z⊕ Z/8Z −→ 0

is the divisor sequence [CLS11, Theorem 4.1.3]; hence the divisor class group of X is isomorphic
to Z ⊕ Z/2Z ⊕ Z/8Z. By [CLS11, Proposition 4.2.5] the Picard group of X is free; moreover,
since X is Q-factorial, the Picard rank of X coincides with the rank of Cl(X), which is 1. The
presentation of X as a finite abelian quotient of P3 follows from [CLS11, Exercise 5.1.13].

(4) Let ρ1, ρ2, ρ3, ρ4 be the elements in N which appear in (2.1). For 1 ⩽ i < j ⩽ 4,
let σij ∈ Σ be the 2-dimensional cone with rays R⩾0ρi and R⩾0ρj . Let Cij be the closure of
the torus orbit on X associated to the cone σij : it is a smooth rational curve. The shape of
the cone σij determines the singularities of X generically along Cij . We write down the analysis
for C12, and we omit the other cases.

We consider the 2-dimensional lattice N12 = N ∩ (Rρ1 + Rρ2). This is the orthogonal
of (8,−2,−5) ∈ M . The vectors ρ1 and ρ2 form an R-basis of Rρ1 + Rρ2 = N12 ⊗Z R, but
not a Z-basis of N12. The finite abelian group N12/(Zρ1 + Zρ2) has order 2, and its generator is
the class of

1

2
ρ1 +

1

2
ρ2 =

2
2
2

 ∈ N12 .

This implies that the toric variety associated to the cone σ12 in the lattice N12 is the A1 sur-
face singularity SpecC[x, y, z]/

(
xy − z2

)
. This implies that X has transverse A1 singularities

generically along C12.

(5) By part (4) the non-Gorenstein locus of X is contained in the set of the four torus-fixed
points: p123, p124, p134, and p234. Here pijk is the torus-fixed point on X corresponding to the
3-dimensional cone σijk with rays R⩾0ρi, R⩾0ρj , and R⩾0ρk. We need to analyse the singularities
of X at these points.

Let us start from p123. The three vectors ρ1, ρ2, and ρ3 lie on the affine plane

H(2,0,−1),2 := {v ∈ NR | ⟨(2, 0,−1), v⟩ = 2} .

Since the lattice vector (2, 0,−1) ∈M is primitive, we get that the Gorenstein index of X at p123
is 2. Moreover, the singularity p123 ∈ X is not canonical because the lattice vector1

1
1

 =
1

4
ρ1 +

1

8
ρ2 +

1

8
ρ3

lies in the interior of the polytope with vertices 0, ρ1, ρ2, ρ3 (see [CLS11, Proposition 11.4.12b]).

Now consider p124. The three vectors ρ1, ρ2, and ρ4 lie on the affine plane

H(−3,1,2),1 := {v ∈ NR | ⟨(−3, 1, 2), v⟩ = 1} .

Since the lattice vector (−3, 1, 2) ∈M is primitive, we get that the Gorenstein index of X at p124
is 1. By [CLS11, Proposition 11.4.11] the singularity p124 ∈ X is canonical.

In an analogous way we can prove that p134 is a Gorenstein canonical singularity, whereas p234
is a non-canonical singularity with Gorenstein index 2.

(6) For brevity, set P := P
(
15, 2

)
. The singular locus of P consists of a single point p =

[0 : 0 : 0 : 0 : 0 : 1]. Towards a contradiction assume that X is a (2, 4)-complete intersection in P,
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and consider the corresponding closed embedding X ↪→ P. We have that X ∖ {p} ↪→ P ∖ {p} is
a regular closed embedding because it is locally defined by the vanishing of the dehomogenisations
of the quartic and the quadric that defineX inside P. This implies thatX∖{p} is a local complete
intersection variety, and in particular Gorenstein. Therefore, the non-Gorenstein locus of X is
contained in {p}, so it either is empty or consists of one point. This contradicts part (5).

(7) In the lattice M ⊕ Z we consider the cone τ whose apex is at the origin and which is
spanned by P ◦ × {1}. In other words, τ is the cone over P ◦ placed at height 1. The primitive
generators of τ are

y1 = (−2, 0, 3, 2) , x1 = (−1, 1, 0, 1) , x4 = (3,−1,−2, 1) , y0 = (−2, 0, 1, 2) .

The Hilbert basis (that is, the minimal set of generators) of the monoid τ ∩ (M ⊕Z) is made up
of y1, x1, x4, y0, x0 = (−1, 0, 1, 1), x2 = (0, 0, 0, 1), x3 = (1, 0,−1, 1).

Since P ◦ is the moment polytope of the toric boundary of X, which is anticanonical and
hence ample, we have that X = ProjC[τ ∩ (M ⊕ Z)], where the N-grading is given by the
projection M ⊕ Z ↠ Z. This shows that X is a closed subvariety of the weighted projective
space P

(
15, 22

)
, equipped with homogeneous coordinates x0, . . . , x4, y0, y1. It is easy to see that

the equations of X in P
(
15, 22

)
are

x40 − y0y1 = 0 , x22 − x0x3 = 0 , x23 − x1x4 = 0 .

Thus X is a (2, 2, 4)-complete intersection in P
(
15, 22

)
.

(8) By using an argument similar to the one that appears in the introduction, one can see
that the general (2, 2, 4)-complete intersection in P

(
15, 22

)
is a quartic 3-fold.

Remark 2.2. In addition to the example presented in Proposition 2.1, we found two additional
Fano toric 3-folds which satisfy Theorem A.

(1) Let X be the toric 3-fold associated to the spanning fan of the polytope in Z3 with ver-
tices (1, 3, 2), (1, 3, 0), (1, 0, 2), (1, 0, 0), (−1,−1, 2), (−1,−1,−4), (−1,−2, 2), (−1,−2,−4).
There are isomorphisms Cl(X) ≃ Z5⊕Z/2Z and Pic(X) ≃ Z. One can prove that X is the
closed subvariety of P

(
15, 22

)
defined by the equations

x30x3 − y0y1 = 0 , x22 − x0x3 = 0 , x2x3 − x1x4 = 0 .

(2) Let X be the toric 3-fold associated to the spanning fan of the polytope in Z3 with vertices
(3, 4, 4), (3, 2, 4), (1, 2, 0), (1, 0, 0), (−1, 0, 0), (−1,−2, 0), (−3,−2,−4), (−3,−4,−4). There
are isomorphisms Cl(X) ≃ Z5 ⊕ Z/2Z ⊕ Z/4Z and Pic(X) ≃ Z. One can prove that X is
the closed subvariety of P

(
15, 22

)
defined by the equations

x20x
2
4 − y0y1 = 0 , x22 − x0x4 = 0 , x1x3 − x0x4 = 0 .

Each of these examples is a (2, 2, 4)-complete intersection in P
(
15, 22

)
and has two singular points

with Gorenstein index 2.

Remark 2.3. In addition to the three examples presented in Proposition 2.1 and in Remark 2.2,
we know a further K-polystable Fano toric 3-fold which deforms to quartic 3-folds: this is the
toric variety associated to the spanning fan of the polytope with vertices 3

−1
−1

 ,

−13
−1

 ,

−1−1
3

 ,

−1−1
−1

 (2.2)
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in N = Z3, and it is the Q-factorial hypersurface
{
x1x2x3x4 − x40 = 0

}
in P4. We conjecture

that these four toric varieties are the only K-polystable Fano toric 3-folds that deform to quartic
3-folds.

Remark 2.4. A Fano polytope P is called symmetric if the only point which is fixed by every
automorphism of P is the origin. The examples in Remark 2.2 are Fano polytopes which are not
simplices and are such that their polar has barycentre at the origin.

Remark 2.5. According to [Hal24] it is expected that in every mutation-equivalence class of
2-dimensional Fano polytopes, there is at most one polytope P such that its polar P ◦ has
barycentre at the origin. This is not true in higher dimension; for instance, the four polytopes
presented in Proposition 2.1 and Remarks 2.2 and 2.3 are mutation-equivalent, and the polar of
each of them has barycentre at the origin.

3. The infinite family

3.1 Statement

The infinite family of examples satisfying Theorem A is given by the following.

Theorem 3.1. Let x0, . . . , x4, y0, y1 be the homogeneous coordinates of the weighted projective
space P

(
15, 22

)
with degrees 1, . . . , 1, 2, 2, respectively. Consider x0, . . . , x4 as the homogeneous

coordinates of P4 as well. Let f be a quartic in x0, . . . , x4, and let g and h be two quadrics in
x0, . . . , x4. Consider the zero-loci

∆ = {f = 0, g = h = 0} ⊂ P4 ,

S = {g = h = 0} ⊂ P4 ,

X = {y0y1 − f = 0, g = h = 0} ⊂ P
(
15, 22

)
.

(3.1)

Assume that ∆ is a smooth curve and that S is a smooth surface. Then the following statements
hold:

(1) The surface S is a smooth del Pezzo of degree 4 and contains exactly 16 lines; their inter-
section points form a finite subset Σ ⊂ S consisting of 40 points.

(2) The variety X is a Kawamata log terminal (klt) Fano 3-fold, and the group G = C∗⋊Z/2Z
acts faithfully on X.

(3) If Σ ∩∆ = ∅, then X is K-polystable.

Remark 3.2. The last condition Σ ∩∆ = ∅ is satisfied for general choices of f , g, h. Therefore,
a general X in Theorem 3.1 is K-polystable. We believe that the condition Σ ∩ ∆ = ∅ can be
removed from Theorem 3.1(3).

Remark 3.3. Note that if X ⊂ P
(
15, 2

)
is a hyperelliptic cone, that is, the term y2 does not

appear in the degree 4 equation, or if X ⊂ P
(
15, 22

)
is a cone, that is, the quadratic part in the

variables y0, y1 of the degree 4 equation f does not have rank 2, then X is unstable. This can be
checked rather easily using [ZZ22, Theorem 1.4] by setting r = 1/2, c = 0, and n = 3 to obtain
δ(X) ⩽ 5/12.

The remainder of the section is devoted to giving a proof of Theorem 3.1; hence we always
work in the setting of Theorem 3.1. We begin with an explanation of the construction of the
models, their symmetries, and the generality condition on them. We then present the proof of the
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main claim about their K-stability; the proof uses the theory of refinements introduced in [AZ22],
which provides a lower bound for stability thresholds. Indeed, some formulae are readily available
in [ACC+23, § 1.7] which compute the refinement for a flag if the flag is geometrically realised
on a Mori dream space birational model of the Fano variety. We will use them in the proof of
Theorem 3.1(3).

3.2 The models and their symmetries

Proof of Theorem 3.1(1). All of this is very classical.

Conversely, if S is a smooth del Pezzo surface of degree 4, then we can view S as a complete
intersection {g = h = 0} ⊂ P4, where g and h are quadrics in x0, . . . , x4. We denote by Σ the set
consisting of the 40 intersection points of the lines on S.

Remark 3.4. Let p be a point in S.

(1) If p is not contained in any line in S, then there are exactly ten smooth conics in S that
contain p; moreover, five of these ten conics can be chosen to intersect pairwise transversally
at p.

(2) If p is contained in a line in S and p /∈ Σ, then there are exactly five smooth conics in S
that contain p, and any two of them intersect transversally at p.

(3) If p ∈ Σ, then it is contained in a unique smooth conic in S.

Proof of Theorem 3.1(2). We study the singularities of X by looking at the affine charts of
P
(
15, 22

)
.

Let us consider the chart x0 ̸= 0; this is isomorphic to A6 with affine coordinates x1, . . . , x4,
y0, y1. Inside this A6 the variety X is given by the equations

y0y1 − f̄ = 0 , ḡ = 0 , h̄ = 0 ,

where f̄ = f |x0=1 and similarly for ḡ and h̄. The Jacobian matrix of the equations of X in A6 is

J =

−∂x1 f̄ −∂x2 f̄ −∂x3 f̄ −∂x4 f̄ y1 y0
∂x1 ḡ ∂x2 ḡ ∂x3 ḡ ∂x4 ḡ 0 0
∂x1 h̄ ∂x2 h̄ ∂x3 h̄ ∂x4 h̄ 0 0

 .

Since S ⊂ P4 is a smooth surface, the bottom-left 2× 4 submatrix of J has rank 2 in all points
of X. Therefore, it is clear that J has rank 3 at all points of X which satisfy y0 ̸= 0 or y1 ̸= 0.
The points of X which satisfy y0 = y1 = 0 also satisfy f = 0, and from the smoothness of ∆, it
follows that the rank of J is 3 at these points. Therefore, the intersection of X with the chart
x0 ̸= 0 is smooth. Similarly, this also holds for the other charts xi ̸= 0 for i ∈ {0, . . . , 4}. In other
words, we have proven that the singular points of X must satisfy x0 = · · · = x4 = 0. There are
exactly two such points:

p0 = [0 : 0 : 0 : 0 : 0 : 1 : 0] and p1 = [0 : 0 : 0 : 0 : 0 : 0 : 1] .

We need to study the singularity types of these two points on X.

The chart y0 ̸= 0 on P
(
15, 22

)
gives the quotient singularity 1

2(1, 1, 1, 1, 1, 0) with orbi-
fold coordinates x0, . . . , x4, y1. It is easy to see that X ∩ {y0 ̸= 0} is isomorphic to the complete
intersection {g = h = 0} ⊂ 1

2(1, 1, 1, 1, 1). Since
1
2(1, 1, 1, 1, 1) is the affine cone over

(
P4,O(2)

)
,

we have that {g = h = 0} ⊂ 1
2(1, 1, 1, 1, 1) is the affine cone over (S,−2KS), which is a klt

singularity. This shows that p0 and p1 are klt singularities of X.
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By adjunction −KX = OP(15,22)(1)|X , so X is a klt Fano 3-fold. Its degree is (−KX)
3 =

(13 · 4 · 2 · 2)/22 = 4.

Now we need to construct an effective action of G = C∗⋊Z/2Z on X. Consider the C∗-action
given by

[x0 : x1 : x2 : x3 : x4 : y0 : y1] 7−→
[
x0 : x1 : x2 : x3 : x4 : λy0 : λ

−1y1
]

for λ ∈ C∗. Furthermore, the group Aut(X) also contains an involution σ that is given by

[x0 : x1 : x2 : x3 : x4 : y0 : y1] 7−→ [x0 : x1 : x2 : x3 : x4 : y1 : y0] .

Together, they generate a subgroup G ⊂ Aut(X) that is isomorphic to C∗ ⋊ Z/2Z. Note that
the two singular points p0 and p1 on X are swapped by the action of σ and fixed by the action
of C∗. This concludes the proof of Theorem 3.1(2).

Let ρ : X 99K S be the rational map given by

[x0 : x1 : x2 : x3 : x4 : y0 : y1] 7−→ [x0 : x1 : x2 : x3 : x4] .

Then ρ is undefined precisely at the points p0 and p1, resulting in the following G-equivariant
commutative diagram:

X̃

π

xx

η

&&
X

ρ // S ,

(3.2)

where X̃ is a smooth projective 3-fold, π is a birational morphism that contracts two irreducible
smooth surfaces E0 and E1 to the points p0 and p1, respectively, and η is a G-equivariant conic
bundle. Furthermore, the surfaces E0 and E1 are sections of the conic bundle η, so that η induces
isomorphisms E0

∼= S and E1
∼= S. We have E0|E0 ∼ −2KE0 and E1|E1 ∼ −2KE1 , which gives

−K
X̃
∼Q π

∗(−KX) +
1

2
(E0 + E1) ∼Q η

∗(−KS) + E0 + E1 .

Corollary 3.5. The 3-fold X̃ is a Mori dream space.

Proof. Let ε be a sufficiently small positive rational number. Then
(
X̃, 12(1 + ε)(E0 + E1)

)
has

klt singularities, and −
(
K
X̃
+ 1

2(1 + ε)(E0 + E1)
)
is ample. The claim follows from [BCHM10,

Corollary 1.3.1].

Let R0 and R1 be the surfaces in X that are cut out by y0 = f = 0 and y1 = f = 0,
respectively. Denote by R̃0 and R̃1 the strict transforms of R0 and R1 on X̃, respectively. Then
η∗(∆) = R̃0 + R̃1, and ∆ is the discriminant curve of the conic bundle η. We have the following
non-G-equivariant commutative diagram:

U

ϕ

��

ψ

xx

X̃

η

��

η1 //η0oo U

ϕ

��

ψ

&&
V

τ

++

V ,

τ

ssS

(3.3)

where U = P(OS(2KS)⊕OS), ϕ is the P1-bundle given by the projection P(OS(2KS)⊕OS)→ S,
the morphism ψ is a contraction of the negative section of the P1-bundle ϕ, the variety V is a
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cone over S, the map τ is the projection from the vertex of the cone, and the morphisms η0 and
η1 are birational contractions of the surfaces R̃0 and R̃1, respectively.

Remark 3.6. On the left-hand side of (3.3), we have ϕ∗(∆) = η0(R1), the morphism ψ contracts
η0(E0), and ψ ◦ η0(E1) is a smooth hyperplane section of the cone V ⊂ P13. On the right-hand
side of (3.3), we have ϕ∗(∆) = η1(R0), ψ contracts η1(E1), and ψ ◦η1(E0) is a hyperplane section
of the cone V . The involution σ swaps the left- and right-hand sides of the diagram (3.3).

Set Z = R0 ∩R1 and Z̃ = R̃0 ∩ R̃1. Then Z = π(Z̃), Z ∼= Z̃ ∼= ∆, and Z = {y0 = y1 = f = 0}
⊂ X. Observe that p0 ̸∈ Z, p1 ̸∈ Z, Z̃ ∩ E0 = Z̃ ∩ E1 = ∅, and every point in Z and Z̃ is
G-invariant.

Lemma 3.7. Let q be a G-invariant point in X̃, let C be a G-invariant irreducible curve in X̃,
and let B be a G-invariant irreducible surface in X̃. Then the following assertions hold:

(1) We have q ∈ Z̃.
(2) Either C = Z̃, or C is a smooth fibre of the conic bundle η.

(3) We have B = η∗(C ) for some irreducible curve C ⊂ S.
In particular, we have that B ∩ Z̃ ̸= ∅.

Proof. Left to the reader.

3.3 K-stability of the general models

The proof of Theorem 3.1(3) is quite involved. However, it is less difficult to produce specific
examples of X with large symmetries and prove that they are K-polystable by taking advantage
of the group of symmetries. Here, for illustration, we present one such case. Then we proceed by
proving that a general X is K-polystable (see Theorem 3.1(3)).

Proof of a special case of Theorem 3.1(3): diagonal models. Suppose that

f = α0x
4
0 + α1x

4
1 + α2x

4
2 + α3x

4
3 + α4x

4
0 ,

g = x20 + x21 + x22 + x23 + x24 ,

h = ϵ0x
2
0 + ϵ1x

2
1 + ϵ2x

2
2 + ϵ3x

2
3 + ϵ4x

2
4 ,

where α0, . . . , α4 are sufficiently general complex numbers and ϵ0, . . . , ϵ4 are pairwise distinct
complex numbers. Then the group Aut(X) is larger than the group G in Theorem 3.1(2) because
Aut(X) also contains 15 additional involutions given by

[x0 : x1 : x2 : x3 : x4 : y0 : y1] 7−→
[
x0 : (−1)ax1 : (−1)bx2 : (−1)cx3 : (−1)dx4 : y0 : y1

]
for a, b, c, d ∈ {0, 1}. Let Γ be the subgroup in Aut(X) generated by G and these 15 invo-
lutions. Then Γ ∼= C∗ ⋊ (Z/2Z)5, and (3.2) is Γ-equivariant. Note that X does not contain
Γ-invariant points. Furthermore, using the diagram (3.2) and [DI09, Theorem 6.9], we conclude
that ClG(X) = Z[−KX ]. Now, arguing as in the proof of [ACC+23, Theorem 1.52], we conclude
that

αΓ(X) ⩾ 1 ,

where αΓ(X) is the Γ-invariant α-invariant of Tian for the 3-fold X; see [Tia87] for the ana-
lytic definition and [CS11] for an algebraic definition of α. It follows that X is K-polystable
by [Tia87] as

αΓ

(
X
)
>

3

4
=

dimX

1 + dimX
.
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This concludes the claim that X is K-polystable.

Proof of Theorem 3.1(3). Suppose that X is not K-polystable. By [Zhu21, Corollary 4.14] there
exists a G-invariant prime divisor F over X for which β(F) ⩽ 0. For the definition of β(F),
see [Fuj19b, Li17]. Let C be the centre of the divisor F on X. Then, for every point P ∈ C, we
must have δP (X) ⩽ 1, where δP (X) is the local stability threshold of X at p. For the precise
definition of δP (X), see [AZ22, Definition 2.5] and [ACC+23, § 1.5]. On the other hand, by
Lemma 3.7, we have the following four possibilities:

(1) C is a G-invariant point in Z.

(2) C is the curve Z.

(3) C is an irreducible fibre of the rational map ρ : X 99K S.

(4) C is a G-invariant surface and C ∩ Z ̸= ∅.

Hence, we see that either C is an irreducible curve that is a fibre of the rational map ρ : X 99K S,
or the curve Z contains a point x such that δx(X) ⩽ 1. We will show that both cases are
impossible, by first lifting the problem to the level of X̃ and then using the results obtained
in [AZ22] and [ACC+23, § 1.7] to derive a contradiction.

Since X̃ is smooth and it is a Mori dream space, it is more convenient to work on X̃ than
on X. Namely, we let L = π∗(−KX), and we let C̃ be the centre of the divisor F on the 3-fold X̃.
Then C̃ is the strict transform of the centre C, and we have the following four possibilities:

(1) C̃ is a G-invariant point in Z̃.

(2) C̃ is the curve Z̃.

(3) C̃ is a smooth fibre of the conic bundle η : X̃ → S.

(4) C̃ is a G-invariant surface and C̃ ∩ Z̃ ̸= ∅.

Note that δx(X̃, L) = δπ(x)(X) for every point x ∈ Z̃. For the definition of δx(X̃, L), see [AZ22,
Definition 2.5] and [ACC+23, § 1.5]. Therefore, we conclude that one of the following two cases
hold:

(♢) C̃ a smooth fibre of the conic bundle η : X̃ → S.

(♡) There exists a point x ∈ Z̃ such that δx(X̃, L) ⩽ 1.

In both cases, let us introduce a new curve C in the 3-fold X̃ as follows:

• In case (♢) we let C = C̃.

• In case (♡) we let C be the (singular) fibre of the conic bundle η that contains x.

Let p = η(C). It follows from Remark 3.4 that S contains a smooth conic C such that p ∈ C .
Moreover, if p ∈ ∆, it follows from Remark 3.4 that we can also choose C such that it intersects
the curve ∆ transversally at the point p because Σ ∩∆ = ∅ by assumption.

Let B = η∗(C ), and let B′ = η∗(Z) for a general conic Z ∈ |−KS −C |. Then B is normal, it
has at most Du Val singularities of type A, it is smooth along the curve C, and B′ is smooth.

Let us compute β(B). We have β(B) = AX(B)− SL(B) = 1− SL(B), where

SL(B) =
1

L3

∫ ∞

0
vol(L− uB)du .

For u ∈ R⩾0, the divisor L− uB is pseudo-effective if and only if u ⩽ 1 because

L− uB ∼Q (1− u)B +B′ +
1

2
(E0 + E1) .
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For u ∈ [0, 1], let P (u) be the positive part of the Zariski decomposition of the divisor L− uB,
and let N(u) be its negative part. Then

P (u) = L− uB − u

2
(E0 + E1)

and N(u) = 1
2u(E0 + E1) for every u ∈ [0, 1]. This gives

SL(B) =
1

L3

∫ ∞

0
vol(L− uB)du =

1

4

∫ 1

0
(P (u))3du =

1

4

∫ 1

0

(
2u3 − 6u+ 4

)
du =

3

8
,

which implies that β(B) = 5
8 . Here, we used the following intersections on the 3-fold X̃:

B3 = 0 , (B′)3 = 0 , E3
0 = 16 , E3

1 = 16 , E2
0 · E1 = 0 , E0 · E2

1 = 0 , E0 ·B · E1 = 0 , E0 ·B′ · E1 = 0 ,

E0 ·B ·B′ = 2 , B ·B′ · E1 = 2 , E0 ·B2 = 0 , B2 ·B′ = 0 , E0 · (B′)2 = 0 , B · (B′)2 = 0 ,

B2 · E1 = 0 , E2
0 ·B = −4 , B · E2

1 = −4 , E2
0 ·B′ = −4 , B′ · E2

1 = −4 , (B′)2 · E1 = 0 .

We set e0 = E0|B and e1 = E1|B. Then e0 and e1 are smooth irreducible rational disjoint
curves, and B is smooth along e0 and e1. On B, we have e20 = e21 = −4, e0 · e1 = 0, e0 · C =
e1 · C = 1.

Suppose that case (♢) holds. Then C̃ is a smooth fibre of the conic bundle η, and C = C̃. Set

S
(
WB

•,•; C
)
=

3

L3

∫ 1

0

∫ ∞

0
vol(P (u)|B − vC)dvdu, .

Using [ACC+23, Corollary 1.7.26], we get S
(
WB

•,•; C
)

⩾ 1 since β(F) ⩽ 0, β(B) > 0, and

C ̸⊂ Supp(N(u)). On the other hand, it is easy to compute S
(
WB

•,•; C
)
. Indeed, take v ∈ R⩾0. Then

P (u)
∣∣
B
− vC ∼R (2− v)C + 1− u

2
(e0 + e1) .

Therefore, the divisor P (u)|B − vC is nef for v ⩽ 2u, and it is not pseudo-effective for v > 2.
Moreover, if v ∈ [2u, 2], the positive part of its Zariski decomposition is 1

4(2−v)(4C+e0+e1). Then

vol(P (u)|B − vC) =


2− 2u2 + 2uv − 2v if 0 ⩽ v ⩽ 2u ,
1
2(v − 2)2 if 2u ⩽ v ⩽ 2 ,

0 if v ⩾ 2 .

Integrating, we get S
(
WB

•,•; C
)
= 3

4 , which gives a contradiction. Thus case (♢) does not hold.
Now, we assume that the case (♡) holds and derive a contradiction. Recall that this means

that δx(X̃, L) ⩽ 1 for some point x ∈ Z̃. In this case the curve C is singular. Namely, we have
C = C0 + C1, where C0 and C1 are smooth irreducible rational curves that intersect each other
transversally at x. Without loss of generality, we may assume that C0 ∩E0 ̸= ∅. Moreover, since
the surface B is smooth along C, the numerical intersections of the curves C0, C1, e0, e1 on the
surface B are given in the following table:

C0 C1 e0 e1

C0 −1 1 1 0

C1 1 −1 0 1

e0 1 0 −4 0

e1 0 1 0 −4
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Let us estimate δx(X̃, L) using [ACC+23, Theorem 1.7.30]. We have N(u)|B = 1
2u(e0 + e1)

and x ̸∈ e0 ∪ e1. For every u ∈ [0, 1], we let

t(u) = inf
{
v ∈ R⩾0 | the divisor P (u)|B − vC0 is pseudo-effective

}
.

For v ∈ [0, t(u)], we let P (u, v) be the positive part of the Zariski decomposition of P (u)|B−vC0,
and we let N(u, v) be its negative part. Then we set

S
(
WB

•,•;C0

)
=

3

L3

∫ 1

0

∫ t(u)

0
vol(P (u)

∣∣
B
− vC0)dvdu .

Note that C0 ̸⊂ Supp(N(u, v)) for every u ∈ [0, 1) and v ∈ (0, t(u)). Thus, we can let

Fx
(
WB,C0

•,•,•
)
=

6

L3

∫ 1

0

∫ t(u)

0
(P (u, v) · C0) · ordx(N(u, v)|C0)dvdu .

Finally, we let

S
(
WB,C0

•,•,• ;x
)
=

3

L3

∫ 1

0

∫ t(u)

0
(P (u, v) · C0)

2dvdu+ Fx
(
WB,C0

•,•,•
)
.

Then, since C0 ̸⊂ Supp(N(u)), it follows from [ACC+23, Theorem 1.7.30] that

1 ⩾ δx
(
X̃, L

)
⩾ min

{
1

S
(
WB,C0

•,•,• ;x
) , 1

S
(
WB

•,•;C0

) , 1

SL(B)

}
.

Recall that SL(B) = 3
8 . Thus, either S

(
WB,C0

•,•,• ;x
)
⩾ 1 or S

(
WB

•,•;C0

)
⩾ 1 (or both).

Let us compute S
(
WB,C0

•,•,• ;x
)
and S

(
WB

•,•;C0

)
. As above, take v ∈ R⩾0. Then

P (u)|B − vC0 ∼R (2− v)C0 + 2C1 +
1− u
2

(e0 + e1) .

Therefore, since the intersection form of the curves C1, e0, e1 on the surface B is negative-
definite, we see that P (u)|B − vC0 is pseudo-effective if and only if v ⩽ 2, so t(u) = 2. Moreover,
if 0 ⩽ u ⩽ 1

5 , then

P (u, v) =


(2− v)C0 + 2C1 +

1
2(1− u)

(
e0 + e1

)
if 0 ⩽ v ⩽ 2u ,

1
4(2− v)

(
4C0 + e0

)
+ 2C1 +

1
2(1− u)e1 if 2u ⩽ v ⩽ 1

2(1− u) ,
1
4(2− v)

(
4C0 + e0

)
+ 1

2(5− 2v − u)C1 +
1
2(1− u)e1 if 1− u ⩽ 2v ⩽ 1 + 3u ,

1
12(2− v)(12C0 + 16C1 + 3e0 + 4e1) if 1

2(1 + 3u) ⩽ v ⩽ 2 ,

and

N(u, v) =


0 if 0 ⩽ v ⩽ 2u ,
1
4(v − 2u)e0 if 2u ⩽ v ⩽ 1

2(1− u) ,
1
4(v − 2u)e0 +

1
2(2v + u− 1)C1 if 1− u ⩽ 2v ⩽ 1 + 3u ,

1
4(v − 2u)e0 +

1
3(4v − 2)C1 +

1
6(2v − 3u− 1)e1 if 1

2(1 + 3u) ⩽ v ⩽ 2 ,
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so computation gives

P (u, v) · C0 =


1
2(1− u+ 2v) if 0 ⩽ v ⩽ 2u ,
1
4(2 + 3v) if 2u ⩽ v ⩽ 1

2(1− u) ,
1
4(4− 2u− v) if 1− u ⩽ 2v ⩽ 1 + 3u ,
1
12(14− 7v) if 1

2(1 + 3u) ⩽ v ⩽ 2 ,

vol
(
P (u)|B − vC0

)
=


2− 2u2 + uv − v2 − v if 0 ⩽ v ⩽ 2u ,

2− v − u2 − 3
4v

2 if 2u ⩽ v ⩽ 1
2(1− u) ,

1
4(9− 3u2 + 4uv + v2 − 2u− 8v) if 1− u ⩽ 2v ⩽ 1 + 3u ,
7
12(2− v)

2 if 1
2(1 + 3u) ⩽ v ⩽ 2 .

Similarly, if 1
5 ⩽ u ⩽ 1, then

P (u, v) =


(2− v)C0 + 2C1 +

1
2(1− u)

(
e0 + e1

)
if 0 ⩽ v ⩽ 1

2(1− u) ,
(2− v)C0 +

1
2(5− 2v − u)C1 +

1
2(1− u)

(
e0 + e1

)
if 1

2(1− u) ⩽ v ⩽ 2u ,
1
4(2− v)

(
4C0 + e0

)
+ 1

2(5− 2v − u)C1 +
1
2(1− u)e1 if 1− u ⩽ 2v ⩽ 1 + 3u ,

1
12(2− v)(12C0 + 16C1 + 3e0 + 4e1) if 1

2(1 + 3u) ⩽ v ⩽ 2 ,

N(u, v) =


0 if 0 ⩽ v ⩽ 1

2(1− u) ,
1
2(2v + u− 1)C1 if 1

2(1− u) ⩽ v ⩽ 2u ,
1
4(v − 2u)e0 +

1
2(2v + u− 1)C1 if 1− u ⩽ 2v ⩽ 1 + 3u ,

1
4(v − 2u)e0 +

1
3(4v − 2)C1 +

1
6(2v − 3u− 1)e1 if 1

2(1 + 3u) ⩽ v ⩽ 2 ,

P (u, v) · C0 =


1
2(1− u+ 2v) if 0 ⩽ v ⩽ 1

2(1− u) ,
1− u if 1

2(1− u) ⩽ v ⩽ 2u ,
1
4(4− 2u− v) if 1− u ⩽ 2v ⩽ 1 + 3u ,
1
12(14− 7v) if 1

2(1 + 3u) ⩽ v ⩽ 2 ,

vol
(
P (u)|B − vC0

)
=


2− 2u2 + uv − v2 − v if 0 ⩽ v ⩽ 1

2(1− u) ,
1
4(1− u)(7u− 8v + 9) if 1

2(1− u) ⩽ v ⩽ 2u ,
1
4(9− 3u2 + 4uv + v2 − 2u− 8v) if 1− u ⩽ 2v ⩽ 1 + 3u ,
7
12(2− v)

2 if 1
2(1 + 3u) ⩽ v ⩽ 2 .

Now, integrating vol(P (u)|B − vC0) and (P (u, v) · C0)
2, we obtain S

(
WB

•,•;C0

)
= 13

16 and

S
(
WB,C0

•,•,• ;x
)
=

77

320
+ Fx

(
WB,C0

•,•,•
)
.

Furthermore, since x ̸∈ e0 ∪ e1 and the curves C0 and C1 intersect transversally at x, we have

Fx
(
WB,C0

•,•,•
)
=

3

2

∫ 1

0

∫ 2

0
ordx(N(u, v)|C0)× (P (u, v) · C0)dvdu

=
3

2

∫ 1
5

0

∫ 1+3u
2

1−u
2

2v + u− 1

2
× (P (u, v) · C0)dvdu+

3

2

∫ 1
5

0

∫ 2

1+3u
2

4v − 2

3
× (P (u, v) · C0)dvdu
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+
3

2

∫ 1

1
5

∫ 1+3u
2

1−u
2

2v + u− 1

2
× (P (u, v) · C0)dvdu+

3

2

∫ 1

1
5

∫ 2

1+3u
2

4v − 2

3
× (P (u, v) · C0)dvdu

=
3

2

∫ 1
5

0

∫ 1+3u
2

1−u
2

2v + u− 1

2
× 4− 2u− v

4
dvdu+

3

2

∫ 1
5

0

∫ 2

1+3u
2

4v − 2

3
× 14− 7v

12
dvdu

+
3

2

∫ 1

1
5

∫ 2u

1−u
2

2v + u− 1

2
× (1− u)dvdu+

3

2

∫ 1

1
5

∫ 1+3u
2

2u

2v + u− 1

2
× 4− 2u− v

4
dvdu

+
3

2

∫ 1

1
5

∫ 2

1+3u
2

4v − 2

3
× 14− 7v

12
dvdu =

183

320
,

which gives S
(
WB,C0

•,•,• ;x
)
= 13

16 . Thus, we see that S
(
WB,C0

•,•,• ;x
)
= S

(
WB

•,•;C0

)
= 13

16 < 1, which
gives a contradiction. This completes the proof of Theorem 3.1.

4. K-moduli compactification

As in previous sections, letX be a pure complete intersectionX2,2,4 ⊂ P
(
15, 22

)
, that is, a (2, 2, 4)-

complete intersection in P
(
15, 22

)
which is not a (2, 4)-complete intersection in P

(
15, 2

)
. For

convenience, assume at no cost that X is given by y21 = y20 − f(x0, . . . , x4), g(x0, . . . , x4) = 0,
and h(x0, . . . , x4) = 0, where f , g, and h have degrees 4, 2, and 2, respectively. First, we make
a slight improvement on the previous results using techniques of cyclic covers, cone construction,
degeneration, and interpolation.

Theorem 4.1. Let ∆ = {f = 0, g = h = 0} ⊂ P4 and S = {g = h = 0} ⊂ P4. Assume that ∆ is
a smooth curve and S is a smooth surface. Then X is K-polystable.

Proof. By forgetting y1 in the defining equation of X, we obtain a double cover X →
(
Y, 12D

)
,

where Y = {g = h = 0} ⊂ P
(
15, 2

)
and D =

{
y20 = f

}
|Y . In other words, Y ∼= Cp(S,OS(2)). By

rescaling the y0-coordinate only, it is easy to see that (Y,D) admits an isotrivial degeneration
to (Y,D0), where D0 =

{
y20 = 0

}
|Y is twice the section at infinity, which we denote by S∞ =

1
2D0. Since S is a smooth del Pezzo surface of degree 4, we know that S is K-stable. Hence by
the cone construction [LL19, LX20, ZZ22], we know that

(
Y,
(
1 − 1

3r
)
S∞
)
is K-polystable for

OS(2) = −r−1KS ; that is, r =
1
2 . Hence

(
Y, 5

12D0

)
is K-polystable, which implies that

(
Y, 5

12D
)

is K-semistable by openness. Since D ∼ OY (4) and −KY ∼ OY (3), we know that
(
Y, 34D

)
is

a klt log Calabi–Yau pair as D is smooth and contained in the smooth locus of Y . Therefore,
by interpolation of K-stability [ADL24, Proposition 2.13], we know that (Y, cD) is K-stable for
every c ∈

(
5
12 ,

3
4

)
. In particular, taking c = 1

2 yields the K-stability of
(
Y, 12D

)
, which implies the

K-polystability of X by the cyclic cover result on K-polystability [Der16, LZ22, Zhu21].

Next we study the K-moduli compactification of pure (2, 2, 4)-complete intersections in
P
(
15, 22

)
. The following result is inspired by [ADL23b, Theorem 5.2].

Proposition 4.2. Let S be a log del Pezzo surface. Let ∆ ∼ −4KS be an effective Q-Cartier
Weil divisor given by ∆ = {f = 0} for f ∈ H0(S,−4KS). Let Y = Cp(S,−2KS) be the projective
cone. Let D =

{
y2 = f

}
be a divisor in Y , where {y = 0} is the section at infinity of Y . Let

c ∈
(
0, 14
)
∩Q. If (S, c∆) is K-semistable (respectively, K-polystable), then

(
Y, 1

12(5 + 16c)D
)
is

also K-semistable (respectively, K-polystable).

Proof. The proof is similar to [ADL23b, proof of Theorem 5.2]. Write a := 1
12(5 + 16c) and b :=

1
12(11 + 4c). Denote by τ : Y → Y the involution preserving each ruling given by τ∗y = −y. Let
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Z = Cp(S,−4KS) be a new projective cone, where S1 = {z = 0} is the section at infinity. Then
the quotient map of τ yields a double cover π : Y → Z branched along S1. Moreover, it is clear
that D is a τ -invariant divisor whose quotient S2 = D/τ is a section of Z such that S2|S1 = ∆.
Thus we have a crepant finite Galois morphism π : (Y, aD)→

(
Z, 12S1+ aS2

)
. By [LZ22, Zhu21],

it suffices to show K-semistability (respectively, K-polystability) for
(
Z, 12S1 + aS2

)
.

We first treat K-semistability. The natural Gm-action on (Z, S1) degenerates S2 to S2,0 as
the cone over ∆. Let r ∈ Q>0 be chosen such that −4KS ∼Q r−1(−KS − c∆); that is, r =
1
4(1 − 4c). It follows from the cone construction [LX20, Proposition 5.3] (see also [LL19]) that(
Z,
(
1− 1

3r
)
S1+cS2,0

)
is K-semistable. Since 1− 1

3r =
1
12(11+4c) = b, we know that (Z, bS1+cS2)

is K-semistable by the openness of K-semistability [BLX22, Xu20]. By the symmetry between S1
and S2, we know that (Z, cS1 + bS2) is also K-semistable. Since

(
1
2 , a
)
is a convex combination

of (c, b) and (b, c), we know that
(
Z, 12S1 + aS2

)
is K-semistable.

The K-polystable part follows from a similar argument to [ADL23b, proof of Theorem 5.2].
We include a proof here for the readers’ convenience. By [LZ22, Zhu21] it suffices to show the K-
polystability of

(
Z, 12S1+aS2

)
. By [LWX21] there exists a special test configuration

(
Z, 12S1+aS2

)
of
(
Z, 12S1 + aS2

)
whose central fibre

(
Z ′, 12S

′
1 + aS′

2

)
is K-polystable. Therefore, Fut

(
Z, 12S1 +

aS2
)
= 0. By the linearity of Futaki invariants and the K-semistability of (Z, bS1 + cS2) and

(Z, cS1 + bS2), we know that

Fut(Z, bS1 + cS2) = Fut(Z, cS1 + bS2) = 0 .

By [LWX21, Lemma 3.1] we know that both (Z ′, bS′
1+cS

′
2) and (Z ′, cS′

1+bS
′
2) are K-semistable.

Since (S, c∆) is K-polystable, we know that (Z, bS1 + cS2,0) is the K-polystable degeneration
of (Z, bS1 + cS2) by [LL19, LX20, LXZ22]. Thus by [LWX21] we have a sequence of special
degenerations of K-semistable log Fano pairs

(Z, bS1 + cS2) (Z ′, bS′
1 + cS′

2) (Z, bS1 + cS2,0) .

This implies that (Z, S1) ∼= (Z ′, S′
1). By the symmetry between S1 and S2, we also have (Z, S2) ∼=

(Z ′, S′
2). Moreover, restricting the above degeneration sequence to S1 yields that (S1, S2|S1)

∼=
(S′

1, S
′
2|S′

1
). Since S1 and S2 are two sections of the projective cone Z, we conclude that (Z, S1 +

S2) ∼= (Z, S1 + S2), which implies that
(
Z, 12S1 + aS2

)
is K-polystable.

From Proposition 4.2, we see that if c = 1
16 , then

1
12(5 + 16c) = 1

2 , which precisely gives the
K-moduli of the double cover X of

(
Y, 12D

)
. In other words, let Mc be the K-moduli space of

(S, c∆), where S is a Q-Gorenstein smoothable del Pezzo surface of degree 4 and ∆ ∼ −4KS .
In the convention of [ADL24], the K-moduli space is defined by Mc := KMχ0,4,c, where χ0 is
the Hilbert polynomial of an anti-canonically polarised smooth del Pezzo surface of degree 4.
From the following result we see that there exists a finite injective morphism ψ : M1/16 →MKps

3,4

whose image is precisely the closure of the locus parametrising pure (2, 2, 4)-complete intersec-
tions X2,2,4 ⊂ P

(
15, 22

)
. Thus to describe the compactification of the K-moduli of pure (2, 2, 4)-

complete intersections in P
(
15, 22

)
, it suffices to describe the K-moduli space M1/16 of

(
S, 1

16∆
)

consisting of a del Pezzo surface S of degree 4 and ∆ ∼ −4KS . As a consequence, the converse
of Proposition 4.2 also holds.

Theorem 4.3. There exists a finite injective morphism ψ : M1/16 →MKps
3,4 whose image is the

closure of the locus parametrising pure (2, 2, 4)-complete intersections X2,2,4 ⊂ P
(
15, 22

)
.

Proof. LetMc := KMχ0,4,c be the K-moduli stack defined in [ADL24] whose good moduli space
is Mc. We fix c = 1

16 throughout the proof. Let π : (S, c∆S) → Mc be the universal family of
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K-semistable pairs. We will construct a family of K-semistable Q-Fano 3-folds of volume 4 over
an algebraic stack W which is a composition of two µ2-gerbes overMc. This gives us a morphism
of stacks Ψ: W →MKss

3,4 , where the target denotes the K-moduli stack of K-semistable Q-Fano
3-folds of volume 4 (see for example [Xu21]). Then ψ is obtained by descent to good moduli
spaces. The construction of such a family has three steps.

Firstly, we construct the projective cone Z →Mc. Let L := OS(∆S). Then we know that L is
a line bundle by Proposition 4.4. Let Z := ProjMc

R[t], where R =
⊕∞

m=0 π∗L⊗m. Here π∗L⊗m
and t have degrees m and 1, respectively. Let S1 := {t = 0} and S2 := {t− s = 0} be two Cartier
divisors in Z, where s ∈ H0(Mc, π∗L) is a section defining ∆S .

Secondly, we construct a double cover Y of Z branched along S1 after base change to a µ2-
gerbe. Our argument is similar to [ADL23b, proof of Proposition 6.12]. Let G := KZ/Mc

+ S1.
Then we know that G is a Q-Cartier Weil divisor such that −4Gt ∼ (S1)t for every t ∈ |Mc|. Hence
OZ(4G + S1) is a trivial line bundle along each fibre Zt, which implies that it descends to a line
bundle F overMc. Let ϕV : V →Mc be the µ2-gerbe obtained as the second root stack of F .
Hence there exists a line bundle F ′

V on V such that F ′
V
⊗2 ∼= ϕ∗V F . Let πV : (Z̃, S̃1 + S̃2) → V

be the base change of (Z,S1 + S2) → Mc to V . Denote by G̃ the pullback of G to Z̃. Then
N := π∗V F ′

V ⊗OZ̃(−2G̃) is a Q-Cartier divisorial sheaf such that N [2] ∼= OZ̃(S̃1). We take the
double cover of Z̃ branched along S̃1,

Y := SpecZ̃ OZ̃ ⊕N
[−1] ,

where the OZ̃ -algebra structure is induced by N [−2] ·s̃−→ OZ̃ , where s̃ is a section of N [2] such
that {s̃ = 0} = S̃1. Let D be the pullback of S̃2 to Y.

Lastly, we construct a double cover X of Y branched along D after base change to a µ2-
gerbe. The construction is similar to the previous step, so we omit the details. In the end,
we obtain a µ2-gerbe W → V such that we can take a double cover X of Ỹ branched along D̃,
where (Ỹ, D̃) = (Y,D)×V W . By Kawamata–Viehweg vanishing, the above construction com-
mutes with base change, and hence the family X → W has K-semistable fibres by Proposition 4.2,
where a general fibre is a pure (2, 2, 4)-complete intersection in P

(
15, 22

)
. Thus we obtain a mor-

phism Ψ: W →MKss
3,4 . Moreover, W admits a good moduli space isomorphic to Mc by [Alp13]

(see also [ADL23b, proof of Proposition 6.12]). Hence Ψ descends to a morphism between good
moduli spaces ψ : M1/16 →MKps

3,4 by [Alp13, Theorem 6.6]. It remains to show that ψ is a finite
injective morphism. Since M1/16 is proper, it suffices to show that ψ is injective on C-points.

Suppose ψ(S,∆) ∼= ψ(S′,∆′). To show that ψ is injective, it suffices to show that (S,∆) ∼=
(S′,∆′). By Proposition 4.4, we know that both S and S′ are del Pezzo surfaces of degree 4 with
Du Val singularities. Thus S and S′ are both (2, 2)-complete intersections in P4, and we may
write

(S,∆) = ({g = h = 0}, {f = 0}|S) and (S′,∆′) = ({g′ = h′ = 0}, {f ′ = 0}|S′) ,

where g, h, g′, h′ (respectively, f , f ′) are homogeneous polynomials of degree 2 (respectively, of
degree 4) in (x0, x1, x2, x3, x4). Let X = ψ(S,∆) and X ′ = ψ(S′,∆′). Then we have X ∼= X ′

by assumption. Moreover, we know that X = {g = h = y0y1 − f = 0} and X ′ = {g′ =
h′ = y0y1 − f ′ = 0} are pure (2, 2, 4)-complete intersections in P

(
15, 22

)
. Since the embed-

ding X ↪→ P
(
15, 22

)
is induced by the linear systems |−KX | and |−2KX |, the coordinates

(x0, . . . , x4) form a basis of H0(X,−KX), and the coordinates (y0, y1) are liftings of a basis
of coker

(
Sym2H0(X,−KX)→ H0(X,−2KX)

)
, we know that X and X ′ are projectively equiva-

lent as weighted complete intersections. Thus under a change of coordinates σ ∈ Aut
(
P
(
15, 22

))
,

400



On K-moduli of quartic threefolds

we have X ′ = σ∗X. We may decompose σ = σx ◦ σy, where σx is linear in xi and fixes y0 and
y1, and σy fixes each xi. Then a simple analysis of the transformation of equations under σ∗

shows that (S′,∆′) = σ∗x(S,∆), where we treat σx as an element in PGL5(C). Thus the proof is
finished.

The next result bounds the singularities of surfaces appearing in Mc.

Proposition 4.4. Let [(S, c∆)] ∈ Mc be a K-polystable pair for some c ∈
(
0, 1

16

]
. Then either

S is smooth, or S has only A1-, A2-, or A3-singularities. If in addition S has an A3-singularity,
then we have

c =
1

16
, S ∼=

{
y23 = y2y4

}
⊂ P(1, 2, 3, 4)[y1,y2,y3,y4] , and ∆ =

{
y44 = 0

}
.

Remark. Note that the surface S in Proposition 4.4 is №25 from [CP21, Big Table] (see also
Table 1).

Proof. We know that

(−KS − c∆)2 = (1− 4c)2(−KS)
2 = 4(1− 4c)2 .

Let x ∈ S be a singular point with local orbifold group Gx. The local-global volume comparison
[LL19] implies

4

|Gx|
= v̂ol(x, S) ⩾ v̂ol(x, S, c∆) ⩾

4

9
(−KS − c∆)2 =

16

9
(1− 4c)2 ⩾ 1 . (4.1)

Thus we have that |Gx| ⩽ 4. This, together with the T -singularity condition (see [KS88]), implies
that x ∈ S is A1, A2, A3, or of type

1
4(1, 1).

Next, we rule out the case of type 1
4(1, 1). Assume to the contrary that x ∈ S has type 1

4(1, 1).
Since |Gx| = 4, every inequality from (4.1) is an equality. Thus we have x ̸∈ Supp(∆), c = 1

16 ,
and the inequality in the local-global volume comparison from [Liu18, LL19] is an equality. By
[Liu18, Remark 38(1)] we have that S ∼= P2/µ4, where the µ4-action on P2 has weight (1, 1, 0)
and 1

16∆ corresponds to the orbifold divisor of P2/µ4. In particular, we have S ∼= P(1, 1, 4), which
implies that

(
K2
S

)
= 9 ̸= 4, so we have a contradiction. Thus singularities of type 1

4(1, 1) cannot
appear.

Finally, we consider the case where x ∈ S has type A3. Similarly to the previous case of type
1
4(1, 1), we have x ̸∈ Supp(∆), c = 1

16 . Moreover, S ∼= P2/µ4, where the µ4-action on P2 has
weight (1, 3, 0) and 1

16∆ corresponds to the orbifold divisor of P2/µ4. Suppose given a generator
g of µ4 acting on P2

[x,y,z] as

g · [x, y, z] = [ix,−iy, z] = [−x, y, iz] .

Denote by R =
⊕∞

m=0H
0
(
P2,O(m)

)
the graded section ring of

(
P2,O(1)

)
. If we pick the latter

µ4-linearisation on
(
P2,O(1)

)
of weight (2, 0, 1), then the µ4-invariant subring R

µ4 is generated
by y, x2, xz2, z4. Thus we have

P2/µ4
∼= ProjRµ4 ∼=

({
y23 = y2y4

}
⊂ P(1, 2, 3, 4)

)
,

where the generators correspond to y1 = y, y2 = x2, y3 = xz2, and y4 = z4. Since the µ4-action
has one orbifold curve given by (z = 0) of order 2, whose reduced image in P2/µ4 corresponds
to 1

2(y4 = 0), we have 1
16∆ = 1

2 ·
1
2(y4 = 0), which implies that ∆ =

{
y44 = 0

}
. It is easy to check

that
(
K2
S

)
= 4 and ∆ ∼ −4KS ; hence

[(
S, 1

16∆
)]
∈M1/16. The proof is finished.
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Corollary 4.5. The K-moduli compactification of pure (2, 2, 4)-complete intersections P
(
15, 22

)
only consists of complete intersections of the same type.

Proof. By Proposition 4.4 we see that every pair (S,∆) in M1/16 satisfies that S has Du Val
singularities. Hence S = {g = h = 0} is always a complete intersection of two quadrics in P4 and
∆ = {f = 0}|S , which implies that Y = Cp(S,−2KS) = {g = h = 0} is a complete intersection
in P

(
15, 2

)
. Hence ψ(S,∆) is a complete intersection X2,2,4 ⊂ P

(
15, 22

)
given by {y0y1 = f} and

{g = h = 0}. Thus the statement follows from Theorem 4.3.

5. Wall crossing

In this section we study the explicit wall crossings for the K-moduli spaces Mc where c ∈
(
0, 1

16

]
.

Similar problems were studied in [ADL24, ADL23a, ADL23b, Pap22, Zha24].

Let us recall the convention from [ADL24]. A wall c = ci of the K-moduli spaces Mc is
a rational value such that K-polystability changes from c = ci − ϵ to c = ci + ϵ for 0 < ϵ ≪ 1.
By [ADL24, Theorems 1.1 and 1.2] there are finitely many walls 0 < c1 < c2 < · · · < ck ⩽

1
16 for

the K-moduli spaces Mc with c ∈
(
0, 1

16

]
. Moreover, we have wall crossing diagrams of birational

morphisms

Mci−ϵ −→Mci ←−Mci+ϵ .

A K-polystable pair (S, ci∆) in Mci is called a new K-polystable pair on the wall ci if (S, c∆) is
K-unstable whenever c ̸= ci. By [ADL24] we know that every new K-polystable pair on a wall
admits an effective Gm-action, hence is not K-stable; on the other hand, every wall admits a new
K-polystable pair.

In addition to walls in
(
0, 1

16

]
, there is an initial wall crossing at c0 = 0, where we will have

a fibre-type contraction Mϵ →M0. Here M0 is the K-moduli space of Q-Gorenstein smoothable
del Pezzo surfaces of degree 4, which is literally the K-moduli space of (S, 0∆). By [MM93, OSS16]
we know that M0 is isomorphic to the GIT moduli space of complete intersections of two quadric
hypersurfaces in P4. Note that this initial wall crossing was not explicitly stated in [ADL24],
although the techniques therein are sufficient to deduce such a result.

Theorem 5.1. There are four walls for c ∈
(
0, 1

16

]
for the K-moduli spaces Mc: c1 =

1
28 , c2 =

1
22 ,

c3 = 1
19 , c4 = 1

16 . The new K-polystable pairs (S, ci∆) on the walls are completely classified
in Proposition 4.4 and in Theorems 5.2 and 5.8, where S is isomorphic to №25, 29, and 33 in
Table 1, respectively. Moreover, the initial wall crossing at c0 = 0 gives a surjective morphism
Mϵ →M0 with connected fibres whose general fibre is isomorphic to P40/µ4

2.

To find all walls for the K-moduli spaces Mc, where c ∈
(
0, 1

16

]
, we need to classify new

K-polystable pairs (S, c∆), that is, the pairs that are K-polystable but not K-stable, and where
S is K-unstable. This way we can obtain a complete list of walls and new K-polystable pairs on
the walls.

By Proposition 4.4 we know that either S is a K-unstable del Pezzo surface of degree 4 with
at worst A2 singularities that admits a Gm-action, or S is isomorphic to №25. The following table
from [CP21, Big Table] classifies del Pezzo surfaces of degree 4 with at worst A2-singularities
that admit a Gm-action, with an additional row of №25 which shows up in M1/16 only.

Here B2 represents the Borel subgroup of PGL2(C).
From Table 1 and [MM93, OSS16], we see that №25, 29, 33 are K-unstable, while №30, 35

are K-polystable, and №34 is K-semistable but not K-polystable.
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Table 1. Del Pezzo surfaces of degree 4 with Gm-actions and at worst A2-singularities, together
with №25.

№ ρ Sing. Aut0 Equation and ambient space

29 2 A22A1 G2
m

{
y2y

′
2 = y31y

′
1

}
⊂ P(1, 1, 2, 2)

30 2 4A1 G2
m

{
y2y

′
2 = y21y

′ 2
1

}
⊂ P(1, 1, 2, 2)

33 3 A2A1 Gm {x0x1 − x2x3 = x1x2 + x2x4 + x3x4 = 0} ⊂ P4

34 3 3A1 Gm

{
y2y

′
2 = y21y

′
1(y1 + y′1)

}
⊂ P(1, 1, 2, 2)

35 4 2A1 Gm {y2y′2 = y1y
′
1(y

′
1 − y1)(y′1 − λy1)} ⊂ P(1, 1, 2, 2) for λ ∈ C∖ {0, 1}

25 1 A32A1 B2 ×Gm

{
y23 = y2y4

}
⊂ P(1, 2, 3, 4)

From now on, we study the walls from Mϵ to M1/16 which involve only №25, 29, or 33. Since
there is only one wall at c = 1

16 involving №25 by Proposition 4.4, we will focus on walls involving
№29 or 33.

5.1 Surface №29

Here S =
{
y2y

′
2 = y31y

′
1

}
⊂ P(1, 1, 2, 2)[y1,y′1,y2,y′2].

Theorem 5.2. There are precisely four walls in
(
0, 1

16

]
involving S from №29 such that (S, ci∆i)

is a new K-polystable pair for the following choices of ci and ∆i:

(1) c1 =
1
28 , ∆1 =

{
y′ 81 = 0

}
;

(2) c2 =
1
22 , ∆2 =

{
y1y

′ 7
1 = 0

}
;

(3) c3 =
1
19 , ∆3 =

{
(y2 + y′2)y

′ 6
1 = 0

}
;

(4) c4 = 1
16 , ∆4 = ∆4,a or ∆4,∞, where ∆4,a =

{
y2y

′ 6
1 + a1y

2
1y

′ 6
1 + a2y1y

′
2y

′ 5
1 + a3y

′ 2
2 y

′ 4
1 = 0

}
for a = (a1, a2, a3) ∈ C×

(
C2 ∖ {(0, 0)}

)
and ∆4,∞ =

{
y21y

′ 6
1 = 0

}
.

We first show that these pairs are K-polystable. The fact that S is toric follows from

(s, t) · [y1, y′1, y2, y′2] =
[
sy1, s

−3y′1, ty2, t
−1y′2

]
.

It is clear that ∆i for i ⩽ 2 is toric. Thus it suffices to show that the Futaki character satisfies
Fut(S,ci∆i) = 0. In addition, S admits an involution τ : S → S given by τ([y1, y

′
1, y2, y

′
2]) =

[y1, y
′
1, y

′
2, y2].

Set C = {y′1 = y2 = 0}, C ′ = {y′1 = y′2 = 0}, B = {y1 = y2 = 0}, B′ = {y1 = y′2 = 0}. The
intersection numbers of these curves are summarised in Table 2.

Lemma 5.3. The Mori cone NE(S) is generated by [C] and [C ′].

Proof. From the torus action on S, we see that there are precisely four torus-invariant divisors:
C, C ′, B, and B′. Thus NE(S) is generated by these four curves. From Table 2 we see that both
B and B′ are nef and big, while both C and C ′ are extremal. Thus the proof is finished.

We first compute the S-invariants of these curves.

403



H. Abban, I. Cheltsov, A.M. Kasprzyk, Y. Liu and A. Petracci

Table 2. Intersection numbers of the surface №29.

• C C ′ B B′

C −1
2 1 1

2 0

C ′ 1 −1
2 0 1

2

B 1
2 0 1

6
1
3

B′ 0 1
2

1
3

1
6

Proposition 5.4. Under the above notation, we have

SS(C) = SS(C
′) =

5

6
, SS(B) = SS(B

′) =
7

6
.

Proof. First of all, the involution τ satisfies τ(C) = C ′ and τ(B) = B′. Thus we have equalities
SS(C) = SS(C

′) and SS(B) = SS(B
′).

Next, we compute SS(C). It is clear that −KS = OS(2) = 2(C + C ′). This gives

SS(C) =
1

4

∫ ∞

0
volS((2− t)C + 2C ′)dt .

It follows from Table 2 and Lemma 5.3 that (2 − t)C + 2C ′ is nef if 0 ⩽ t ⩽ 1 and not big if
t ⩾ 2. For 1 ⩽ t ⩽ 2 the Zariski decomposition is

(2− t)C + 2C ′ = P +N = (2− t)(C + 2C ′) + (2t− 2)C ′ .

Thus computation shows that

vol((2− t)C + 2C ′) =

{
4− 2t− t2

2 if 0 ⩽ t ⩽ 1 ,
3
2(2− t)

2 if 1 ⩽ t ⩽ 2 .

Thus

SS(C) =
1

4

(∫ 1

0

(
4− 2t− t2

2

)
dt+

∫ 2

1

3

2
(2− t)2dt

)
=

5

6
.

Finally, we compute SS(B). It is clear that −KS = OS(2) = 2(B +B′). This gives

SS(B) =
1

4

∫ ∞

0
volS((2− t)B + 2B′)dt .

Moreover, by Table 2 and Lemma 5.3, we know that (2− t)B + 2B′ is nef if 0 ⩽ t ⩽ 2 and not
big if t ⩾ 3. For 2 ⩽ t ⩽ 3 the Zariski decomposition is

(2− t)C + 2C ′ = P +N = (6− 2t)B′ + (t− 2)C .

Thus computation shows that

vol((2− t)B + 2B′) =

{
4− 2t+ 1

6 t
2 if 0 ⩽ t ⩽ 2 ,

2
3(3− t)

2 if 2 ⩽ t ⩽ 3 .

Thus

SS(B) =
1

4

(∫ 2

0

(
4− 2t+

t2

6

)
dt+

∫ 3

2

2

3
(3− t)2dt

)
=

7

6
.

Proposition 5.5. The pairs (S, ci∆i) from Theorem 5.2 are K-polystable and not K-stable.
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Proof. We first look at cases (1) and (2). For these two cases (S, ci∆i) is toric hence not K-
stable. Thus we just need to show that the Futaki character satisfies Fut(S,ci∆i) = 0. Since the
one-parameter subgroup induced by ordC , ordC′ , ordB, and ord′B generates the torus, it suffices
to show that β(S,ci∆i)(v) = 0, where v is one of the four valuations. By the symmetry of τ , it
suffices to show that β(S,ci∆i)(C) = β(S,ci∆i)(B) = 0.

Since ∆i ≡ −4KS , we know that A(S,ci∆i)(v) = AS(v) − civ(∆i) and that S(S,ci∆i)(v) =
(1− 4ci)SS(v). Thus

β(S,ci∆i)(v) = AS(v)− civ(∆i)− (1− 4ci)SS(v) .

(1) Since c1 =
1
28 and ∆1 =

(
y′ 81 = 0

)
, we have

β(S,c1∆1)(C) = 1− 8

28
−
(
1− 4

28

)
5

6
= 0 ,

β(S,c1∆1)(B) = 1−
(
1− 4

28

)
7

6
= 0 .

(1) Since c2 =
1
22 and ∆2 =

(
y1y

′ 7
1 = 0

)
, we have

β(S,c2∆2)(C) = 1− 7

22
−
(
1− 4

22

)
5

6
= 0 ,

β(S,c2∆2)(B) = 1− 1

22
−
(
1− 4

22

)
7

6
= 0 .

Next, we look at case (3). In this case, (S,∆3) admits a Gm-action σ given by

s · [y1, y′1, y2, y′2] =
[
sy1, s

−3y′1, y2, y
′
2

]
.

Thus (S, c3∆3) is not K-stable. In the affine chart U := {y1 = 1} ⊂ S, we have an isomorphism
U ∼= A2 given by [1, y′1, y2, y

′
2] 7→ (y2, y

′
2), where C|U and C ′|U correspond to (y2 = 0) and

(y′2 = 0), respectively. If we write v0 = ord[1,0,0,0], then v0 is the quasi-monomial combination of
ordC and ordC′ of weight (1, 1) (see for example [JM12] for a definition). Thus we have

βS(v0) = βS(C) + βS(C
′) = 2βS(C) = 2(1− SS(C)) =

1

3
.

It is clear that v0 induces the Gm-action σ. Thus by [Liu23, Theorem 3.2] (cf. [ACC+23, The-
orem 1.3.9] and [IS17]), it suffices to show that β(S,c3∆3)(v0) = 0 and that β(S,c3∆3)(D) > 0 for
every vertical prime divisor D on S.

We first compute the β-invariant of v0. Since βS(v0) = 1
3 and AS(v0) = 2, we know that

SS(v0) =
5
3 . Thus

β(S,c3∆3)(v0) = 2− c3v0(∆3)− (1− 4c3)SS(v0) = 2− 13

19
−
(
1− 4

19

)
5

3
= 0 .

Next we compute the β-invariants of the vertical divisors D. A simple analysis of the σ-action
on S shows that D is one of the following:

(i) C or C ′,

(ii) B or B′,

(iii) Da = {y2 + ay′2 = 0} for a ̸= 0.

Next, we split into these three cases:
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(i) Since ∆3 is invariant under the involution τ , we have

β(S,c3∆3)(C) = β(S,c3∆3)(C
′) = 1− 6

19
−
(
1− 4

19

)
5

6
=

1

38
> 0 .

(ii) Similarly, we have

β(S,c3∆3)(B) = β(S,c3∆3)(B
′) = 1−

(
1− 4

19

)
7

6
=

3

38
> 0 .

(iii) We know that ordDa(∆3) ⩽ 1. Moreover, we know that −KS − tDa = OS(2− 2t), which
is nef if 0 ⩽ t ⩽ 1 and not big if t ⩾ 1. Hence

SS(Da) =
1

4

∫ 1

0
(2− 2t)2dt =

1

3
.

Thus

β(S,c3∆3)(Da) ⩾ 1− 1

19
−
(
1− 4

19

)
1

3
=

13

19
> 0 .

Finally, we look at case (4). We first treat the case of ∆4,∞. It is clear that ∆4,∞ =
{
y21y

′ 6
1 = 0

}
is toric. Hence (S, c4∆4,∞) is not K-stable. Since c4 =

1
16 , we have

β(S,c4∆4,∞)(C) = 1− 6

16
−
(
1− 4

16

)
5

6
= 0 ,

β(S,c4∆4,∞)(B) = 1− 2

16
−
(
1− 4

16

)
7

6
= 0 .

This shows that (S, c4∆4,∞) is K-polystable.

Next, we treat the case of ∆4,a for a = (a1, a2, a3) ∈ C ×
(
C2 ∖ {(0, 0)}

)
. Since ∆4,a ={

y2y
′ 6
1 + a1y

2
1y

′ 6
1 + a2y1y

′
2y

′ 5
1 + a3y

′ 2
2 y

′ 4
1 = 0

}
, we know that (S,∆4,a) admits a Gm-action σ′

given by

t · [y1, y′1, y2, y′2] =
[
ty1, y

′
1, t

2y2, ty
′
2

]
.

Thus (S, c4∆4,a) is not K-stable. In the affine chart U ′ := {y′1 = 1} ⊂ S, we have an isomor-

phism U ′ ∼=
{
y31 = y2y

′
2

}
⊂ A3

(y1,y2,y′2)
. Let v1 be the monomial valuation on U ′ of weight (1, 2, 1)

in (y1, y2, y
′
2) that is centred at the point [0, 1, 0, 0]. Then v1 is a quasi-monomial combination of

ordB and ordB′ of weight
(
2
3 ,

1
3

)
. Thus we have

βS(v1) =
2

3
βS(B) +

1

3
βS(B

′) = βS(B) = −1

6
.

It is clear that v1 induces the Gm-action σ
′. Thus by [Liu23, Theorem 3.2] (cf. [ACC+23, Theo-

rem 1.3.9] and [IS17]), it suffices to show that β(S,c4∆4,a)(v1) = 0 and that β(S,c4∆4,a)(D) > 0 for
every vertical prime divisor D on S.

We first compute the β-invariant of v1. Since AS(v1) =
2
3AS(B)+ 1

3AS(B
′) = 1, we know that

SS(v1) = AS(v1)− βS(v1) = 7
6 . Moreover, we have ∆4,a|U ′ =

{
y2 + a1y

2
1 + a2y1y

′
2 + a3y

′ 2
2 = 0

}
,

which implies v1(∆4,a) = 2. Thus

β(S,c4∆4,a)(v1) = 1− c4v1(∆4,a)− (1− 4c4)SS(v1) = 1− 2

16
−
(
1− 4

16

)
7

6
= 0 .

We also observe that C ′ is the other horizontal divisor of σ′, whose β-invariant is automatically
zero as β = Fut is linear on the space of cocharacters.
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Next we compute the β-invariants of the vertical divisors D. A simple analysis of the σ′-action
on S shows that D is one of the following:

(i) C,

(ii) B or B′,

(iii) Db =
(
y2 + by21 = 0

)
− 2B for b ̸= 0.

Next, we split into these three cases:

(i) Since ordC(∆4,a) = 4 or 5, we have

β(S,c4∆4,a)(C) ⩾ 1− 5

16
−
(
1− 4

16

)
5

6
=

1

16
> 0 .

(ii) Since ordB′(∆4,a) = 0 and ordB(∆4,a) is 0 or 1, we have

β(S,c4∆4,a)(B
′) ⩾ β(S,c4∆4,a)(B) ⩾ 1− 1

16
−
(
1− 4

16

)
7

6
=

1

16
> 0 .

(iii) In the affine chart U = {y1 = 1} ∼= A2
(y2,y′2)

, we have

∆4,a|U =
{
y42y

′ 6
2 (y32 + a1y

2
2 + a2y2 + a3) = 0

}
and Db|U = {y2 + b = 0} .

Hence ordDb
(∆4,a) ⩽ 3 as b ̸= 0. Moreover, we know that Db ≡ OS(2)− 2B ≡ 2B′. Hence

SS(Db) =
1

4

∫ ∞

0
volS(−KS − 2tB′)dt =

1

2
SS(B

′) =
7

12
.

Thus

β(S,c4∆4,a)(Db) ⩾ 1− 3

16
−
(
1− 4

16

)
7

12
=

3

8
> 0 .

Proposition 5.6. Let S be the surface №29 from Table 1. Suppose that ∆ ∈ |−4KS | and
c ∈

(
0, 1

16

]
satisfy that (S, c∆) is K-polystable but not K-stable. Then (S, c∆) ∼= (S, ci∆i) for

some 1 ⩽ i ⩽ 4 and ci, ∆i described in Theorem 5.2.

Proof. Let f(y1, y
′
1, y2, y

′
2) be the defining polynomial of ∆. Since S =

{
y2y

′
2 = y31y

′
1

}
⊂

P(1, 1, 2, 2), we may assume that no monomial in f is divisible by y2y
′
2. We split into the following

cases:

(i) The term y′ 81 appears in f . Then ∆ admits a special degeneration to {y′ 81 = 0} = ∆1 under
the Gm-action σ. Thus (S, c1∆) is K-semistable, and its K-polystable degeneration is (S, c1∆1).
This shows that (S,∆) ∼= (S,∆1) and c = c1 by [ADL24, Proposition 3.18].

(ii) The term y′ 81 does not appear in f , while y1y
′ 7
1 appears in f . Then ∆ admits a special

degeneration to
{
y1y

′ 7
1 = 0

}
= ∆2 under the Gm-action σ. By similar argument to that in

case (i), we conclude that (S,∆) ∼= (S,∆2) and c = c2.

(iii) Both y′ 81 and y1y
′ 7
1 do not appear in f , while y′ 61 divides some monomial in f . Let

(
a1y

2
1 +

a0y2 + a′0y
′
2

)
y′ 61 be the sum of all terms in f divisible by y′ 61 .

If a0 ̸= 0 and a′0 ̸= 0, then ∆ admits a special degeneration to ∆′ :=
{
(a0y2 + a′0y

′
2)y

′ 6
1 = 0

}
under the Gm-action σ. After rescaling we have (S,∆′) ∼= (S,∆3). By similar argument as in
case (i), we conclude that (S,∆) ∼= (S,∆3) and c = c3.

If either a0 = 0 or a′0 = 0 but not both, we will show that c = c4 and (S,∆) ∼= (S,∆4,a)
for some a ∈ C×

(
C2 ∖ {(0, 0)}

)
. By symmetry we may assume that a0 ̸= 0 and a′0 = 0. Hence

after rescaling we may assume that a0 = 1. Under the Gm-action σ
′ induced by the valuation v1,
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we then see that v1(∆) = 2 and ∆ admits a special degeneration to ∆′ =
{
y2y

′ 6
1 + a1y

2
1y

′ 6
1 +

a2y1y
′
2y

′5
1 + a3y

′2
2 y

′4
1 = 0

}
. Moreover, we compute

β(S,c∆)(v1) = 1− cv1(∆)− (1− 4c)SS(v1) = 1− 2c− (1− 4c)
7

6
.

Since (S, c∆) is K-polystable, we have β(S,c∆)(v1) ⩾ 0, which implies that c ⩾ 1
16 . Thus we

have c = c4 = 1
16 and β(S,c∆)(v1) = 0. By K-polystability, we have (S, c∆) ∼= (S, c4∆

′). If
(a2, a3) ̸= (0, 0), then a = (a1, a2, a3) ∈ C ×

(
C2 ∖ {(0, 0)}

)
and (S,∆) ∼= (S,∆′) ∼= (S,∆4,a). If

a2 = a3 = 0 and a1 ̸= 0, then clearly ∆′ admits a special degeneration to
{
y21y

′ 6
1 = 0

}
= ∆4,∞

under σ−1, which contradicts the K-polystability. If a2 = a3 = a1 = 0, then ∆′ =
{
y2y

′ 6
1 = 0

}
is

toric. Then we have

β(S,c∆′)(B) = 1− 3

16
−
(
1− 4

16

)
7

6
= − 1

16
< 0 .

This implies that (S, c∆′) is K-unstable, which contradicts our assumption that (S, c∆′) ∼= (S, c∆)
is K-polystable.

If a0 = a′0 = 0, then a1 ̸= 0. Hence ∆ admits a special degeneration to
{
y21y

′ 6
1 = 0

}
= ∆4,∞

under the Gm-action σ. By a similar argument to that in case (i), we conclude that (S,∆) ∼=
(S,∆4,∞) and c = c4.

(iv) No monomial in f is divisible by y′ 61 . Then we will show that (S, c∆) is K-unstable for
every c ∈

(
0, 1

16

]
. Recall that the affine chart U ′ = {y′1 = 1} is isomorphic to

{
y31 = y2y

′
2

}
⊂ A3.

Let v2 be the monomial valuation on U of weight (2, 3, 3) in (y1, y2, y
′
2) centred at [0, 1, 0, 0].

Then v2 is a quasi-monomial combination of ordB and ordB′ of weight (1, 1). Thus we have

βS(v2) = βS(B) + βS(B
′) = 2βS(B) = −1

3
.

Moreover, AS(v2) = AS(B) + AS(B
′) = 2 and hence SS(v2) = AS(v2) − βS(v2) = 7

3 . Since no
monomial in f is divisible by y′ 61 , we have

v2(∆) ⩾ min
{
v2
(
y31
)
, v2(y1y2), v2(y1y

′
2), v2

(
y22
)
, v2
(
y′ 22
)}

= 5 .

Thus

β(S,c∆)(v2) = 2− cv2(∆)− (1− 4c)
7

3
⩽ 2− 5c− (1− 4c)

7

3
=

13c− 1

3
< 0

as c ⩽ 1
16 <

1
13 . This implies that (S, c∆) is K-unstable for every c ∈

(
0, 1

16

]
.

Proof of Theorem 5.2. This follows directly from Propositions 5.5 and 5.6.

5.2 Surface №33

Here S = {x0x1 − x2x3 = x1x2 + x2x4 + x3x4 = 0} ⊂ P4.

Lemma 5.7. Let S be the surface №33. Then S is isomorphic to the ordinary blow-up of P(1, 2, 3)
at two smooth points p1 = [1, 0, 0] and p2 = [1, 1, 0].

Proof. It follows from [CP21, Appendix A] or from [CT88] that the surface S is a blow-up of
a del Pezzo surface of degree 6 with the same singularities as S at two smooth points. It is well
known that such a sextic del Pezzo surface is isomorphic to P(1, 2, 3) and its automorphism group
is the Borel subgroup of the group PGL3(C); see [CP21, Big Table]. Since the surface S is also
unique [CP21, Big Table], we see that S can be obtained from P(1, 2, 3) by blowing up the points
[1 : 0 : 0] and [1 : 1 : 0] – up to the action of Aut(P(1, 2, 3)), this choice of blow-up points is
unique.
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We denote by π : S → P(1, 2, 3) the blow-up map. Let σ be the Gm-action on S that is a lifting
of the following Gm-action on P(1, 2, 3)[x,y,z]:

t · [x, y, z] =
[
tx, t2y, z

]
.

Let E1 and E2 be π-exceptional curves over p1 and p2, respectively. Let C1 := π−1
∗ (y = 0) and

C2 := π−1
∗
(
y = x2

)
. Let F := π∗(x = 0) and B := π−1

∗ (z = 0). Let Qa := π∗
(
y = ax2

)
for

a ∈ C ∖ {0, 1}. By analysing the σ-action on S, it is clear that B is the only horizontal divisor
on S, while C1, C2, E1, E2, F , and Qa give all vertical divisors on S.

The intersection numbers of these curves are summarised in Table 3.

Table 3. Intersection numbers of the surface №33.

• C1 C2 E1 E2 B

C1 −1
3

2
3 1 0 0

C2
2
3 −1

3 0 1 0

E1 1 0 −1 0 1

E2 0 1 0 −1 1

B 0 0 1 1 −1
2

Theorem 5.8. There is precisely one wall in
(
0, 1

16

]
involving S from №33 such that (S, c∆) is

a new K-polystable pair: c = 1
16 and ∆ = 6B + 2E1 + 2E2 + π∗Γ, where Γ =

{
y3 + b1x

2y2 +
b2x

4y + b3x
6 = 0

}
for (b1, b2, b3) ∈ C3 in the projective coordinates [x, y, z] of P(1, 2, 3).

Lemma 5.9. The Mori cone NE(S) is generated by [C1], [C2], [E1], [E2], and [B].

Proof. From the Gm-action σ on S, we see that the list of σ-invariant divisors is: C1, C2, E1,
E2, F , Qa, and B. Thus NE(S) is generated by these curves. From Table 3 we see that C1, C2,
E1, E2, and B are all extremal. Besides, F ∼ π∗O(1) and Qa ∼ π∗O(2) are both nef and big.
Thus the proof is finished.

Proposition 5.10. Under the above notation, we have

SS(C1) = SS(C2) =
7

8
, SS(E1) = SS(E2) =

7

24
, SS(B) =

5

6
, SS(F ) =

7

6
, SS(Qa) =

7

12
.

Proof. First of all, consider the involution τ : S → S induced by [x, y, z] 7→
[
x, x2 − y, z

]
on

P(1, 2, 3). It is clear that τ(C1) = C2 and τ(E1) = E2. Thus we have equalities SS(C1) = SS(C2)
and SS(E1) = SS(E2). Besides, since Qa ∼ 2F , we have SS(Qa) =

1
2SS(F ).

Next, we compute SS(C1). It is clear that −KS = π∗O(6)−E1 −E2. It follows from Table 3
and Lemma 5.9 that −KS− tC1 is nef if 0 ⩽ t ⩽ 1 and not big if t ⩾ 2. For 1 ⩽ t ⩽ 2, the Zariski
decomposition −KS − tC1 = P (t) +N(t) gives the nef part

P (t) =

{
π∗O(6− 2t)− E2 if 1 ⩽ t ⩽ 3

2 ,

(4− 2t)(π∗O(3)− E2) if 3
2 ⩽ t ⩽ 2 .

Thus computation shows that

vol(−KS − tC1) =


4− 2t− 1

3 t
2 if 0 ⩽ t ⩽ 1 ,

5− 4t+ 1
3(2t

2) if 1 ⩽ t ⩽ 3
2 ,

2(2− t)2 if 3
2 ⩽ t ⩽ 2 .
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Thus

SS(C1) =
1

4

(∫ 1

0

(
4− 2t− t2

3

)
dt+

∫ 3
2

1

(
5− 4t+

2t2

3

)
dt+

∫ 2

3
2

2(2− t)2dt

)
=

7

8
.

Next, we compute SS(E1). It follows from Table 3 and Lemma 5.9 that −KS − tE1 is nef if
0 ⩽ t ⩽ 1 and not big if t ⩾ 3

2 . For 1 ⩽ t ⩽ 3
2 , the Zariski decomposition −KS−tE1 = P (t)+N(t)

gives the nef part

P (t) = (3− 2t)(π∗O(6)− 2E1 − E2) .

Thus computation shows that

vol(−KS − tE1) =

{
4− 2t− t2 if 0 ⩽ t ⩽ 1 ,

(3− 2t)2 if 1 ⩽ t ⩽ 3
2 .

Thus

SS(E1) =
1

4

(∫ 1

0
(4− 2t− t2)dt+

∫ 3
2

1
(3− 2t)2dt

)
=

17

24
.

Next, we compute SS(B). It follows from Table 3 and Lemma 5.9 that −KS − tB is nef if
0 ⩽ t ⩽ 1 and not big if t ⩾ 2. For 1 ⩽ t ⩽ 2, the Zariski decomposition −KS− tB = P (t)+N(t)
gives the nef part

P (t) = π∗O(6− 3t) .

Thus computation shows that

vol(−KS − tB) =

{
4− 2t− t2

2 if 0 ⩽ t ⩽ 1 ,
3
2(2− t)

2 if 1 ⩽ t ⩽ 2 .

Thus

SS(B) =
1

4

(∫ 1

0

(
4− 2t− t2

2

)
dt+

∫ 2

1

3

2
(2− t)2dt

)
=

5

6
.

Finally, we compute SS(F ). It follows from Table 3 and Lemma 5.9 that −KS − tF is nef if
0 ⩽ t ⩽ 2 and not big if t ⩾ 3. For 2 ⩽ t ⩽ 3 the Zariski decomposition −KS − tF = P (t)+N(t)
gives the nef part

P (t) = (3− t)(π∗O(4)− E1 − E2) .

Thus computation shows that

vol(−KS − tF ) =

{
4− 2t+ t2

6 if 0 ⩽ t ⩽ 2 ,
2
3(3− t)

2 if 2 ⩽ t ⩽ 3 .

Thus

SS(F ) =
1

4

(∫ 2

0

(
4− 2t+

t2

6

)
dt+

∫ 3

2

2

3
(3− t)2dt

)
=

7

6
.

Proposition 5.11. Let S be the surface №33 from Table 1. Suppose that ∆ ∈ |−4KS | and
c ∈

(
0, 1

16

]
satisfy that (S, c∆) is K-polystable but not K-stable. Then c = 1

16 and ordB(∆) = 6.

Proof. Assume that (S, c∆) is K-polystable but not K-stable. Since S admits a Gm-action σ but
is not toric, we may assume that ∆ is Gm-invariant. It is clear that −KS − 2B ∼ Ei + Ej is at
the boundary of NE(S). Thus ordB(∆) ⩽ 8.
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First, we show that ordB(∆) ̸= 8. Suppose not; then −4KS − 8B ∼ 4(E1+E2) is exceptional
over P(1, 2, 3), which implies that ∆ = 8B+4E1+4E2. By K-polystability and Proposition 5.10,
we have

0 = β(S,c∆)(B) = 1− 8c− (1− 4c)
5

6
= 0 ,

which is equivalent to c = 1
28 . On the other hand,

0 < β(S,c∆)(F ) = 1− (1− 4c)
7

6
= 0 ,

so we have a contradiction.

Next, we show that ordB(∆) ̸= 7. Suppose not; then ((−4KS − 7B) · Ei) = −3, which
implies that 3(E1 + E2) is in the base component of |−4KS − 7B|. Thus we may write ∆ =
7B + 3E1 + 3E2 + π∗Γ1, where π

∗Γ1 ∼ −4KS − 7B − 3E1 − 3E2 ∼ π∗O(3). Since Γ1 is Gm-
invariant and does not contain π∗B = (z = 0), it must contain π∗F = (x = 0), which implies
that ordF (π

∗Γ1) ⩾ 1. By K-polystability and Proposition 5.10, we have

0 = β(S,c∆)(B) = 1− 7c− (1− 4c)
5

6
= 0 ,

which is equivalent to c = 1
22 . On the other hand,

0 < β(S,c∆)(F ) ⩽ 1− c− (1− 4c)
7

6
= 0 ,

so we have a contradiction.

Next, we show that if ordB(∆) = 6, then c = 1
16 . By K-polystability and Proposition 5.10,

we have

0 = β(S,c∆)(B) = 1− 6c− (1− 4c)
5

6
= 0 ,

which is equivalent to c = 1
16 .

Finally, we show that ordB(∆) > 5. Suppose not; then we have

0 = β(S,c∆)(B) ⩾ 1− 5c− (1− 4c)
5

6
,

which implies that c ⩾ 1
10 , so we have a contradiction.

Proof of Theorem 5.8. Assume that (S, c∆) is K-polystable but not K-stable, where S is the
surface №33 from Table 1 and where ∆ ∈ |−4KS | and c ∈

(
0, 1

16

]
. By Proposition 5.11, we must

have c = 1
16 and ordB(∆) = 6. Since ((−4KS − 6B) · Ei) = −2, we know that 2(E1 + E2) is in

the base component of |−4KS − 6B|. Thus we may write ∆ = 6B + 2E1 + 2E2 + π∗Γ, where
π∗Γ ∼ −4KS − 6B − 2E1 − 2E2 ∼ π∗O(6) is σ-invariant and does not contain B in its support.

Next, we classify all possible Γ such that (S, 1
16∆) is K-polystable and not K-stable. Since

this pair is invariant under the Gm-action σ but not toric, by [Liu23, Theorem 3.2] (cf. [ACC+23,
Theorem 1.3.9] and [IS17]), the pair being K-polystable is equivalent to β(S,c∆)(D) > 0 for every
vertical divisor D on S. Here we use the fact that β(S,c∆)(B) = 0 by the proof of Proposition 5.11
and the fact that B is horizontal. A simple analysis of the σ-action on S shows that D is one of
the following:

(i) F ,

(ii) E1 or E2,

(iii) C1 or C2,
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(iv) Qa for a ∈ C∖ {0, 1}.

Next, we split into these four cases.

(i) Computation gives

β(S,c∆)(F ) = 1− 1

16
ordF (π

∗Γ)−
(
1− 4

16

)
7

6
.

Thus β(S,c∆)(F ) > 0 is equivalent ordF (π
∗Γ) < 2. Therefore, we have ordF (π

∗Γ) = 0 as it is
always even.

(ii) Computation gives

β(S,c∆)(Ei) = 1− 1

16
(2 + ordEi(π

∗Γ))−
(
1− 4

16

)
7

24
.

Thus β(S,c∆)(Ei) > 0 is equivalent to ordEi(π
∗Γ) < 21

2 . This is always true as ordEi(π
∗Γ) ⩽ 3.

(iii) Computation gives

β(S,c∆)(Ci) = 1− 1

16
ordCi(π

∗Γ)−
(
1− 4

16

)
7

8
.

Thus β(S,c∆)(Ci) > 0 is equivalent to ordCi(π
∗Γ) < 11

2 . This is always true as ordCi(π
∗Γ) ⩽ 3.

(iv) Computation gives

β(S,c∆)(Qa) = 1− 1

16
ordQa(π

∗Γ)−
(
1− 4

16

)
7

12
.

Thus β(S,c∆)(Qa) > 0 is equivalent to ordQa(π
∗Γ) < 11

2 . This is always true as ordQa(π
∗Γ) ⩽ 3.

To summarise,
(
S, 1

16∆
)
is K-polystable and not K-stable if and only if Γ is Gm-invariant and

does not contain π∗B = {z = 0} or π∗F = {x = 0} in its support. This is the same as saying
that Γ =

{
y3 + b1x

2y2 + b2x
4y + b3x

6 = 0
}
for (b1, b2, b3) ∈ C3.

Proof of Theorem 5.1. Let (S, c∆) be a new K-polystable pair on a wall c ∈ (0, 1
16 ]. In particular,

(S, c∆) is K-polystable with an effective Gm-action, and S is K-unstable. By Proposition 4.4
we know that S has at worst A3-singularities.

If S has an A3-singularity, the classification of walls and new K-polystable pairs is completed
in Proposition 4.4, where we take c = 1

16 and (S,∆) ∼=
{(
y23 = y2y4

}
⊂ P(1, 2, 3, 4),

{
y44 = 0

})
.

In particular, S is isomorphic to the surface №25.

If S has no A3-singularities, then Proposition 4.4 implies that S is a K-unstable del Pezzo
surface of degree 4 with at worst A2-singularities admitting an effective Gm-action. Thus by
Table 1 we know that S is isomorphic to either №29 or №33. The classifications of walls and new
K-polystable pairs for these two surfaces are completed in Theorems 5.2 and 5.8.

It remains to prove the statement on the initial wall c0 = 0. Let Mϵ and M0 be the cor-
responding K-moduli stacks whose good moduli spaces are Mϵ and M0, respectively. Since
K-semistability for coefficients is a closed condition, we know that every [(S,∆)] ∈ Mϵ satis-
fies that S is K-semistable. In particular, the forgetful map [(S,∆)] 7→ [S] gives a morphism
between Artin stacksMϵ →M0. Since good moduli spaces are initial among maps to algebraic
spaces [Alp13, Theorem 6.6], the forgetful map induces a morphism ϕ0 : Mϵ → M0 between
K-moduli spaces.

Finally, we analyse the map ϕ0. Let [S] ∈ M0 be a general point; then we may assume
that S is a general K-stable smooth del Pezzo surface of degree 4. Moreover, we may assume
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that Aut(S) ∼= µ4
2 by [DI09, Section 6.4]. By [Zho24] we know that there exists an ϵ0 > 0 such

that (S, ϵ∆) is K-stable for every ∆ ∈ |−4KS | and every ϵ ∈ (0, ϵ0). This implies that the finite
quotient P

(
H0(S,−4KS)

)
/Aut(S) admits a closed immersion into the fibre ϕ−1

0 ([S]). On the
other hand, if [(S′,∆′)] ∈ ϕ−1

0 ([S]), then S′ and S are S-equivalent K-semistable Fano varieties.
Since S is K-stable, by [LWX21, BX19] we know that S′ ∼= S, which implies that [(S′,∆′)] is
contained in the image of P

(
H0(S,−4KS)

)
/Aut(S). Thus we have P

(
H0(S,−4KS)

)
/Aut(S) ∼=

ϕ−1
0 [S]. By a Riemann–Roch computation, we have h0(S,−4KS) = 41, which implies that

P
(
H0(S,−4KS)

)
/Aut(S) ∼= P40/µ4

2. Since both Mc and M0 are normal by [ADL23a, Theo-
rem 2.21], the statement follows by Zariski’s main theorem.

Remark 5.12. In Section 2, we found three K-polystable toric Fano 3-folds of the form X2,2,4 ⊂
P
(
15, 22

)
defined by y0y1 = f(x0, . . . , x4), g(x0, . . . , x4) = 0, and h(x0, . . . , x4) = 0, where f , g,

and h are as follows:

(1) f = x40, g = x22 − x0x3, and h = x23 − x1x4;
(2) f = x30x3, g = x22 − x0x3, and h = x2x3 − x1x4;
(3) f = x20x

2
4, g = x22 − x0x4, and h = x1x3 − x0x4.

By Proposition 4.2 and Corollary 4.5, each of the above toric Fano 3-folds corresponds to
a K-polystable pair

(
S, 1

16∆
)
in M1/16, where S = {g = h = 0} ⊂ P4 and ∆ = {f = 0}. It

turns out that these three surface pairs are precisely the toric ones in M1/16:

Case (1) corresponds to the surface №25 and ∆ =
{
y44 = 0

}
via

[x0, x1, x2, x3, x4] =
[
y4, y

2
2, y1y3, y

2
1y2, y

4
1

]
.

Case (2) corresponds to the surface №29 and ∆ = ∆4,∞ via

[x0, x1, x2, x3, x4] =
[
y′ 21 , y2, y1y

′
1, y

2
1, y

′
2

]
.

Case (3) corresponds to the surface №30 and ∆ =
{
y41y

′ 4
1 = 0

}
via

[x0, x1, x2, x3, x4] =
[
y21, y2, y1y

′
1, y

′
2, y

′ 2
1

]
.

Here the K-polystability of
(
S, 12∆

)
from case (1) or (2) follows from Theorem 5.1, while that

for case (3) follows by interpolation [ADL24, Proposition 2.13] as №30 is K-polystable and 1
4∆

is the reduced toric boundary.

5.3 Further discussions

Let M be the K-moduli component of quartic 3-folds. While our results provide a decisive
statement about the global nature of objects in M , several questions remain open. For instance,
it would be interesting to determine all of the pairs parametrised by M1/16 via wall crossings.
Although Theorem 5.1 gives a complete description of walls and new K-polystable pairs; one
would need to describe the exceptional loci for K-moduli wall crossings, which is similar to the
variation of GIT analysis on basins and attractions. We leave this for future studies.

It would also be handy to have an explicit description of GIT-stable quartic 3-folds. Indeed, we
think that the locus in M parametrising pure (2, 2, 4)-complete intersections X2,2,4 ⊂ P

(
15, 22

)
should correspond to the locus of the union of two quadric hypersurfaces {gh = 0} ⊂ P4 in
the GIT moduli space of quartic 3-folds via wall crossing. On the one hand, {gh = 0} ⊂ P4

degenerates to {y0y1 = 0, g = h = 0} ⊂ P
(
15, 22

)
via iterated degeneration to the normal cone.

On the other hand, X2,2,4 = {y0y1 = f, g = h = 0} ⊂ P
(
15, 22

)
also degenerates to {y0y1 = 0,

g = h = 0} ⊂ P
(
15, 22

)
via a suitable one-parameter subgroup. Note that dimM = 45, and the
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dimension of the locus parametrising pure (2, 2, 4)-complete intersections in P
(
15, 22

)
is equal to

dimM1/16, which is 42.

In a different direction, the following example from [ADL23b, Remark 6.13] gives another
closed locus in M .

Example 5.13. The K-moduli compactification M
K
3/4 of (P3, 34D

)
, where D is a quartic surface,

was studied in [ADL23b]. If
(
X, 34D

)
is a K-polystable 3-fold pair in M

K
3/4, then we can take

the quadruple cyclic cover Y → X branched along D. By [LZ22, Zhu21] we know that Y is
K-polystable. Since a quadruple cyclic cover of P3 branched along a quartic surface given by
{f(x0, x1, x2, x3) = 0} is precisely the quartic 3-fold {x44 = f(x0, x1, x2, x3)} ⊂ P4, we know
that Y is a K-polystable limit of a family of smooth quartic 3-folds. This cyclic cover construction
can be made fibrewise (see [ADL23b, § 6.3] for the case of quartic double solids), which yields

a finite morphism ι : M
K
3/4 → M . It is clear that the image of ι has dimension 19 and is a K-

moduli compactification of smooth quartic 3-folds of the form
{
x44 = f(x0, x1, x2, x3)

}
⊂ P4.

By [ADL23b, Theorem 5.16] we know that there are four of the Fano 3-folds X appearing

in M
K
3/4: P3, Xh, P(1, 1, 2, 4), and Xu. Here Xh = {x0x1 = x2x3} ⊂ P

(
14, 2

)
, which is isomorphic

to the projective cone over P1 × P1 with polarisation O(2, 2), and Xu is a 2-step birational
modification of a P(1, 2, 3)-bundle over P1 constructed in [ADL23b, § 4.2]. One can check that
the quadruple cyclic cover of Xh is a (2, 4)-complete intersection of P

(
15, 2

)
, while the quadruple

cyclic cover of P(1, 1, 2, 4) is a weighted hypersurface of degree 8 in P(1, 1, 2, 2, 4). However, we
expect that the quadruple cyclic cover of Xu will not be a weighted complete intersection. Such
quadruple cyclic covers of Xu form an 18-dimensional closed locus in the K-moduli space M .
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C. Shramov, H. Süß, and N. Viswanathan, The Calabi problem for Fano threefolds, Lon-
don Math. Soc. Lecture Note Ser., vol. 485 (Cambridge Univ. Press, Cambridge, 2023);
doi:10.1017/9781009193382.

ADL23a K. Ascher, K. DeVleming, and Y. Liu, K-moduli of curves on a quadric surface and K3 surfaces,
J. Inst. Math. Jussieu 22 (2023), no. 3, 1251–1291; doi:10.1017/S1474748021000384.

ADL23b , K-stability and birational models of moduli of quartic K3 surfaces, Invent. Math. 232
(2023), no. 2, 471–552; doi:10.1007/s00222-022-01170-5.

ADL24 , Wall crossing for K-moduli spaces of plane curves, Proc. Lond. Math. Soc. (3) 128
(2024), no. 6, article no. e12615; doi:10.1112/plms.12615.

Ber16 R. J. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, Invent.
Math. 203 (2016), no. 3, 973–1025; doi:10.1007/s00222-015-0607-7.

BCHM10 C. Birkar, P. Cascini, C.D. Hacon, and J. McKernan, Existence of minimal models for varieties
of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468; doi:10.1090/S0894-0347-
09-00649-3.

BHLX21 H. Blum, D. Halpern-Leistner, Y. Liu, and C. Xu, On properness of K-moduli spaces and
optimal degenerations of Fano varieties, Selecta Math. (N.S.) 27 (2021), no. 4, article no. 73;
doi:10.1007/s00029-021-00694-7.

BLX22 H. Blum, Y. Liu, and C. Xu, Openness of K-semistability for Fano varieties, Duke Math. J.
171 (2022), no. 13, 2753–2797; doi:10.1215/00127094-2022-0054.

BX19 H. Blum and C. Xu, Uniqueness of K-polystable degenerations of Fano varieties, Ann. of
Math. (2) 190 (2019), no. 2, 609–656; doi:10.4007/annals.2019.190.2.4.

BCP97 W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language,
Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997),
no. 3-4, 235–265; doi:10.1006/jsco.1996.0125.

Che01 I. Cheltsov, Log canonical thresholds on hypersurfaces, Mat. Sb. 192 (2001), no. 8,
155–172 (Russian); Sb. Math. 192 (2001), no. 7–8, 1241–1257 (English); doi:10.1070/
SM2001v192n08ABEH000591.

CP21 I. Cheltsov and Y. Prokhorov, Del Pezzo surfaces with infinite automorphism groups, Algebr.
Geom. 8 (2021), no. 3, 319–357; doi:10.14231/ag-2021-008.

CS11 I. Cheltsov and C. Shramov, On exceptional quotient singularities, Geom. Topol. 15 (2011),
no. 4, 1843–1882; doi:10.2140/gt.2011.15.1843.

CCG+13 T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk, Mirror symmetry and Fano
manifolds, Eur. Congr. Math. (Kraków, 2012) (Eur. Math. Soc. Zürich, 2013), 285–300; doi:
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