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A counterexample to the parity conjecture
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ABSTRACT

Let [Z] € Hilb? A3 be a zero-dimensional subscheme of the affine 3-dimensional complex
space of length d > 0. Okounkov and Pandharipande have conjectured that the dimen-
sion of the tangent space to Hilb? A3 at [Z] and d have the same parity. The conjecture
was proven by Maulik, Nekrasov, Okounkov and Pandharipande for points [Z] defined
by monomial ideals and very recently by Ramkumar and Sammartano for homogeneous
ideals. In this paper we exhibit a family of zero-dimensional schemes in Hilb'? A3 which
disproves the conjecture in the general non-homogeneous case.

1. Introduction

Given a quasi-projective variety X defined over the field of complex numbers and a positive
integer d > 0, the Hilbert scheme Hilb? X of d points on X is the scheme parametrising zero-
dimensional subschemes of length d of X. It is a quasi-projective scheme, and it was introduced
by Grothendieck in [Gro62].

Over the last decades the study of Hilbert schemes of points has been a central topic of
research, and even though a number of results have been proven, several questions about their
geometry remain open. By a classical result of Fogarty, we know that the Hilbert scheme Hilb% X
of a connected variety X is connected for all d; see [Fog68]. If X is smooth and irreducible, then
Hilb? X is smooth, and hence irreducible, as long as dim X < 2; see [Fog68]. In higher dimen-
sion Hilb? X is smooth for dim X > 3 and d < 3, and singular otherwise. Recently, in [Jel20]
Jelisiejew showed that its singularities are pathological, proving that Hilbert schemes of points
satisfy Vakil’s Murphy’s law up to retraction [Vak06]. Another open question concerns the ir-
reducibility of these schemes. It is known that, when dim X > 4, the Hilbert scheme Hilb% X
is irreducible for d < 7 and reducible otherwise [IE78, Maz80, CEVV09]. On the other hand,
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the problem of determining the irreducibility of Hilb? X for a smooth irreducible threefold X
is only partially solved. Indeed, it has been recently proved that it is irreducible for d < 11,
see [Siv12, HJ18, DJNT17], and by a classical result of Iarrobino, it is reducible for d > 78, see
[lar84], but nothing is known for the intermediate cases.

It is worth concluding this historical introduction by mentioning that, although it is known
that when dim X > 4 and d is big enough, Hilb? X has non-reduced components, nothing is
known about the reducedness of the Hilbert schemes of points on a smooth threefold [Jel24,
Problem XV]; see also [Sza21] for more examples.

The study of the singularities of Hilb? X has benefited from renewed interest in the math-
ematical community due to the connection with enumerative geometry established by Maulik,
Nekrasov, Okounkov, and Pandharipande [MNOPO06]. In particular, Okounkov and Pandhari-
pande formulate the following conjecture.

CONJECTURE 1 (Parity conjecture [Pan22]). Let d € N be a positive integer, and let X be an
irreducible smooth threefold. Then, for any [Z] € Hilb? X, one has

dime T, Hilb? X =d  (mod 2),
where Tz Hilb? X denotes the tangent space of Hilb? X at [Z].

Conjecture 1 was proven to hold for monomial ideals in [MNOPO06] and very recently for
homogeneous ideals in [RS25]. In this paper, we exhibit counterexamples to Conjecture 1, proving
that the parity conjecture does not hold for Hilb? A3 whenever d > 12. For instance, the ideal

I:= (x + (v, ,2)2)2 + (y3 —xz)
= ($2,$y2,l’y2,$22,y222,y23, 24)y3 - ZUZ) (11)

is immediately checked to be of colength 12, and standard routines on a computer algebra software
like Macaulay?2 [GS] can compute that dim 7} Hilb'? A% = 45, hence showing the main result of
the paper.

THEOREM (COROLLARY 3.2). The parity conjecture is false for any d > 12.

Let us make some comments. OQur main result shows that the parity conjecture fails for
d > 12, and at the moment we do not know any counterexample of smaller length. At the
same time the irreducibility of Hilb? A3 is known for d < 11, while for d = 12 it is not
known whether the Hilbert scheme is irreducible. From this observation one might wonder if
irreducibility is related to the parity conjecture. In this direction it is worth mentioning that
the counterexample we present in equation (3.1) is smoothable, as we show in Proposition
3.8. Indeed, it can be deformed to the disjoint union of four fat points as depicted in Fig-
ure 1.

Further, even if it is possible to produce counterexamples of greater length by adding k-tuples
of distinct points disjoint from the support of our example, we emphasise that we can exhibit
other counterexamples, not obtained in this way. We give an example in Remark 3.4.

The parity conjecture is also linked to a long-standing open problem in enumerative geom-
etry, namely the constancy of the Behrend function vy a,s on Hilb? A3; see [Beh09, Ric24].
Recently, in [JKS23] it was shown how the failure of the parity conjecture implies the non-
constancy of v4y;,4 3. In a future project we will address the problem of computing the Behrend
function at points disproving the parity conjecture by generalising the techniques introduced
in [GR23].
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A COUNTEREXAMPLE TO THE PARITY CONJECTURE

FIGURE 1. A degeneration of four fat points leading to a counterexample to the parity conjecture.

Plan of the paper

After recalling basic notions of Hilbert schemes and marked families in Section 2, we prove the
main result in Section 3. Also, we investigate the family of counterexamples given by ideals
modelled on the one given in equation (1.1), and we show in Proposition 3.8 that all of them lie
in the smoothable component. In Section 4 we describe the locus in Hilb'2 A3 that the family of
counterexamples determine. We are not aware if these are all the ideals of length 12 for which
the parity conjecture fails. In the appendix we provide and explain the computations necessary
for the proof of the main results.

2. Preliminaries

In this section we recall some well-known results, and we settle some notation.

Let Z < A™ be a closed subscheme defined by the ideal I; C Clx1,...,z,]. Recall that the
dimension of Z is defined as the Krull dimension (see [Eis95, Chapter II] for more details on
dimension theory) of the ring Oz = C[zy,...,2,]/Iz. When Oy is zero-dimensional as a ring, it
is a semilocal Artinian C-algebra of finite type, and, as a consequence, it is a finite-dimensional
vector space over the complex numbers. The complex dimension of Oy is called the length of Z
or the colength of I,

len Z = colen I; = dim¢ O .
When 7 is a zero-dimensional closed subscheme of A™ and Oy is a local C-algebra, we will say
that Z is a fat point.

Let d be a positive integer, and let X be a smooth quasi-projective variety. Recall that the
Hilbert functor of d points in X is the association Hilb?X : Schemes®® — Sets defined by

(HilbdX )(S) = {Z < X x S closed subscheme | Z — S is flat and finite of degree d}.

By a celebrated result of Grothendieck, the functor Hilb?X is representable, and the fine
moduli space Hilb? X representing it is a quasi-projective scheme called a Hilbert scheme [Gro62].
As there is a bijection between closed subschemes Z and their ideal sheaves I, we will denote
points of the Hilbert scheme by [Z] or [Iz].

Although it is not known, in general, if the Hilbert scheme Hilb? A3 is irreducible, there is
a component which can always be defined. Precisely, the smoothable component is defined as the

closure of the open subscheme U C Hilb? A3 parametrising closed and reduced zero-dimensional
subschemes of length d of A3.
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DEFINITION 2.1. A point [Z] € Hilb? A3 is smoothable if it belongs to the smoothable component.

We now report the description of the tangent space of Hilb? X in terms of first-order defor-
mations. Let C[e] = C[t]/(¢?) be the ring of dual numbers, where € stands for the equivalence
class of ¢ in the quotient ring, and let D = Spec Cle] be its spectrum. A first-order deformation
of a scheme Z C A" is a commutative diagram

4 —D

l |

SpecC —— D,

where f is a flat morphism, such that the induced morphism Z — D x pSpec C is an isomorphism.
As a consequence of the universal property of the Hilbert scheme, we can associate with each
first-order deformation of Z a morphisms of schemes D — Hilb? A" mapping the unique closed
point of D to [Iz]. We denote the collection of these morphisms by Hom;j, (D, Hilb? A”). Recall
that this set has a canonical structure of vector space and that it is canonically isomorphic to
the tangent space T, Hilb? A™. The following result gives a different characterisation of the

tangent space of the Hilbert scheme at a given point [I] € Hilb? A™.

THEOREM 2.2 ([FGIT05, Corollary 6.4.10)). Let [I] € Hilb? A™ be any point, and let Ty Hilb® A"
denote the tangent space of Hilb? A™ at [I]. Then,

Ty Hilb? A" ~ Homgyy, . (1,Clay, ..., 2] /T) ~ Hom; (D, Hilb? A™) .

In Section 3 we give an explicit description of the tangent space T|p Hilb? A" for an ideal T
disproving the parity conjecture. Our main tools are the marked bases' (see [CR11, BCLR13,
BLR13, LR16, CMR15, BCR17] and references therein). We recall here the main definitions and
properties, and we postpone more details to the appendix.

In this paper, we describe monomials in C[zy, ..., x,] via the standard multi-index notation.
Namely, for any a = (a1, ..., an) € Z%, the symbol x¢ stands for 2" - - - zp".

A set of monomials NV in C[x1, ..., x,] is called an order ideal if it is closed under subdivision,
that is,

t2e N and 2822 — LenN.
The monomials in the complementary set of A/ generate a monomial ideal in Clz,...,z,] that
we denote by Jy. Notice that Jy NN = (.

If the order ideal is finite, then the Krull dimension of the quotient ring C[z1,...,z,]/Jr is 0
and N is the unique monomial basis of Clx1,...,x,]/Jx as C-vector space; that is, Jy defines
a zero-dimensional scheme in A” of length |N].

DEFINITION 2.3 ([BCR17, Definition 6.2]). Let N C Clxy,...,2,] be a finite-order ideal. The
marked family functor associated with A is the covariant functor Mf,,: C-Algebras — Sets
defined by

M (A) = {I C Al ..., z0] | Az, ... 20 = T (M)} . (2.1)

IThe theory of marked bases has been introduced for homogeneous ideals and the projective setting. The affine
version we refer to has been developed in [BCR17]. For the zero-dimensional case, see also [BC22].
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A COUNTEREXAMPLE TO THE PARITY CONJECTURE

The marked family functor Mf ,, is a subfunctor of the Hilbert functor since for every ideal
I € Mf,/(A), the quotient algebra A[zy,...,zy]/I turns out to be a free A-module with a mono-
mial basis given by the order ideal N. Moreover, the functor Mf,, is an open representable
subfunctor of the Hilbert functor [BCR17, Theorem 6.6 and Proposition 6.13]. Hence, the fine
moduli space Mf s representing this functor is an open subscheme of HilbVI A7,

The collection of schemes

{Mfy | N C Clzy,...,x,) is an order ideal of cardinality d}

is an atlas of Hilb? A™; see [BC22, Proposition 5]. Thus, given a point [I] € Hilb? A", we can
always compute T Hilb? A” as T Mfy =~ Hom; (D, Mf ) for a suitable order ideal N.

Since we work with closed zero-dimensional subschemes of A3, we fix once and for all the ring
R to be the polynomial ring in three variables and complex coefficients, R = C[z,y, z|, and the
ideal m C R to be the unique maximal homogeneous ideal m = (z,y, z). Moreover, we denote
the kth graded piece of a graded module M by M. For instance, we have

Ry = {p € Clz,y, z] | p is homogeneous of degree degp =k} U {0}.

We conclude this section by warning that, with abuse of notation, we denote both the el-
ements of R and the elements of R/I in the same way, tacitly assuming that we are choosing
representatives.

3. Main results

In the following, given a subspace W of a vector space V', we refer to any subspace U of V' such
that V =W @ U as a complement of W.

THEOREM 3.1. Let ¢ € Ry ~ {0} be a non-zero linear form, and let I C R be an ideal of the form
I=((6) +m?)° + (v), (3.1)

where v € (Sym*(L) 4+ ¢ - L) \ {0} for some L € Gr(2,Ry) complement of (¢). Then, I has
colength colen I = 12 and, for a general choice of v, we have

dime Ty Hilb'? A® = 45

Proof. Without loss of generality we can suppose £ = x and L = (y, z). Under these assumptions
the ideal I takes the form

1= ((w) + (v, z)2)2 + (boy3 + b1y%z + bayz? + by + byxy + b5acz)
for some [bg : - - - : bs] € PP.
In order to prove the first part of the statement, first notice that the ideal
J=((2) + (y,2)%)
has colength colen J = 13. Now, we also have
boy® + b1y*z 4 boyz® + b3z + byxy + bsxz & J

which implies colen I = 12 for all I of the form (3.1).
We now move to the computation of the tangent space T|p Hilb'2 A% for a general I of the
form (3.1). By the generality of v, we can set by = 1, and the ideal I is minimally generated by

22, vyt wmyz, x2%, y?2%, y2, 2, v =9+ biyPz + boyz? + b3 + baxy + by .
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Thus, the quotient algebra C[z,y, z]/I admits the monomial basis
N = {y2z7 yz27 z37 xy? y27 LUZ, yz7 Z2’ x? y’ 'Z7 1} )

and [I] € Mfy. We can compute the tangent space T(p Hilb'2 A3 as T Mfy ~ Homz (D, Mfyy).
If the polynomial 8 := bgbi —bgbzbg,qtbl b4b§ —bg is different from zero, the first-order deformations
are described by the ideal generated by the polynomials

2?4 e1y’z + eyz” + €32° + gy + 32 + 26107,
zy? + €6y’ + eryz® + €s2” + ey + €10y” + €122,
Tyz + €12y°2 + €13y2” + €142° + €153y + €122 + €10y2,
z2? + 617y2z + 618y22 + 6192’3 + €202y + €212 + 61022 ,
Y227 + ea0y’s + €23y2” + €242” + easay + €2627 (3.2)
yz3 + 627y2z + 628yz2 + 6292’3 + €30y + €3122,
2+ ey + €33y2” + €342° + €5y + €362,
v+ e37y°z + e33y2” + €302° + €40Ty + €41y’ + €4287 + €43y + €442+
~+ €457 + bge1oy + bs€102

in Cley, ..., es5)[x,y, 2], where ¢; is the equivalence class of t; in C[ty,...,ta5]/(t1,...,t15)% (see
Appendix A.1 for the computational details).” Thus, we have
dime T Hilb'? A® = 45. O

COROLLARY 3.2. The parity conjecture (Conjecture 1) is false for any d > 12.

Proof. For d = 12 a counterexample is provided by Theorem 3.1. The case d = 12+ k with k > 1
is treated by adding a k-tuple of distinct points disjoint from the support of the counterexample
of length 12. O

Remark 3.3 (cf. [RS25, Remark 11 and Example 12]). In [RS25] the authors prove that the
parity conjecture holds for any ideal homogeneous with respect to a grading taking values in a
torsion-free abelian group such that deg(z) 4 deg(y) + deg(z) is not divisible by 2. Our example
(1.1) is in fact homogeneous with respect to the grading deg: R — Z? defined by deg(z) = (3,0),
deg(y) = (1,1), and deg(z) = (0, 3). However, deg(z) + deg(y) + deg(z) = 2(2,2).

Remark 3.4. It is worth mentioning that with the help of a computer, we are able to produce
many counterexamples in addition to the one in the proof of Corollary 3.2. For instance, the
following is a counterexample of length 78 and tangent space of complex dimension 263:
I = (y224, 222+ 26, y?’z?’, :c323, xy3z2, a:y4z + ac?’yz2 — y2z3, x4yz — 2%+ y322 ,
x3y3 - x2y22 — yz4, x5z + Jr3y2z + a:yz4 — 2?23 —

28 —yts — 22t

z5, y6 + 242 + :Uy2z3 + z2° ,
,y5z2 + xyz5, x2y5 + xyz5 + 27 ,
25y + 23y222 4 wye® + 2yt — g2 4 25— $y222) '
In particular, it is not of the form described in the proof of Corollary 3.2.
COROLLARY 3.5. The ideal
I, = ((m+a1y—|—agz)+(y, 2)2)2—|— (b0y3+b1y2z—|—b2y22—|—b323—|—b4xy+b51:2) C Rla1, az][bo, - .., bs]

defines a family Z7, C A3 x A% x P° of zero-dimensional subschemes of A3 flat over A? x P5.

2Notice that in the appendix, the polynomial v is denoted by fys-

178



A COUNTEREXAMPLE TO THE PARITY CONJECTURE

Analogously, there are ideals I, and I, defining families Zz,, Z7, C A3 x A? x P° of zero-
dimensional subschemes of A3 flat over A2 x P,

We now move to the study of the collection of ideals of the form (3.1).
LEMMA 3.6. Let us denote by Ay 1, the set of ideals
2
Aep = {(() +m*)"+ (v) [v e (Sym*(L) +£- L) ~ {0}},

where ¢ € Ry~ {0} is a non-zero linear form and L € Gr(2, Ry) is a complement of (¢). Then, the
set Ay 1, does not depend on the choice of L; that is, for any two complements L, L' € Gr(2, R;)
of (¢), we have

A =ANg .
We denote this set by Ay.

Proof. Let £ € R; ~ {0} be a non-zero linear form, and let L, L’ € Gr(2, R;) be two complements
of (£). Then, there are linear forms £1,f> € Ry and values (a, ) € C? such that

{01,0,} and {€, =6 +al,ly = lo+ BL}

are bases of L and L', respectively.
Now, the two ideals

((6) + m2)? 4 (b3 + b103Ho + bol1£3 + byl3 + bally + bstls) ,

((6) + m2)? 4 (bl + b1 620y + ball 07 + byl + bylll + bsteh)
are the same for any choice of (, 3) € C2. This completes the proof of the lemma. O
Remark 3.7. Let £ € Ry ~ {0} be a non-zero linear form. Let us consider Ay defined as

A =PB(Sym*(Ri/(0) & ({0) 2 (R1/(0))) = P
Now, given a complement L of (¢), the restriction of the natural projection m;: Ry — Ri/({)
to L induces a bijection vy: Ay — Ay. Precisely, we have
Ay £ Ay
(0 ) — ((+m) 4 (p+ (),

where = (Sym ;) ~*(p)NSym(L) and g = 7, ' (¢) N L. Equation (3.3) shows that this map does
not depend on the choice of the complement L.

We abuse notation and interpret an element in A, as the corresponding ideal in Ay. As a
consequence of Theorem 3.1, the map 7, introduced in Remark 3.7 induces a morphism A, —
Hilb'2 A® that, with abuse of notation, we denote by 7, as well. The image of v, coincides with
the image of {(a1,a2)} x P5 under the classifying morphism induced by the family Zz, from
Corollary 3.5.

We conclude this section by showing that the ideals of the form (3.1) are smoothable.
PROPOSITION 3.8. Any ideal I C R of the form (3.1) is smoothable.

Proof. Since being smoothable is a closed condition, it is enough to prove the statement for the
general I C R of the form (3.1). Without loss of generality, up to the GL(3,C)-action, we can
suppose £ = x. Then, I takes the form

I= ((x) + (v, Z)Q)Q + (y3 + bry?z + bay2? + b3z + byxy + b5:r:z) .
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In order to prove the statement, it is enough to exhibit a flat family Z < A x A3 of zero-
dimensional subschemes of A3 such that the fiber over the origin Zy is I and such that the
general fiber Z; is supported in at least two points and hence is smoothable (see [DJNT17]).

For every counterexample I C R to the parity conjecture discussed in Theorem 3.1, the
tangent vector

(3:2, zy?, xyz + ey?z, w22, y? 22 y2S, 2t P 4 biyPz + boyz? + bg2® + baxy + b5asz)
lifts to the deformation given by the polynomials

b2(bgby — babs) by (bsby — babs)(b1by — bs) b3bybs(b1bg — bs)

29 2,2 2 2.2
—_—t — t t

T B Y B yz + B z
ba (2B — bE(b1bs — bs)) P b (bsby — b2b5)t4’

B B

x2? —byt?2 ) P2y, 2t B byt oy £ 0323 + byay + sz — bﬁtzy — bybst’z,
whenever the polynomial B = b3b3 — bablbs + bibsb2 — b3 = b3(bsby — babs) + b2(biby — bs) is
different from zero. Notice that away from the zero locus of the polynomial 9B, the ideal I has
tangent space of dimension 45, as proven in Theorem 3.1. If by # 0, the generic fiber is the
disjoint union of four schemes of length 7, 2, 2, and 1 (see Appendix A.2 for the details). O

zy?,  zyz +ty’z — bat’yz, (3.4)

3.1 Comments
In this subsection we make some comments regarding our main result.

The first observation is that Theorem 3.1 and Proposition 3.8 admit more direct proofs that
does not require the use of a computer. We decided to present them in this form because, as an
outcome, we obtain a more accurate description of the locus parametrising the counterexamples.
Precisely, in Theorem 3.1 we obtain the polynomial 5 that defines the complement of this locus.
In Proposition 3.8, instead, we obtain an explicit deformation of our counterexample into a
scheme with support consisting of four distinct points. It is worth mentioning that we found the
first counterexamples via Macaulay2 computations using a marked basis as main tool. Also for
this reason we have presented the proofs in this form.

The Hilbert scheme of 12 points on a smooth threefold is interesting for several reasons. For
instance, 12 is the minimal number of points for which the irreducibility of the Hilbert scheme
is not known. It is then natural to ask whether the failure of the parity conjecture is unique
for Hilb? A® for d > 12 or if it already fails for Hilb'' A%. Our method does not produce any
counterexample of length smaller than 12. Nevertheless, we tested a large number of ideals of
colength 11 without finding new counterexamples. Precisely, starting from the description of the
so-called Hilbert—Samuel stratification of the punctual Hilbert scheme of 11 points described
in [DJNT17] and using the marked basis technology, we have generated some examples of non-
homogeneous ideals in each of the Hilbert—Samuel strata, certifying the veracity of the conjecture
at each of these points. A complete proof of the parity conjecture for the Hilbert scheme of 11
points is outside the scope of this article. Hence, we leave this question open.

We conclude this section with a remark regarding the characteristic of the base field. A di-
rect check shows that our counterexamples are valid in any characteristic other than 2 (see Re-
mark A.5). We have tested in characteristic 2 all the counterexamples we found (see Remark 3.4),
and none of them disproves the conjecture. Therefore, the parity conjecture remains open in char-
acteristic 2. However, in the recent paper [GGGL24] we also provide a counterexample for the
Quot scheme Quot5A3 using the same techniques.
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4. Explicit description of the locus of counterexamples

We now describe the locus in Hilb!? A3 of the counterexamples to the parity conjecture given in
Theorem 3.1. It is worth pointing out that we do not know if the described locus comprises all
of the counterexamples to Conjecture 1 of length less than or equal to 12.

We consider the projective space P(R;) parametrising 1-dimensional linear subspaces of Ry
and the tautological exact sequence on it

0 —— S —— Opr)) @R —— Q@ —— 0,

where S is the universal subbundle and Q is the universal quotient bundle. We set E to be the
vector bundle

E=Sym*(Q) & (S ® Q),
Op(ry)

and we consider the associated projective bundle P(E) over P(R;). Its fiber P(E); over the point
[¢] € P(R;) is the space Ay introduced in Remark 3.7. The morphism defined by the association

P(E) — Hilb!2 A3
(1), [v]) —— e([v]) s

where ~y, is the bijection defined in Remark 3.7, induces a family Zr C P(E) x A% of zero-
dimensional schemes of length 12.

Consider the coordinate atlas on P(F) induced by the basis {x,y, z} of Ry; then the restric-
tions of the family to the coordinate charts agree with the families Z7,, Z7,, Zz, in Corollary 3.5.

Finally, we enlarge our family by acting via translations, and we get a new family Z C
P(E) x A% x A3 of fat points not necessarily supported at the origin 0 € A3.

In what follows we shall denote by V the product P(E) x A% and by 0: V — Hilb'? A3 the
classifying morphism.
Remark 4.1. Notice that set-theoretically, the image 6(V') consists of the ideals described in
0(V) = {[I] € Hilb"* A® | I is of the form (3.1)}.
THEOREM 4.2. The morphism 6: V — Hilb'2 A3 described above is a closed immersion of the

smooth and irreducible 10-dimensional variety V.

Proof. We start by proving that the map 6 is universally closed. Let Hil‘b(l)2 A3 be the projective
subscheme of Hilb'2 A3 parametrising fat points Z C A® of length 12 supported at the origin
0 € A3. Also let A® x Hilbj? A% C Hilb'? A3 be the closed subscheme of Hilb'? A% parametrising
all the fat points Z C A3 of length 12. The map Olp(z)x {0y takes values in Hilb(1)2 A3; it is proper
because P(F) is projective. Finally, the map 6 is universally closed because the square in the
following diagram is Cartesian:

0

s T

V ——— A% x Hilbj? A> —— Hilb? A3

| !

P(E) ——— Hilb? A3.

The map 6 is injective because different points in V lead to different ideals in Hilb'2 A3, as
can be seen as follows. It is enough to treat fat points supported at the origin, that is, points of
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P(E) x {0} that we identify with P(E). Now to conclude, the bijection 7, maps different points
of Ay to different ideals, and any ideal v,(Ay) contains, up to scalar, the square of a unique linear
form, namely /.

In order to prove the statement, we show that the differential df is of full rank at every point.
It is enough to prove the claim for ideals belonging to the open U, C P(E) x {0} C V consisting
of ideals of the form

((m + a1y + azz) + (y, 2)2)2 + (b0y3 + b1y?z + bayz? + b3z + byzy + b5a:z) .

The proof now consists of a direct and standard computation, but it is too lengthy to be
reported on paper. Hence, we exhibit the result only for the ideals lying in the open subset
defined by the condition by # 0. We refer to the M2 ancillary file [GGGLa| for the complete
discussion.

Concretely, given £ = x4+ a1y + asz and v = y3 + b1y?z + boyz? + b3 23 + byxy + bsxz, we show
that the following differential is injective:

b, 10),0): TigP(R1) X TiAp x ToA® — T, ) Hilb'? A%

Let us denote by {8r,,0r,, 07} C ToA? the basis corresponding to the variables z, y, z. The
image of df at the point ([¢], [v],0) is generated by the first-order deformations
TP(R1): dO(0a,) = (:c2 + 2exy, xy? + e, xyz + ez, 12 + eyt yP22, y23, 24,
v+ byey® + b5eyz) ,
d0(0n,) = (:c2 + 2exz, xy? + ey’z, wyz + eyz?, k2 + €23, Y222, y23, 2,

v+ b46yz + b5ez2)
2 2

TiAe: di(0p,) = (z Lyl wyz, a2t Pty vt ey z),
dh(0g,) = (a:2,a;y zyz, w22, y2 22y, U+eyz2),
dh(0s,) = (:1:2,:131/ L xyz, a2, Y222 yz ,24,1}+623),
de(aﬁzl) = ('1"27 $y27 TYyz, 1'22, y2227 y23, 247 v+ eacy) ’
dh(0g,) = (332,a:yZ,xyz,a:z2,y222,yz3, 2+ emz) ,
ToA3: do(o,,) = (x2 + 2ex, 2y? + ey, wyz + eyz, 12 + €22,y 2% y23, 24,

v+ byey + bsez)

df(0r,) = (xQ, zy? + 2exy, wyz + exz, 122, Y227 4 2ey2?, yzd 4 €23, 24,
v+ 3ey® + 2bieyz + baez? + b4e:z) ,

do(o,,) = (x2, zy?, xyz + exy, 22 + 2exz, y22? + 2ey’z, y2® + 3eyz?,
24+ dezd v+ brey? + 2bgeyz + 3bzez’ + b56x) ;

thus 6 is a closed immersion of the irreducible and smooth variety V' of dimension 10. 0

Appendix. Computational methods: Marked bases

In this section we give further details about the computational content of the paper. We also
provide ancillary files based on the M2 Package [GGGLD].

In the polynomial ring Clx1,...,z,], we assume that the variables are ordered as z1 < x93 <
- < xp. Given a monomial 2% # 1 € C[zy,...,x,], we define the minimum and the mazimum
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of an 2 #£ 1 as the smallest and largest variables dividing x%, and we define its Pommaret cone
as the set of monomials

C(x%) = {z*} U {a* 2P | maxa? < minz®} .

The monomials in the complementary set of an order ideal N generate a monomial ideal in
Clz1,...,zy] that we denote by Jy. If NV is finite, the ideal Jy is always quasi-stable [BCR17,
Corollary 2.3], that is, Jy has a finite set of generators Pj,, = {2%1,..., 2%}, called the Pom-
maret basis of Jyr, such that the set of monomials in Jys decomposes as the union of the Pommaret
cones

C(z®r) U ---UC(z%)
of the elements of the Pommaret basis.

DEFINITION A.1. Let J € C[zy,...,z,] be a monomial ideal of finite colength, P; be its Pom-
maret basis, and N be the finite-order ideal whose image in the quotient is a monomial basis.
A (monic) J-marked set is a set of polynomials

F = {fa = a%+ Z Cay L

zXeN
A J-marked set F' is called a J-marked basis if
Clr1, ..., zn]) = (F) & (N)

¢ € Py, cay € (C}.

as vector spaces.

The notion of a marked basis generalises the notion of a reduced Grobner basis. In particular,
from the definition it follows that A is a basis of the quotient algebra C[z1,...,z,]/(F). Hence,
every ideal I C Clxy,...,z,] generated by a J-marked set defines a zero-dimensional scheme of
length |N].

With the notion of a marked basis, we can rephrase the definition of a marked family functor
as follows:

Mfy(A) = {(F) C A[z1,... 2] | F is a Jy-marked basis} .

This formulation has a crucial role because there is an effective (and algorithmic) criterion to
determine Whether a J-marked set is a J-marked basis. Given a J —marked set F'={fa| 2% € Ps},
we denote by L, the transitive closure of the relation g — g— (cz ) fa, where 2829 is a monomial
appearing in g with coefficient ¢ # 0 and e C(x2). This reduction procedure is Noetherian, see
[CMR15, Theorem 5.9] and [BCR17, Proposition 4.3]; that is, starting from any polynomial g,
we obtain a polynomial h € (N) in a finite number of steps. We write g %* h to denote the
beginning and the end of the reduction process, and we call h € (N) the J-normal form of g
with respect to F.

THEOREM A.2 ([BCR17, Proposition 5.6]). Given a zero-dimensional quasi-stable ideal J in
Clz1,...,zp], a J-marked set F' = {f, | % € Py} is a J-marked basis if and only if

F .
Tifa —+ 0 VYV fo € F, ©; > minaz®.

Ezample A.3. In the polynomial ring Clz,y| (with = > y), consider the monomial ideal J =
(22,%y). The monomial basis N of C[x,y]/J is the pair {z,1}, and the Pommaret basis of J is
Py = {22, zy,y}. A J-marked set F is a triple of polynomials

f12:$2+61$+62, fey =2y +c3x+cs, fy=y+csxr+cs.
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In order to have J-marked basis, the J-normal forms of z f,, and x f, have to be zero. One has

2 2 —Yfo2 2
Tfpy = 7Y + 327 + 4T —— 377 — C1TY + 4T — C2yY

—c3f,2

— —c1zy + (g — c163)T — 2y — a3
+lezy
———> C4T — C2Y + C1C4 — C2C3

+eaf
— (cq + cac5)r + (c104 — coc3 + Cocg)
—f

xfy =2y + 52?4 cor —2 c5x® — (c3 — co)r — ¢4
—c5fy2

—(c3 —cg + c1c5)x — (¢4 + cac5) .

Hence, F'is a marked basis if and only if
c3—cg+ciecs =0 and cq4+coc5 =0

(the third equation is redundant). These equations define the open subset of Mf s C Hilb? A% and
guarantee that the generator f,, is redundant, as expected. In fact, f,, = xy+(cs—cic5)r—Ccocs =
xfy — C5f2-

If we want to describe the tangent space T(x)) Hilb? A% ~ T(r) Mfxr = Hompy (D, Mfy), we
can compute the set of flat families Mf \-(D) with the unique closed point corresponding to (F).
We start with the marked set F consisting of the following polynomials in Cle][z, y]:

fo = z? + (Cl + Tle)a: + (02 + TQE) , fxy =zy + (03 + Tge)l‘ + (64 + T4€) ,
fy=y+ (s + Tse)z + (c6 + Tge),

where T, ..., Ts are complex parameters, and we impose the flatness via Theorem A.2. Assuming
that F' is a J-marked basis, the same holds for F' if

T fry L, (csTo + Ty + caTs)ex + (caTy — (3 — c6)To — c2T3 + 1Ty + c2T)e =0,

l‘fy L* (C5T1 + 15+ c115 — T(;)GQ? + (C5T2 + Ty + CQT5)€ =0.

By solving the linear system

Ty
T
0 Cy 01 C9 0 Tg 0

|17 = o
Ts
[ 76

(the third equation is again redundant), one obtains a complete description of first-order defor-
mations of the ideal generated by F.

A.1 Computational details of the proof of Theorem 3.1

The detailed computation of the tangent space of ideals of type (3.1) is available in the Macaulay?2
ancillary file [GGGLc] Here, we report a summary of the procedure and the results.

Assume that in R = C[z,y, z] we have x > y > z, and consider the quasi-stable ideal

T = (24 (1,2)2)° + (%) = (¢ 2y, 0%, wyz, 222, 4222y, 2Y)
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The minimal set of generators of J is its Pommaret basis P;. An ideal I of the form (3.1) is
generated by the J-marked basis®

fo2 = 22, Joy2 = zy?, Jyp = y> + b1’z + boyz? + b3z + byay + bsz,
foye = wyz,  fo =22°, [ =92 fus=y2, fa=2t
Thus, [I] € Mfy with N the order ideal
N = {1,x,y,z,my,yQ,xz,yz,z2,y2z,yz2,23}.
We compute T Hilb'2 A% = T Mfy; as the set of morphisms Hom;(D, Mfy) mapping the

unique closed point of D to [I]. This is equivalent to classifying all J-marked sets F consisting
of polynomials in Cle][z, y, 2] of the form

f. = fo+To 1€ ygz + T, 2¢ yz2 + T, 3¢ 224 Tesexy + To5¢ y2 +Teeexz +
+Te7eyz +Tqge 22+ Tegex +Tor0€y +To11€2 + To 12€ V fe generator of I
that are J-marked bases.
Imposing that
T 500, afp T 00 wfuye 20 0, Yfays 200, 2fie 2 0, Yl 2,0,
x.fy2z2 i>* 0, ynyzQ i>* 0, xfyz3 i>* 0, yfyz3 i>* 0, xfz4 i>* 0, yfz4 i>* 0

gives rise to a linear system of 98 equations in 96 variables. Looking at the minors of the system
matrix S, we get that 42 < rk(S) < 51 and

rk(S) <43 ifby=b5=0, rk(S)<5l ifB=0,

where B = b3b] — bablbs + b1b4b§ — bg is the same polynomial that appears in the proof of

Theorem 3.1. Hence,
54 ifby=b5=0,

dime T Hilb"™? A% = ¢ 48 if B = 0 and |ba] + |bs] # 0, (A.1)

45 if B £0.

Remark A.4. Under the condition by = bs = 0, the ideal I is homogeneous. Hence, the parity

conjecture holds true for I; see [RS25].

For ideals with tangent space of dimension 48, we notice that by # 0 (in fact, by = bgbj —
bob2bs + b1b4b§ — bg = 0 implies b5 = 0). Thus, one has that

2 3
by = bQZi —b (Zi) + <Zi> ;
and the polynomial f,s becomes reducible:
b bs\>  (bs)*
y3 + b1y22 + bgyz2 + <b25 — by (5> =+ (5) >z3 + byxy + bsxz

ba by bs

1

b

Remark A.5. The classification (A.1) of the dimension of the tangent space Ty Hilb? A% holds
for every characteristic other than 2. If the characteristic is 2, the rank of the matrix S is at
most 50, and for B # 0 the tangent space has dimension 46.

(bay + b52) (b3y” + ba(bibs — bs)yz + (bab] — brbabs + b2)2* + bix) .

3Notice that the polynomial fys is called v in Theorem 3.1.
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A.2 Computational details of the proof of Proposition 3.8

The detailed computation of the smoothing deformation is available in the M2 ancillary file
[GGGLA]

The ideal (3.4) for t # 0 is the intersection of the ideals

P=((z - b4t2)2, Y2, (b3ba — babs)yz — bgbs2? — b2 (z — bat?), byyz® + bsy(z — bat?) ,
boyz? + byzd + (byy + b52) (x — b4t2), (x — b4t2)z2, (x — b4t2)yz, yz>, 24) ,

Py = <1: — DO 2 oy bz, (— A2 (32 (b (bgbs — bobs) + b112) 2)

b2b3 (b3ba—babs)

t2y + Wtzzv yz) Yz, Zz) )

b3b2 (b3bs—babs)
T

P = (a:, 2b4(y — bat) + (b1bs — bs)z, (2y + b12)(y — bat) + (b1by — bs)tz, (y — bat)z, 22),
Py = (xay+b4taz)a

of length 7, 2, 2, 1 and supported at the points

(bat2,0,0),  (POLe2012,0,0) L (0,b4t,0), (0, ~bat,0).

Figure 1 illustrates the deformation for by = 0, by = —%, b3 =0,by =1, and b5 = 1. In
the figure any arrangement of boxes represents a chosen order ideal describing a monomial basis
for R/P; fori=1,...,4 and R/I.

We note that ideals I corresponding to points in the locus % = 0 still have a first-order
deformation involving the generator zyz perturbed by ey?z. But if B = 0 and by # 0, this
deformation is obstructed. And if by = b5 = 0, then the first-order deformation lifts to the
family

(x2, myQ, TYz + ty22, xzz, y222, yzg, 24, y3 + blyzz + b2y22 + b323)

whose generic fiber is irreducible.
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