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Analytification of mapping stacks

Julian Holstein and Mauro Porta

Abstract

Derived mapping stacks are a fundamental source of examples of derived enhancements
of classical moduli problems. For instance, they appear naturally in Gromov–Witten
theory and in some branches of geometric representation theory. In this paper we show
that in many cases the mapping stack construction commutes with the (complex or non-
archimedean) derived analytification functor. Along the way, we establish several new
foundational results in derived analytic geometry that are likely to be useful elsewhere.
For instance, we provide a C-analytic version of Kiehl’s theorem for (derived) compact
Stein spaces, and study some incarnations of analytic Tannaka duality. We apply these
results to the study of the Riemann–Hilbert correspondence and the derived period
domain.

1. Introduction

One of the main uses of derived algebraic geometry is to provide well-behaved derived enhance-
ments of classical moduli problems: while the original moduli problem is often highly singular,
its derived counterpart has controlled singularities, which often means that it is local com-
plete intersection in the derived sense. This phenomenon is extremely useful in constructions
that involve virtual fundamental classes. Examples can be found in Gromov–Witten theory
[MR18, STV15, PY20a] and in geometric representation theory [Neg19, PS23, DPS23, DPS22].
It is often the case that these derived enhancements arise from mapping stack constructions,
which are also one of the primary sources for interesting examples of derived schemes and stacks.

Recently, derived techniques have also become available in the (complex and non-archi-
medean) analytic setting. More precisely, let k denote either the field of complex numbers or
a non-archimedean field equipped with a non-trivial valuation. In [Lur11c, Por19, PY18] the
authors introduced∞-categories dAnk of derived analytic spaces and dAnStk of derived analytic
stacks and showed that a significant number of the properties of derived schemes and stacks
equally hold for their analytic counterparts. See Section 2 for a brief review of these notions.
The motivations behind the early development of derived analytic geometry come from mirror
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symmetry and non-abelian Hodge theory. We refer to the introductions of [PY18, Por17b] for
more details on these programs.

In [PY21] the authors extended the mapping stack construction in the analytic setting and
established a representability criterion, that later allowed them in [PY20a] to construct the
derived Deligne–Mumford analytic stack RMg,n(X) of stable maps in a smooth and proper non-
archimedean analytic variety X. The subsequent study of the geometric properties of RMg,n(X)
consolidated derived analytic techniques as a powerful framework to develop enumerative geome-
try in the non-archimedean setting. Together with [KY23, NXY19], this also strongly established
the use of non-archimedean enumerative techniques in the study of mirror symmetry, as antici-
pated by Kontsevich–Soibelman in [KS06].

The current paper is more directly related to non-abelian Hodge theory. Nevertheless, we
expect the main results of this work to be useful in a variety of other contexts. Our main goal is
to study the extent to which the mapping stack construction commutes with analytification. We
provide a general criterion guaranteeing that this is the case in a number of important geometric
situations, and we later explore some consequences and applications. Let us formulate a more pre-
cise statement. As before, let k denote either the field of complex numbers or a non-archimedean
field equipped with a non-trivial valuation. Let dAffafp

k denote the ∞-category of derived affine

schemes almost of finite presentation1 over k. Given derived stacks X,Y :
(
dAffafp

k

)op → S, we
define Map(X,Y ) as the derived stack

Map(X,Y ) :
(
dAffafp

k

)
−→ S

T 7−→ MapdStk(X × T, Y ) .

Similarly, given derived analytic stacks X ,Y : dAnopk → S, we define AnMap(X ,Y ) as the
derived analytic stack

AnMap(X ,Y ) : dAnopk −→ S ,
U 7−→ MapdAnStk

(X × U,Y ) .

These functors parametrize families of maps of X (respectively, X ) into Y (respectively, Y ).

Given derived stacks X,Y :
(
dAffafp

k

)op → S, there is a canonical map

Map(X,Y )an −→ AnMap
(
Xan, Y an

)
, (1.1)

where (−)an denotes the derived analytification functor (see Section 3.1 for a review of its con-
struction and properties).

The goal of this paper is to provide sufficiently general conditions on X and Y to guarantee
that (1.1) is an equivalence. The case of first and foremost interest is the case where Y = Perfk
is the derived moduli stack of perfect complexes [TV07] and X is a proper scheme over k. In
Section 4 we introduce an analytic counterpart of Perfk, denoted by AnPerfk. In terms of its
functor of points, it simply sends a derived analytic space S to the stable ∞-category Perf(S)
of perfect complexes on S (see Section 4.1 for the precise definition). In the algebraic setting
the fact that Perfk is a (locally) geometric stack2 is a difficult theorem and the main result of
[TV07]. To prove that AnPerfk is a (locally) geometric analytic stack, one is bound to address

1A derived affine scheme Spec(A) is almost of finite presentation over k if π0(A) is finitely generated as a k-
algebra and each πi(A) is finitely generated as π0(A)-module. This condition ensures that we can consider its
analytification.
2In this paper “geometric” stack is a synonym of “higher Artin” stack. See Remark 2.12 for a more detailed
explanation.
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the same issues dealt with in [TV07]. Rather than doing this directly, we prove the following
result.

Theorem 1.2 (cf. Proposition 4.9 and Corollary 5.6). Let k be either the field of complex
numbers or a non-archimedean field equipped with a non-trivial valuation.

(1) There is a canonical equivalence

Perfank ≃ AnPerfk .

In particular, AnPerfk is a derived locally geometric analytic stack.

(2) Let X be a proper derived geometric stack locally almost of finite presentation over k.
Assume that the stack Map(X,Perfk) of perfect complexes on X is locally geometric.
Then the canonical map

Map(X,Perfk)
an −→ AnMap

(
Xan,AnPerfk

)
is an equivalence.

Remark 1.3. The assumption that the stack Map(X,Perfk) is locally geometric is automatically
satisfied if X is a proper and underived scheme over k. See Remark 5.7.

Remark 1.4. (1) There are two main difficulties to overcome in trying to prove Theorem 1.2(1).
The first one is that the analytification functor is defined by left Kan extension, and therefore it
lacks a clear interpretation for the functor of points of Perfan. We overcome this by providing
a second, less obvious, universal property of Perfan and, more generally, of the analytification
Y an of a (locally) geometric derived stack Y ; see Theorem 1.18 for an expository account and
Theorem 3.13 for the precise result. Once this issue is solved, the non-archimedean case simply
follows from the derived version of Kiehl’s theorem, stating that for a (derived) affinoid space X
with ring of global sections A, one has a canonical equivalence

Perf(X) ≃ Perf(A) .

See [PY21, Theorem 3.1]. In the C-analytic setting replacing (derived) affinoid by (derived) Stein
spaces, the analogous statement is false. To remedy this, an additional effort is required, which
leads to some significant improvement of the known results in the literature. We will discuss this
at greater length after the end of this remark.

(2) Concerning Theorem 1.2(2), considerations similar to above can be made. Having obtained
a description of the functor of points of Map(X,Perfk)

an, one is reduced to proving a statement
of relative GAGA type. More precisely, if S is a derived analytic space, we are naturally brought
to consider the relative geometric stack X×S and compare relatively algebraic perfect complexes
on it with analytic perfect complexes on Xan×S. Besides some technical issues in making precise
sense of the object X ×S and relatively algebraic perfect complexes on it, the main issue is that
S must be allowed to be non-proper. In the non-archimedean case, the relative GAGA theorem
proven in [PY16, Theorem 1.3] settles the issue. Nevertheless, in loc. cit. the question of having
a relative GAGA theorem in the C-analytic setting was left open. The difficulty is reducible to
the fact that if S is a derived Stein space, its global sections are almost never noetherian. We
will fix this issue at the same time as we explain how to adapt Kiehl’s theorem to the C-analytic
setting.

(3) Bootstrapping on Theorem 1.2(2), one can obtain more examples of derived stacks F for
which the canonical comparison map

Map(F,Perfk)
an −→Map

(
F an,AnPerfk

)
15
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is an equivalence. These examples are discussed at length in Section 5.2, and they include formal
completions and Simpson’s shapes XB, XdR and XDol, which play a crucial role in formulating
the notions of local system, flat bundle and Higgs bundle in the realm of derived geometry.

As pointed out in the above remark, the C-analytic case presents some additional difficulties.
We overcome them using the classical notion of “compact Stein subsets”, reinterpreted here as
special pro-objects in the ∞-category dAnC. More precisely, we prove the following. (If I is
a filtered category and F : I → C is a diagram, we let “colim”i∈I F (i) denote the associated
ind-object in Ind(C).)

Theorem 1.5 (cf. Theorem 4.13 and Corollary 4.15). Let X ∈ dAnC be a derived complex
analytic space, and assume that it is Stein. (This means that its truncation t0(X) is a Stein
space. Equivalently, H1(X;F) = 0 for every discrete coherent sheaf F on X.) Let K ⊂ t0(X) be
a compact subset admitting a fundamental system of open Stein neighbourhoods. For every Stein
neighbourhood U of K inside X, write AU := Γ

(
U ;Oalg

U

)
. Then there is a canonical equivalence

in Ind
(
Catst,⊗∞

)
“colim”
K⊂U⊂X

Perf(AU ) ≃ “colim”
K⊂U⊂X

Perf(U) , (1.6)

where the ind-objects are parametrized by all the Stein open neighbourhoods of K. Furthermore,
after realizing these ind-objects, we obtain an equivalence in Catst,⊗∞

colim
K⊂U⊂X

Perf(U) ≃ colim
K⊂U⊂X

Perf(AU ) ≃ Perf(AK) , (1.7)

where

AK := colim
K⊂U⊂X

AU

is the derived ring of germs of holomorphic functions on K.

Remark 1.8. (1) Although the equivalence (1.7) is easier both to state and to imagine, we want
to draw the reader’s attention to the fact that (1.6) contains strictly stronger information. For
instance, it implies that (1.7) remains true after applying any functor F : Cat∞ → E , even when
F does not itself commute with colimits. This simple consequence of Theorem 1.5 plays a major
role in the proof of the main theorem of this paper.

(2) When this paper was first written, the closest known result to Theorem 1.5 was [Tay02,
Proposition 11.9.2], asserting that, under the additional assumption that AK is noetherian, there
is an equivalence of abelian categories

Coh♡(K) ≃ Coh♡(AK) ,

where the left-hand side denotes the category of coherent sheaves on the locally ringed space
(K,OK), where OK is the sheaf of germs of holomorphic functions of K inside X. Since then,
the work of Clausen and Scholze on condensed mathematics established a much more closely
related result; see [CS22, Theorem 9.15].

(3) Theorem 1.5 can also be seen as a vast generalization of [Tay02, Proposition 11.9.2]. First
of all, considering K as a pro-object rather than as a locally ringed space allows us to drop the
noetherianity assumption. Furthermore, it provides an equivalence of ind-categories, which is a
much more powerful tool in practice, as observed above. Next, it lifts the abelian equivalence
to an equivalence of stable ∞-categories of perfect complexes (and, in fact, in Theorem 4.13
the case of the stable ∞-category of unbounded coherent sheaves is also dealt with). Last but
not least, Theorem 1.5 provides an extension to the derived setting as well, which is particularly
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useful within the context of this paper. Observe that in the derived setting the stable∞-category
Coh(AK) is quite different from the derived category of its heart Coh♡(AK). Therefore, the proof
we provide of Theorem 1.5 is entirely independent of the one given in loc. cit. and works directly
at the ∞-categorical level.

We now turn back to the question of determining under which conditions on X and Y the
comparison map (1.1) is an equivalence. Having dealt with the case Y = Perfk, we invoke the
Tannakian reconstruction formalism to deduce the statement for more general derived stacks Y .
In first approximation, we say that Y is Tannakian if for every derived stack X, the natural
map3

MapdStk(X,Y ) −→ Fun⊗(Perf(Y ),Perf(X))

is fully faithful and its image has a precise characterization; see Definition 6.1 for the details.
Our main theorem is then the following.

Theorem 1.9 (cf. Theorem 6.14). Let X,Y :
(
dAffafp

k

)op → S be derived stacks. Assume that

(1) the derived stack X is a proper geometric derived stack locally almost of finite presentation
over k;

(2) the mapping stack Map(X,Y ) is geometric;

(3) Y is a geometric stack which is Tannakian and satisfies QCoh(Y ) ≃ Ind(Perf(Y )).

Then the canonical morphism

Map(X,Y )an −→ AnMap
(
Xan, Y an

)
(1.10)

is an equivalence of derived analytic stacks.

Remark 1.11. (1) The assumption on X can be significantly weakened. In Theorem 6.14 we
only assume X to satisfy the “universal GAGA property”; see Definition 5.1 for the precise
formulation. In first approximation, the reader can imagine it as a slight strengthening of the
condition that the canonical comparison map

Map(X,Perf)an −→ AnMap
(
Xan,AnPerf

)
is an equivalence; see Proposition 5.2. The key point in working axiomatically on X is to in-
clude uniformly the case of Simpson’s shapes XB, XdR and XDol, which are very far from being
geometric stacks. See also Remark 1.4(3).

(2) When the characteristic of k is zero, the assumptions on Y are satisfied, for instance, when
it is a quasi-compact quasi-separated Deligne–Mumford stack or it is the classifying stack of an
affine group scheme of finite type (see the corollary to [HR17, Theorem B]). See also Example 6.3.

(3) No assumptions on the characteristic of k are required to prove Theorem 1.9. Nevertheless,
the only known criteria to guarantee that the assumptions on Y are met require characteristic
zero. See Remark 6.4.

Remark 1.12. The proof of Theorem 1.9 loosely follows the same strategy as Lurie’s proof of
the main theorem in [Lur04], but it is considerably more involved, and it also requires some new
ideas. Furthermore, Theorem 1.9 is a threefold generalization of [Lur04]:

3The notation Fun⊗ stands for symmetric monoidal k-linear functors.

17



J. Holstein and M. Porta

(1) In [Lur04] it is only proven that (1.10) is an equivalence on the k-points. To prove this
statement for the entire mapping stack requires some additional effort, notably a relative
version of GAGA’s theorem, which we discussed in Theorem 1.2. As further discussed in
Remark 1.4(2), this result is far from being obvious, and in the C-analytic setting it is
entirely new in the generality discussed in the paper at hand.

(2) We remove the geometricity assumption on X, allowing us to consider Simpson’s shapes XB,
XdR and XDol. This has as a consequence the generalization of the Riemann–Hilbert corre-
spondence described below, which is our main application.

(3) We allow our stacks X and Y to be derived.

Theorem 1.13 (cf. Corollary 7.6). Let X be a smooth and proper scheme over C. Let Y be
a derived stack locally almost of finite presentation satisfying the same assumptions as in Theo-
rem 1.9. Then there is a natural equivalence of derived analytic stacks

Map(XdR, Y )an ≃Map(XB, Y )an ,

which reduces to the Deligne Riemann–Hilbert correspondence for rank n vector bundles when
Y = BGLn obtained in [Del70].

Remark 1.14. (1) Theorem 1.13 is a vast generalization of the main result of [Por17b]. It is
also an important stepping stone in the study of the non-abelian Hodge correspondence from the
derived point of view, and it should be seen as part of an organic and ongoing research program
on the irregular Riemann–Hilbert correspondence that has been initiated in [PT21, PT22, PT24].

(2) In [PS23, Theorem 1.5] the authors showed that when X is a smooth and proper surface
over C, Theorem 1.13 gives rise to an equivalence of categorified Hall algebras. Decategorifying,
they obtained an equivalence of K-theoretical and cohomological Hall algebras.

Let us mention two more applications. In Proposition 7.3 we show that the derived analyti-
fication functor commutes with finite limits of geometric stacks. In Corollary 7.4 we revisit the
derived period domain from [DH19] and construct it as a derived analytic moduli stack. More
precisely, we have the following.

Theorem 1.15 (cf. Corollary 7.4). Let (V, q) be a 2n-shifted quadratic perfect complex, and
assume that q is non-degenerate on the cohomology of V . The functor

Pn(V, q) : dStn
op −→ S

which sends S ∈ dStn to the space of filtrations {F ∗} on π∗SV ∈ Perf(S) which induce Hodge
structures on the cohomology groups of V , with polarizations induced by q, is representable by
a geometric derived analytic stack. Here πS : S → Sp(C) denotes the canonical map. Furthermore,
Pn(V, q) coincides with the derived period domain considered in [DH19].

The original derived period domain in [DH19] was constructed in an ad hoc way by analyti-
fying an algebraic moduli stack. In fact, the construction of the derived period map in [DH19]
could be simplified using our Theorem 1.18 to bridge the algebraic and analytic aspects of the
problem. We will not pursue this approach in this paper.

Before concluding this introduction, we want to emphasize two more technical results that,
nevertheless, together with Theorem 1.5, provide a very significant extension of the currently
available technology in derived analytic geometry. For these reasons, we believe these results
to be of independent interest and likely to arise in other contexts, and we made an effort to

18



Analytification of mapping stacks

make their statements independent of the rest of the paper. The first one is the following partial
extension of Tannaka duality to the analytic setting.

Theorem 1.16 (cf. Lemma 6.10 and Propositions 6.5, 6.11 and 6.12). Let Y ∈ dStafpk be a derived
geometric stack locally almost of finite presentation, and let X ∈ dAnk. Assume that

(1) Y is Tannakian;

(2) QCoh(Y ) ≃ Ind(Perf(Y )).

Then the assignment sending a morphism f : X → Y an to the composition

Perf(Y ) −→ Perf
(
Y an

) f∗
−→ Perf(X)

provides a fully faithful map

MapdAnStk

(
X,Y an

)
−→ Fun⊗(Perf(Y ),Perf(X)) .

Furthermore, when X is a derived k-affinoid (respectively, Stein) space, we can identify the
essential image of this functor with those k-linear, symmetric monoidal functors

F : QCoh(Y ) −→ OX -Mod

that commute with colimits, preserve perfect complexes and respect flat objects and connective
objects.

The second result we would like to mention is our way of bypassing the problem raised in
Remark 1.4(1). The issue at hand is to provide a manageable description of the functor of points
of the analytification of a derived stack Y . When Y is a derived Deligne–Mumford stack locally
almost of finite presentation over k, the definition of analytification implies that for every derived
analytic space X = (XX ,OX), one has a canonical equivalence

MapdAnk

(
X,Y an

)
≃ Map T opR (Tét(k))

(
Xalg, Y

)
. (1.17)

Here Xalg =
(
XX ,Oalg

X

)
is the derived analytic space X seen as a locally ringed space,4 and

T opR (Tét(k)) denotes the ∞-category of those locally ringed spaces whose structure sheaf has
strictly Henselian stalks. When Y is more generally a geometric stack, it can no longer be
represented as an object in T opR (Tét(k)) and Y an is no longer an object in dAnk. Therefore, the
above equivalence loses its meaning. It is natural to replace dAnk by dAnStk, but the right-hand
side cannot be simply replaced by dStk because the construction X 7→ Xalg is not sufficiently
well behaved. We bypass this problem by proving the following.

Theorem 1.18 (cf. Theorem 3.13). Let X ∈ dAnk, and let XX be its underlying ∞-topos of
sheaves on the étale site of X. Let 1X denote the final object of XX . There exist functors

F s
X : dAnStk −→ XX , Gs

X : dStafpk −→ XX

and a natural transformation α : Gs
X → F s

X ◦ (−)an satisfying the following conditions:

(1) Given Y ∈ dStafpk , there is a natural equivalence

MapdAnStk

(
X,Y an

)
≃ F s

X

(
Y an

)
(1X) .

4For simplicity, in the introduction we use the word space. For technical reasons, in the main body of the paper
we rather work with locally ringed ∞-topoi.
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(2) Given Y ∈ dStafpk , the functor Gs
X(Y ) is the sheafification of the functor sending an étale

morphism U → X to

MapdStk
(
Spec

(
Γ
(
U ;Oalg

U

))
, Y

)
.

(3) If Y is a geometric stack, the natural transformation α is an equivalence.

Although more complicated than the adjunction available for derived Deligne–Mumford
stacks, Theorem 1.18 is equally useful in practice because it gives a way of describing morphisms
into Y an in terms of (sheaves of) maps into Y . The entire Section 3 is devoted to formulating
and proving this theorem.

Notation and conventions

In this paper we freely use the language of ∞-categories. Although the discussion is often inde-
pendent of the chosen model for ∞-categories, whenever needed we identify them with quasi-
categories and refer to [Lur09] for the necessary foundational material.

The notation S and Cat∞ is reserved to denote the ∞-categories of spaces and of ∞-
categories, respectively. If C ∈ Cat∞, we denote by C≃ the maximal ∞-groupoid contained in C.
We let Catst∞ denote the ∞-category of stable ∞-categories with exact functors between them.
We also let PrL denote the ∞-category of presentable ∞-categories with left adjoints between
them. Similarly, we let PrLst denote the∞-categories of stably presentable∞-categories with left
adjoints between them. Finally, we set

Catst,⊗∞ := CAlg
(
Catst∞

)
, PrL,⊗st := CAlg

(
PrLst

)
.

Given an ∞-category C, we denote by PSh(C) the ∞-category of S-valued presheaves. We
follow the conventions introduced in [PY16, § 2.4] for ∞-categories of sheaves on an ∞-site.

For a field k, we reserve the notation CAlgk for the ∞-category of simplicial commutative
rings over k. We often refer to objects in CAlgk simply as derived commutative rings. We denote
its opposite by dAffk, and we refer to it as the ∞-category of derived affine schemes. We say
that a derived ring A ∈ CAlgk is almost of finite presentation if π0(A) is of finite presentation

over k and πi(A) is a finitely presented π0(A)-module.5 We denote by dAffafp
k the full subcategory

of dAffk spanned by derived affine schemes Spec(A) such that A is almost of finite presentation.
When k either is a non-archimedean field equipped with a non-trivial valuation or is the field of
complex numbers, we let Ank denote the category of analytic spaces over k. We denote by Sp(k)
the analytic space associated with k.

Throughout the paper we need to consider stacks both with values in S and with values
in Cat∞. We use the following convention: if (C, τ) is an ∞-site and F : Cop → Cat∞ is a Cat∞-
valued stack, we denote by F the S-valued stack defined by

F(X) := F (X)≃ , X ∈ C .

Given stacks T : Cop → S and F : Cop → Cat∞, we let Map(T, F ) denote the Cat∞-valued stack
defined by

Map(T, F )(X) := F (T ×X) .

Here we are implicitly extending F to a functor St(C, τ)op → Cat∞. Notice that(
Map(T, F )(X)

)≃ ≃Map(T,F)(X) , X ∈ C ,

5Equivalently, A is almost of finite presentation if π0(A) is of finite presentation and the cotangent complex LA/k

is an almost perfect complex over A.
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where the Map on the right-hand side now denotes the internal hom in St(C, τ).
Finally, in this paper we are concerned with ind- and (to a lesser extent) pro-objects. Given

an∞-category C, we let Ind(C) and Pro(C) denote the∞-categories of ind- and pro-objects in C,
respectively. If I is a filtered category and F : I → C is a diagram, we let “colim”i∈I F (i) denote
the associated ind-object in Ind(C). We use the notation “lim” for pro-objects.

2. Review of derived analytic geometry

We start by reviewing the basic notions and facts about derived analytic geometry. We refer
the reader to the papers [Lur11c, PY18, Por19, PY20b] for more extensive discussions of the
foundations.

2.1 Definitions and basic facts

We let k denote either the field C of complex numbers or a complete non-archimedean field with
non-trivial valuation. We refer to [Lur11a, §§ 1, 3] and [Lur11c, §§ 11–12] for a more thorough
explanation of the ideas we briefly recall below. We also refer the reader to [Por19, § 2] and
[PY18, § 2] for more detailed reviews.

Notation 2.1. (1) Let Tdisc(k) denote the full subcategory of k-schemes spanned by affine
spaces An

k . A morphism in Tdisc(k) is said to be admissible if it is an isomorphism. We endow
Tdisc(k) with the trivial Grothendieck topology.

(2) Let Tét(k) denote the category of smooth k-schemes. A morphism in Tét(k) is said to be
admissible if it is an étale morphism. We endow Tét(k) with the étale topology τét.

(3) Let Tan(k) denote the category of smooth k-analytic spaces.6 A morphism in Tan(k) is said
to be admissible if it is an étale morphism. We endow Tan(k) with the quasi-étale topology [PY18,
Construction 2.2] or [PY20b, § 2].

Definition 2.2 (cf. [Lur11a, Definition 3.1.4]). Let X be an ∞-topos. A Tan(k)-structure is
a functor O : Tan(k) → X which commutes with products and pullbacks along admissible mor-
phisms and takes admissible covers to effective epimorphisms. We denote by StrTan(k)(X ) the full
subcategory of Fun(Tan(k),X ) spanned by Tan(k)-structures.

Definition 2.3 (cf. [Lur11a, Definition 3.1.4]). Let X be an ∞-topos. A Tan(k)-structure O is
said to be local if it takes τét-covers to effective epimorphisms. A morphism of Tan(k)-structures
O → O′ is said to be local if for every admissible morphism U → V , the square

O(U) O(V )

O′(U) O′(V )

is a pullback square in X . We denote by StrlocTan(k)(X ) the (non-full) subcategory of StrTan(k)(X )
spanned by local structures and local morphisms between them.

Remark 2.4. One can give similar definitions for Tét(k) and Tdisc(k). Notice that a Tdisc(k)-
structure is simply a product-preserving functor O : Tdisc(k)→ X . For this reason, we can canon-
ically identify StrTdisc(k)(X ) with the ∞-category of derived commutative rings CAlgk(X ) in X .

6In the non-archimedean setting smoothness is understood in the sense of Berkovich. See [Ber94].
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When X = S is the ∞-topos of spaces, CAlgk(X ) coincides with the underlying ∞-category of
the model category of simplicial commutative k-algebras.

Example 2.5. (1) Let X be a C-analytic space, and let Xtop denote its underlying topological
space. Let X := Sh

(
Xtop

)
be the ∞-topos of sheaves on X. We define a Tan(C)-structure O on

X as the functor sending an object U ∈ Tan(C) to the sheaf O(U) ∈ X defined by

Op(Xtop) ∋ V 7−→ O(U)(V ) := HomAnC(V,U) ,

where Op
(
Xtop

)
denotes the poset of open subsets of Xtop. Notice that O

(
A1

C
)
coincides with

the usual sheaf of holomorphic functions on X.

(2) Let X be a rigid analytic space, and let Xét denote the small étale site of X. Let X :=
Sh

(
Xét, τét

)∧
be the hypercompletion of the ∞-topos of sheaves on Xét. Then we can define a

Tan(k)-structure O on X as the functor sending U ∈ Tan(k) to the sheaf O(U) ∈ X defined by

Xét ∋ V 7−→ O(U)(V ) := HomAnk(V,U) .

Once again, O
(
A1

k

)
coincides with the usual sheaf of analytic functions on X.

The analytification functor introduced in the C-analytic case in [Gro63, Exposé XII] and in
the k-analytic case in [Ber90] restricts to a functor

(−)an : Tdisc(k) −→ Tan(k) .

Precomposition with (−)an provides for every ∞-topos X a functor

(−)alg : StrTan(k)(X ) −→ StrTdisc(k)(X ) ≃ CAlgk(X ) .

We refer to this functor as the underlying algebra functor.

Definition 2.6. A derived k-analytic space is a pair (X ,OX), where X is a hypercomplete
∞-topos and OX is a Tan(k)-structure on X such that

(1) locally on X , the analytic space (X , π0OX) is equivalent to a Tan(k)-structured topos arising
from the construction of Example 2.5;

(2) the sheaves πi
(
Oalg

X

)
are coherent sheaves of π0

(
Oalg

X

)
-modules.

Theorem 2.7 ([Lur11c, PY18]). Derived k-analytic spaces assemble into an ∞-category dAnk
that has the following properties:

(1) Fibre products in dAnk exist.

(2) The construction of Example 2.5 provides a fully faithful embedding of the category of
ordinary k-analytic spaces Ank in dAnk.

One of the difficult points of Theorem 2.7 is to actually construct dAnk as an∞-category. This
is achieved by the general methods of [Lur11a], realizing dAnk as a full subcategory of the ∞-
category of Tan(k)-structured ∞-topoi T opR (Tan(k)). More generally, one can define T opR (T )
whenever T is a pregeometry. We refer the reader to [Lur11a, Definition 1.4.8] for a detailed
construction.

Remark 2.8. Theorem 2.7 gives a first hint that the notion of derived analytic space introduced
in [Lur11c, PY18] is a solid one. Since the appearance of these papers, the theory has been
greatly developed. We mention a version of the GAGA theorem in the derived setting, that has
been obtained in [Por19], and a detailed analysis of (derived) deformation theory in [PY20b]
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that led to an analytic version of Lurie’s representability theorem. On the applications side, we
mention derived versions of the Riemann–Hilbert correspondence [Por17b] and of the Griffiths
period map [DH19].

2.2 Derived affinoid, Stein and compact Stein spaces

To any derived analytic space X = (X ,OX), we can canonically attach an analytic space

t0(X) := (X , π0(OX)) .

We refer to t0(X) as the truncation of X. The truncation allows us to define the derived coun-
terparts of Stein and k-affinoid spaces.

Definition 2.9. A derived analytic space X ∈ dAnk is said to be a derived Stein space (in
the C-analytic case) or a derived k-affinoid space (in the non-archimedean case) if its truncation
t0(X) is a Stein or k-affinoid space, respectively. We denote by dStnC (respectively, dAfdk) the
full subcategory of dAnC (respectively, dAnk) spanned by derived Stein spaces (respectively,
derived k-affinoid spaces).

Warning 2.10. Let k be a non-archimedean field. In the underived setting if A and B are k-
affinoid algebras, every ring homomorphism A→ B is automatically continuous. This allows us
to embed fully faithfully the category of k-affinoid algebras in the category of commutative rings.
In the derived setting this is entirely false: indeed, let X = Sp(A) be an (underived) k-affinoid
space, and let M ∈ Coh♡(A) be a discrete coherent A-module. Via [PY21, Theorem 3.1], we
review M as a coherent sheaf F on X. Consider the split square-zero extension X[F [1]]; see
[PY20b, Definition 5.14]. By definition, it is a derived k-affinoid space, and its global sections are
A⊕M [1]. A morphism A→ A⊕M [1] splitting the natural projection A⊕M [1]→ A classifies
an algebraic derivation LA →M [1]. On the other hand, a morphism of derived k-analytic spaces
X[F [1]] → X splitting the natural map X → X[F [1]] corresponds to an analytic derivation
Lan
X → F [1]; see [PY20b, Definition 5.4]. The algebraic and the analytic cotangent complexes

are very different: the former is typically infinite-dimensional (see [GR03, Lemma 7.3.30]), while
the latter is connective and has coherent cohomology (see [PY20b, Corollary 5.40]). Similar
considerations hold in the C-analytic setting.

Notation 2.11. In this paper we made an effort to present as far as possible statements that
are equally true in the complex and non-archimedean analytic case. In particular, following the
convention of [PY16], we say “analytic” whenever the statement applies to both settings. When k
is not specified and can be either C or a non-archimedean field, we also use the notation dAfdk
to denote dStnC.

In [Por19, § 3.1] and in [PY18, § 7.1], it is shown that the étale topology defines a Grothendieck
topology on dAfdk. We let

dAnStk := Sh(dAfdk, τét)
∧

be the ∞-category of hypercomplete sheaves on (dAfdk, τét). We refer to this ∞-category as
the ∞-category of derived analytic stacks. Moreover, let Psm denote the collection of smooth
morphisms in dAfdk (cf. [PY20b, Definition 5.46]). Then (dAfdk, τét,Psm) is a geometric context
in the sense of [PY16, Definition 2.2]. In particular, the notion of derived analytic geometric
stack is defined; see [PY16, Definition 2.8].

Remark 2.12. Notice that here geometric stack is understood in the sense of Simpson [Sim96].
More precisely, we say that a stack X is geometric if it is n-geometric for some n ⩾ −1: when
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n = −1, this means that they are representable by derived k-affinoid (respectively, Stein) spaces.
Inductively, a stack X is n-geometric if there exists a smooth effective epimorphism u : U → X,
where U is a disjoint union of derived k-affinoid (respectively, Stein) spaces, u is representable
by (n− 1)-geometric stacks and the diagonal X → X ×X is representable by (n− 1)-geometric
stacks as well. In the non-archimedean case the condition on the diagonal is superfluous (see
[PY18, Corollary 8.6]).

With this terminology, 1-geometric stacks are closely related to Artin stacks. Furthermore, we
avoid the terminology algebraic stack because it would give rise to word conflicts in the context
of this paper: for us, a derived analytic stack is simply a hypercomplete sheaf on (dAfdk, τét).

In dealing with (derived) C-analytic geometry, a frequent difficulty one encounters is that
we cannot identify coherent sheaves on a Stein space with modules of finite presentation over
the global sections. The classical solution to this problem, as can be found in [Tay02, Propo-
sition 11.9.2], is to work with compact Stein spaces. In loc. cit. a compact Stein space K is
a locally ringed space which can be realized as a compact subset of a Stein space U , admitting
a fundamental system of Stein open neighbourhoods. The sheaf of functions on K is the sheaf
of overconvergent functions on K. However, considering K as an actual locally ringed space has
several disadvantages: first of all, it is difficult to generalize to the derived setting, and second
it often requires an extra noetherianity hypothesis on K. We will circumvent these issues by
considering a compact Stein as a pro-object in dAnC (see in particular Theorem 4.8).

Construction 2.13. Let X ∈ dAnC and let K ⊂ t0(X) be a compact subset of t0(X). If U ⊂ X
is an open immersion of derived analytic spaces, we write K ⊂ U to mean that K ⊂ t0(U). Now
suppose that K admits a fundamental system of Stein open neighbourhoods inside t0(X). Using
the equivalence of sites t0(X)ét ≃ Xét provided by [PY18, Lemma 7.16], we can interpret any
open neighbourhood of K inside t0(X) as a derived analytic space which is open inside X. We
therefore define

(K)X := “lim”
K⊂U⊂X

U ∈ Pro(dAnStC) ,

where the diagram ranges over all the open Stein neighbourhoods of K inside X.

Definition 2.14. A derived compact Stein space is a pro-object which is equivalent to the
pro-object (K)X arising from Construction 2.13.

Compact Stein spaces are especially useful in virtue of the following theorem.

Theorem 2.15 (cf. [Lur09, Corollary 7.3.4.10]). Let X be a locally compact topological space,
and let C be a presentable ∞-category in which filtered colimits are left exact. Then there is an
equivalence of ∞-categories

Sh(X; C) ≃ ShK(X; C) ,
where the right-hand side denotes the sheaves on compact subsets of X, in the sense of [Lur09,
Definition 7.3.4.1].

In applications, it is important to know explicitly how the above equivalence works. Therefore,
let X be a locally compact space. Let us denote by K(X) the set of compact subsets of X and
by U(X) the set of open subsets of X. We order both K(X), U(X) and their union K(X)∪U(X)
by inclusion. Let

κ : K(X) ↪−−→ K(X) ∪ U(X) , u : U(X) ↪−−→ K(X) ∪ U(X)

24



Analytification of mapping stacks

be the natural inclusions. Then [Lur09, Theorem 7.3.4.9] shows that the fully faithful functors
induced by left and right Kan extensions

Ranκ : ShK(X; C) ↪−−→ Fun((K(X) ∪ U(X))op, C)←−−↩ Sh(X; C) : Lanu
have the same essential image. Now let F ∈ PSh(X; C) := Fun(U(X)op, C). Let F̃ := Lanu(F).
There is a natural transformation

η : F̃ −→ Ranκ
(
F̃ |K(X)

)
.

By restricting to U(X) and using the full faithfulness of Lanu, we obtain a natural transformation

ηU : F −→ Ranκ
(
F̃ |K(X)

)∣∣
U(X)

.

Using [Lur09, Theorem 7.3.4.9], we immediately obtain the following result.

Lemma 2.16. With the above notation, suppose furthermore that F̃ |K(X) belongs to ShK(X; C).
Then ηU exhibits Ranκ

(
F̃ |K(X)

)∣∣
U(X)

as the sheafification of F .

Proof. Let G ∈ Sh(X; C). Then we have

MapPSh(X;C)(F ,G) ≃ MapFun((K(X)∪U(X))op,C)(Lanu(F),Lanu(G)) .

Let G̃ := Lanu(G). Then [Lur09, Theorem 7.3.4.9] implies that G̃ ≃ Ranκ(G̃|K(X)). In particular,
η induces an equivalence

MapFun((K(X)∪U(X))op,C)(Lanu(F),Lanu(G)) ≃ MapShK(X;C)
(
F̃ |K(X), G̃|K(X)

)
.

Applying right Kan extension along κ again and restricting to U(X) finally shows that ηU induces
an equivalence

MapPSh(X;C)(F ,G) ≃ MapSh(X;C)
(
Ranκ

(
F̃ |K(X)

)∣∣
U(X)

,G
)
.

The proof is therefore complete.

3. Analytification of geometric stacks

3.1 The derived analytification functor

The analytification functor

(−)an : Tét(k) −→ Tan(k)
respects the classes of admissible morphisms and the coverings, and so it is a transformation of
pregeometries. As a consequence, [Lur11a, Theorem 2.1.1] shows that it gives rise to an adjunction
of ∞-categories

(−)alg : T opR (Tan(k)) T opR (Tét(k)) :(−)an .
The functor (−)alg can be informally described as the functor mapping a Tan(k)-structured topos

(X ,OX) to the Tét(k)-structured topos (X ,Oalg
X ). We refer to the right adjoint

(−)an : T opR (Tét(k)) −→ T opR (Tan(k))

as the derived analytification functor. Using [Por17a, Theorem 1.7], we see that T opR (Tét(k))
contains fully faithfully the∞-category of derived Deligne–Mumford stacks, as defined more clas-
sically in [TV08b]. We can summarize the main properties of this functor in the following theorem.

Theorem 3.1 (cf. [Por19, PY20b]). Let X = (X ,OX) be a derived Deligne–Mumford stack
locally almost of finite presentation. Then:

25



J. Holstein and M. Porta

(1) The object Xan ∈ T opR (Tan(k)) is a derived analytic space.

(2) The canonical map εX :
(
Xan

)alg → X in T opR (Tét(k)) is flat.
(3) If furthermore X is an underived scheme, then under the fully faithful embedding Ank ↪→

dAnk, the analytification Xan introduced in [Ber90, Gro63] coincides with the derived an-
alytification of X.

In many situations of geometric interest, Deligne–Mumford stacks are too restrictive and
need to be replaced by geometric stacks (also known as Artin stacks). Having defined the derived
analytification functor at the level of derived Deligne–Mumford stacks locally almost of finite
presentation, it is straightforward to extend it to arbitrary derived stacks locally almost of
finite presentation by left Kan extension (cf. [PY16, § 6.1] and [TV08a]). This procedure is also
implicitly used in [PY20b, Por19]. In this paper we need a slightly more general procedure that
allows us to define the analytification of arbitrary derived stacks (not necessarily locally almost
of finite presentation). The construction is as follows.

The functor (−)an : T opR (Tét(k))→ T opR (Tan(k)) restricts to

(−)an : dAffafp
k −→ dAnk .

This is a continuous morphism of sites, and therefore it induces a functor between the associated
∞-categories of hypercomplete sheaves (thanks to [PY16, Proposition 2.22])

(−)an,afp : dStafpk := Sh(dAffafp
k , τét)

∧ −→ dAnStk .

On the other hand, let

j : dAffafp
k ↪−−→ dAffk (3.2)

be the natural inclusion. The right Kan extension of (−)an,afp along j provides a functor

(−)an : dAffk −→ dAnStk .

Example 3.3. Let Spec(A) ∈ dAffk be a derived affine k-scheme, not necessarily almost of finite
type. Then

Spec(A)an ∼−→ lim
B→A

Spec(B)an ,

where the limit ranges over all of the morphisms B → A with B almost of finite presentation.

Lemma 3.4. Let U → V be an étale covering in dAffk and U• its Čech nerve. The canonical map

|Uan
• | −→ V an

is an equivalence in dAnStk.

Proof. Observe that the category of derived affines of finite type dAff fp
k , equipped with étale

maps and the étale topology, forms a finitary geometry in the sense of [Lur11a, Remark 2.2.8].
Moreover, dAffk ≃ Pro

(
dAff ft

k

)
, and therefore it follows from that remark that we can assume,

without loss of generality, the existence of V ′ ∈ dAff fp
k and an étale covering U ′ → V ′ such that

U V

U ′ V ′

is a pullback square. Let U ′
• be the Čech nerve of U ′ → V ′. Since

(−)an : dAffafp
k −→ dAnk
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is a morphism of sites, we see that ∣∣(U ′
•
)an∣∣ −→ (

V ′)an
is an equivalence in dAnStk. Since colimits are stable under pullbacks in dAnStk, the diagram∣∣Uan

•
∣∣ V

∣∣(U ′
•
)an∣∣ (

V ′)an
is a pullback square. It follows that the top horizontal morphism is an equivalence, completing
the proof.

Lemma 3.4 guarantees that the functor (−)an : dAffk → dAnStk extends uniquely to a colimit-
preserving functor

(−)an : dStk −→ dAnStk .

We refer to this functor as the derived analytification functor. The following lemma guarantees
that there is no ambiguity when analytifying a derived stack locally almost of finite presentation.

Lemma 3.5. For any F ∈ dStafpk there is a canonical equivalence

F an,afp ≃ (js(F ))
an ,

where js is defined by left Kan extension along the inclusion j : dAffafp
k → dAffk.

Proof. As both js : dSt
afp
k → dStk and (−)an : dStk → dAnStk commute with colimits, it is

enough to check that the two constructions agree when F ∈ dAffafp
k . In this case, the result

follows from the full faithfulness of the functors dAffafp
k ↪→ dAffk and dAffafp

k → dStafpk .

Remark 3.6. One can adapt the definition of analytification for stacks with values in a general
presentable ∞-category T (extending the case T = S considered above). Indeed, the continuous

morphism of sites (−)an,afp : dAffafp
k → dAnk induces an analytification functor

(−)an,afp : ShT
(
dAffafp

k , τét
)∧ −→ ShT

(
dAnk, τét

)
.

The other extension steps carry over in the exact same way, yielding an analytification functor

(−)an : ShT
(
dAffk, τét

)∧ −→ ShT
(
dAnk, τét

)∧
.

Other than the case T = S, we are mostly interested in the case where T = Cat∞.

3.2 A universal property of analytification

When Y is a derived Deligne–Mumford stack locally almost of finite type and X is a derived
analytic space, the very definition of (−)an implies that the canonical map

MapdAnk

(
X,Y an

)
−→ Map T opR (Tét(k))

(
Xalg, Y

)
is an equivalence. However, it is unreasonable to expect to be able to lift the above adjunction
to the level of the categories dAnStk and dStk, even when restricting to geometric stacks on
both sides. The reason is that there is a significant difference between the object Xalg and its
restricted functor of points

Map T opR (Tét(k))
(
−, Xalg

)
: dAffk −→ S .
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For instance, the global sections of these two objects differ. In order to bypass this difficulty,
we adapt the method first introduced in [Lur04], which consists in providing an alternative
description of both MapdAnk

(
X,Y an

)
and Map T opR (Tét(k))

(
Xalg, Y

)
as sheaves on X.

Let X ∈ dAnStk. Define

dAfdX := dAfdk ×dAnStk (dAnStk)/X .

We endow dAfdX with the étale topology, that we still denote by τét. We denote by XX the
corresponding ∞-topos:

XX := St(dAfdX , τét) .

Consider the forgetful functor

FX : dAfdX −→ dAfdk ,

that sends a morphism U → X to the source U . Then FX is both a continuous and a cocontinuous
morphism of sites. As in [PY16] we let F p

X : PSh(dAfdk) → PSh(dAfdX) be the morphism on
presheaves given by precomposition and F s

X : dAnStk → XX the induced map on sheaves. We
then obtain the following result.

Lemma 3.7. The functor

F s
X : dAnStk −→ XX

commutes with colimits, and it coincides with the restriction of F p
X . In particular, one has

MapXX

(
1X , F

s
X

(
Y an

))
≃ MapdAnStk

(
X,Y an

)
, (3.8)

where 1X denotes the final object of XX and Y ∈ dStk.

Proof. The functor F s
X commutes with colimits thanks to [PY16, Lemma 2.19] because FX is

a cocontinuous morphism of sites. Similarly, it coincides with the restriction of F p
X in virtue of

[PY16, Lemma 2.13] because FX is continuous. Finally, we observe that the identification (3.8)
follows from the fact that F s

X coincides with the restriction of F p
X to dAnStk.

Remark 3.9. The functor FX : dAfdX → dAfdk does not preserve (finite) products. Therefore, it
follows that F s

X is not part of a geometric morphism of ∞-topoi. Nevertheless, it still has a left
adjoint (FX)s and a right adjoint sFX . However, (FX)s does not commute with finite limits.

We now turn to describe Map T opR (Tét(k))
(
Xalg, Y

)
as the global sections of a sheaf on dAfdX .

The main point of doing this is that the new formulation will make sense for an arbitrary
Y ∈ dStk. The sheaf of sections of Oalg

X provides us with a functor

GX : dAfdX −→ dAffk

which informally sends U → X to

GX(U) := Spec
(
Oalg

X (U)
)
.

Notice that the functor GX does not factor through dAffafp
k and moreover is not continuous

because it does not commute with fibre products (not even along étale morphisms). However, we
can at least prove that it is cocontinuous.

Lemma 3.10. The functor GX : (dAfdX , τét)→ (dAffk, τét) is a cocontinuous morphism of sites.

Proof. Consider the functor

O : CAlgopk −→ XX , R 7−→ MapCAlgk
(R,O(−)) ∈ XX .
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We first show that O takes covers to effective epimorphisms. Write Gét(k) for the geometric
envelope of Tét(k), which can be explicitly described as the full subcategory of CAlgopk spanned
by compact objects; see [Lur11a, Definition 4.3.13, Proposition 4.3.15]. Notice that O takes
arbitrary colimits in CAlgk to limits in XX . In particular, its restriction to Gét(k) is left exact.
Moreover, its further restriction to Tét(k) canonically coincides with O itself, and it is therefore
a Tét(k)-structure. It follows from the proof of [Lur11a, Proposition 3.4.7] that the restriction of
O to Gét(k) is a Gét(k)-structure on XX . In particular, O takes admissible maps between algebras
of finite type (which are exactly τét-coverings) to effective epimorphisms in X .

To check that O takes all τét-coverings to effective epimorphisms, we note that it suffices
to check on stalks. Then to check that O(f) is an effective epimorphism, we consider an étale
covering R→

∏
Ri and need to produce a lift in the diagram OX,x ← R→

∏
Ri. Using the local

representation of an étale map by a standard étale map, one may see that the étale covering is
pro-admissible.

Then by [Lur11a, Proposition 1.3.10], pro-admissible maps form part of a factorization sys-
tem, see [Lur09, Definition 5.2.8.8], on CAlgk, considered as Pro(Gét(k)). The right set of this
factorization system is given by local morphisms, and in particular, OX,x → k is right orthogonal
to R→

∏
Ri, which shows that the desired lift exists [Lur09, Remark 5.2.8.2].

Now let U ∈ dAfdX , and fix an étale cover

O(U) −→
∏
i

Ri .

The above observation implies that the map∐
i

O(Ri) −→ O(O(U))

is an effective epimorphism. In particular, it is an effective epimorphism of sheaves after ap-
plying π0, and thus for every V ∈ X and every f ∈ π0O(O(U))(V ), we can find an effective
epimorphism

∐
Vj → V in XX such that for every j there exist some i and some element

fij ∈ π0O(Ri)(Vj) whose image via

O(Ri)(Vj) −→ O(O(U))(Vj)

coincides with the image of f via the restriction O(O(U))(V ) → O(O(U))(Vj). Applying this
reasoning to the case V = U and

f := idO(U) ∈ O(O(U))(U) = MapCAlgk
(O(U),O(U)) ,

we deduce the existence of an effective epimorphism
∐
Uj → U and factorizations O(U)→ Ri →

O(Uj). The proof is therefore complete.

Corollary 3.11. Let X ∈ dAnStk be a derived k-analytic stack. Then the functor

Gs
X : dStk −→ XX

induced by GX : dAfdX → dAffk commutes with colimits. In particular, if U → Y is an effective
epimorphism and U• is its Čech nerve, then the canonical morphism

|Gs
X(U•)| −→ Gs

X(Y ) (3.12)

is an equivalence.

Proof. Lemma 3.10 guarantees that the morphism of sites GX : (dAfdX , τét) → (dAffk, τét) is
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cocontinuous. Therefore, [PY16, Lemma 2.19] shows that it induces a well-defined ∞-functor

Gs
X : dStk −→ XX

which is furthermore left adjoint to sGX . In particular, Gs
X commutes with arbitrary colimits.

Now let Y ∈ dStafpk be a derived stack locally almost of finite presentation. Then Y an is
defined as an object in dAnStk. In particular, for every X ∈ dAnk both F s

X

(
Y an

)
and Gs

X(Y ) are
defined. The main goal of this section is to prove that they are canonically equivalent whenever Y
is furthermore geometric.

Let U ∈ dAfdX , and represent it as U = (U ,OU ). Therefore, U
alg =

(
U ,Oalg

U

)
and the

universal property of the Spec functor of [Lur11a, § 2.2] induces a natural transformation in
T opR (Tét(k))

εU : Ualg −→ Spec
(
Oalg

U (U)
)
.

For any Y ∈ dAffafp
k this provides us with a natural transformation

αU,Y : MapdStk
(
Spec

(
Oalg

U (U)
)
, Y

)
−→ Map T opR (Tét(k))

(
Ualg, Y

)
≃ MapdAnStk

(
U, Y an

)
.

Notice that

MapdStk
(
Spec

(
Oalg

U (U)
)
, Y

)
≃ Gp

X(Y )(U)

and

MapdAnStk

(
U, Y an

)
≃ F s

X

(
Y an

)
(U) .

As Gp ◦ jp commutes with colimits, the morphisms αU,Y extend to a natural transformation

between functors PSh
(
dAffafp

k

)
→ PSh

(
dAfdX

)
:

α̃ : Gp
X ◦ jp −→ F s

X ◦ (−)an ◦ js ≃ F s
X ◦ (−)an,afp ,

where jp and js are the functors induced by the morphism of sites (3.2). The equivalence (−)an ◦
js ≃ (−)an,afp is the one provided by Lemma 3.5. As F s

X ◦ (−)an,afp is a sheaf, we see that this
natural transformation induces

α : Gs
X ◦ js −→ F s

X ◦ (−)an,afp .

We can now state the main theorem of this section.

Theorem 3.13. Let X ∈ dAnStk be a derived analytic stack. If Y ∈ dStafpk is a locally geometric
derived stack locally almost of finite presentation, the morphism

αY : Gs
X(Y ) −→ F s

X

(
Y an

)
is an equivalence in XX .

In particular, αY induces an equivalence

MapXX

(
1X , G

s
X(Y )

)
≃ MapXX

(
1X , F

s
X

(
Y an

))
.

In virtue of Lemma 3.7, we can identify the right-hand side with MapdAnStk

(
X,Y an

)
. The left-

hand side instead plays the role of MapdStk
(
Xalg, Y

)
. However, since the functor GX : dAfdX →

dAffk is not continuous, the functor Gs
X is typically not a right adjoint. This prevents us from

rewriting MapXX

(
1X , G

s
X(Y )

)
as a mapping space computed in dStk. We will nevertheless see

that one can effectively use Theorem 3.13 in order to deal with the analytification of higher
geometric stacks such as Perfk.
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Proof of Theorem 3.13. We first show the theorem if Y is geometric, proceeding by induction on
the geometric level of Y . First suppose that Y = Spec(A) is affine. For any U ∈ dAfdX we have

Gp
X(Y )(U) ≃ MapdStk

(
Spec

(
Oalg

U (U)
)
, Y ) ≃ Map T opR (Tét(k))

(
Ualg, Y

)
≃ Map T opR (Tan(k))

(
U, Y an

)
≃ MapdAnStk

(
U, Y an

)
≃ F s

X

(
Y an

)
(U) .

The composition is α̃. As it is an equivalence and F s
X

(
Y an

)
is a sheaf, we conclude that Gp

X(Y ) ≃
Gs

X(Y ) and that α : Gs
X(Y )→ F s

X

(
Y an

)
is an equivalence as well.

Now let Y be an n-geometric derived stack locally almost of finite presentation. Choose an
n-atlas u : U → Y , and let U• be its Čech nerve. Then Lemma 3.7 and Corollary 3.11 imply that

|Gs
X(U•)| ≃ Gs

X(Y ) ,
∣∣F s

X

(
Uan
•
)∣∣ ≃ F s

X

(
Y an

)
.

As the natural transformation αUn : G
s
X

(
Un

)
→ F s

X

(
Uan
n

)
is an equivalence for every [n] ∈ ∆op

by the induction hypothesis, we conclude that αY : Gs
X(Y )→ F s

X

(
Y an

)
is an equivalence as well.

It remains to extend to the locally geometric case. For this it is sufficient to recall again that
Gs

X commutes with colimits by Corollary 3.11 and F s
X commutes with colimits by Lemma 3.7.

3.3 Controlling the analytification

In this paper we are mostly concerned with the following type of question. Suppose that the
element X ∈ dStafpk is a derived geometric stack locally almost of finite presentation. Its ana-
lytification Xan is obtained via a left Kan extension. This prevents us from providing an easy
description of Xan in terms of its functor of points. Nevertheless, when X itself parametrizes
algebraic families of certain kinds of objects (such as vector bundles, principal G-bundles, per-
fect complexes, morphisms between algebraic stacks, etc.), there is often an analytic analogue
Y parametrizing analytic families of the same type of objects. It is then a natural question to
compare the analytification of X with its analytic counterpart Y . Our current goal is to describe
a general strategy to prove similar statements (see Proposition 3.14 for a precise statement and
a proof). In the rest of the paper, we will repeatedly apply this strategy.

To start we assume given a locally geometric derived stack locally almost of finite presentation
X ∈ dStafpk , an analytic stack Y ∈ dAnStk and a morphism

ε : Xan −→ Y ,

which we wish to prove is an equivalence. Notice that we do not assume a priori that Y is
geometric. It is enough to check that ε induces an equivalence

MapdAnStk

(
U,Xan

)
≃ MapdAnStk

(U, Y )

for all U ∈ dAnStk. Using Lemma 3.7, we see that it is enough to check that ε induces an
equivalence

F s
U

(
Xan

)
−→ F s

U (Y ) .

Using Theorem 3.13 and the local geometricity of X, we can replace F s
U

(
Xan

)
with Gs

U (X). In
this way, we get rid of the analytification. However, checking in practice that the morphism

Gs
U (X) −→ F s

U

(
Xan

)
−→ F s

U (Y )

induced by ε is an equivalence is as difficult as the original problem of proving that ε is an
equivalence. The reason is that, once again, Gs

U (X) is not explicitly defined but is rather the
result of a sheafification process.
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In the non-archimedean setting it happens that in the situations we will consider in the
subsequent sections, the map

Gp
U (X) −→ F s

U (Y )

is already an equivalence. This can ultimately be traced back to Tate’s acyclicity and Kiehl’s
theorem (see for instance Lemma 4.6). This implies that Gp

U (X) is a sheaf and therefore that
Gp

U (X) ≃ Gs
U (X). In the complex case, this statement is typically false. To remedy this, we are

lead to work with compact Stein spaces (see Definition 2.14).

Proposition 3.14. Let X ∈ dStafpk be a locally geometric derived stack locally almost of finite
presentation. Let Y ∈ dAnStk be a derived analytic stack, and let

ε : Xan −→ Y

be a morphism in dAnStk. Suppose the following:

(1) If k is a non-archimedean field, then for every U ∈ dAfdk the map ε induces an equivalence

Gp
U (X) −→ F s

U (Y ) .

(2) If k = C, then for every U ∈ dStnC and every compact Stein subset K ⊂ U , the morphism
ε induces an equivalence

colim
K⊂V⊂U

Gp
U (X)(V ) ≃ colim

K⊂V⊂U
F s
U (Y )(V ) . (3.15)

Then ε : Xan → Y is an equivalence.

Proof. As we already discussed, combining Lemma 3.7 and Theorem 3.13, it is enough to check
that ε induces an equivalence

Gs
U (X) −→ F s

U (Y )

for every derived k-affinoid (respectively, Stein) space U . In the non-archimedean situation, the
hypothesis guarantees that Gp

U (X) is a sheaf and that it is equivalent to F s
U (Y ). Since Gs

U (X) is
the sheafification of Gp

U (X), we conclude that Gs
U (X) ≃ F s

U (Y ) via the morphism induced by ε.
Therefore, ε is an equivalence.

In the C-analytic setting, we first use the correspondence provided by Theorem 2.15 to recast
Gp

U (X) and F s
U (Y ) as presheaves defined on compact subsets of U . We will abuse notation and

write Gp
U (X)(K) for Lanu

(
Gp

U

)
(K) if K is a compact Stein space in U . Then the hypothesis

guarantees that

Gp
U (X)(K) ≃ colim

K⊂V⊂U
Gp

U (X)(V ) ≃ colim
K⊂V⊂U

F s
U (Y )(V ) ≃ F s

U (Y )(K) .

Therefore, Gp
U (X) is a sheaf on compact Stein subsets of U which is furthermore equivalent

to F s
U (Y ). As compact Stein subsets of U form a basis for U , the conclusion now follows from

Lemma 2.16.

4. Analytic perfect complexes

As usual, we let k be either the field of complex numbers or a non-archimedean field equipped
with a non-trivial valuation. In this section we are concerned with the derived analytic stack
AnPerfk parametrizing families of perfect complexes over derived analytic spaces (see below for
its precise definition). Our main goal is to prove that there is a natural equivalence

Perfank ≃ AnPerfk .
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See Proposition 4.9. The proof is based on the general method described in Proposition 3.14.
Building on the results obtained in [PY21], it is easy to verify the assumptions of that proposition
in the non-archimedean setting. On the other hand, verifying the hypotheses in the C-analytic
situation requires a lot of extra work. For this reason, the biggest part of this section is essentially
C-analytic in nature, and the main object of study is the category of perfect complexes on
a compact Stein, seen as a pro-object in dAnk.

4.1 The stack of perfect complexes

We start with the basic definitions. Let X be an ∞-topos, and let O ∈ CAlgk(X ) be a sheaf of
connective derived k-algebras. Formally speaking, we set

CAlgk(X ) := StrTdisc(k)(X ) .

It can be naturally identified with the∞-category of sheaves of simplicial commutative k-algebras
on X . For every object U ∈ X we can form a stably symmetric monoidal ∞-category O|U -Mod.
Its objects are the sheaves of O|U -modules in the ∞-topos X/U . See [Lur11b, § 2.1].

These categories glue together into a sheaf on X with values in Catst,⊗∞ , the ∞-category of
stably symmetric monoidal ∞-categories. We denote the resulting functor by

O-Mod: X op −→ Catst,⊗∞ .

Notice that when char(k) = 0, the existence of this ∞-functor follows from the technology
developed in [Lur17, § 7.3.4], and notably the equivalence

O|U -Mod ≃ Sp(CAlg(X/U )/O|U ) ,

which reduces the∞-functoriality of the categories O|U -Mod to the∞-functoriality of the comma
categories X/U . Here Sp(−) denotes the ∞-category of spectrum objects; see [Lur17, § 1.4.2].
When char(k) > 0, the same strategy applies, but we have to use instead the identification

O|U -Mod ≃ Sp(Ab(CAlg(X/U )/O|U )) ,

proven in [PY20b, Corollary 8.3].

For every U ∈ X we let Perfstrict(U) denote the smallest full stable subcategory of O|U -Mod
closed under retracts and containing O|U . Restriction along morphisms V → U in X preserves
strict perfect complexes. So the assignment U 7→ Perfstrict(U) can be promoted to a sub-presheaf
of O-Mod. We let PerfX ,O denote its sheafification, computed in the ∞-category Catst,idem∞ of
idempotent complete stable ∞-categories. It is straightforward to observe that the symmetric
monoidal structure on O|U -Mod induces a symmetric monoidal structure on Perf(U), and so we
can actually promote PerfX ,O to a sheaf with values in idempotent complete stably symmetric
monoidal ∞-categories.

When X = dStk is the ∞-topos of derived stacks and O is the global section functor, we
denote PerfX ,O simply by Perfk. According to our general convention, we denote by Perfk the
associated S-valued stack, determined by the relation

Perfk(X) := Perfk(X)≃ .

It coincides with the usual stack of perfect complexes (see [TV07]). Now let X = dAnStk be the
∞-topos of derived analytic stacks. The functor

dAfdopk −→ Catst,⊗∞

sending U = (U ,OU ) to Oalg
U -Mod extends to a functor O-Mod: dAnStopk → Catst,⊗∞ . In this case
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we simply denote by AnModk the stack O-Mod and by AnPerfk the stack PerfdAnStk,O. When
X ∈ dAnStk, we set

OX -Mod := AnModk(X) , Perf(X) := AnPerfk(X) .

When X is a derived Stein (respectively, derived k-affinoid) space, we can also identify X with
a Tan(k)-structured topos. In this case, the above notation is compatible with [Lur11b, § 2.1].
Notice that OX -Mod has a canonical t-structure, where connective objects are defined locally.

Lemma 4.1. Let X ∈ dAnStk be a derived analytic stack. Then the stable ∞-category OX -Mod
has a t-structure where an object F is connective if and only if for every morphism f : U → X
with U ∈ dAfdk, the pullback f∗F ∈ Oalg

U -Mod is connective.

Proof. This is clear for X ∈ dAfdk using the t-structure on Oalg
X -modules for an ∞-topos X ;

see [Lur11b, Proposition 2.1.3]. For general X we need to define the t-structure on a limit of
categories. We may define connective objects locally and then use the two parts of [Lur17,
Proposition 1.4.4.11] to extend to a uniquely defined t-structure.

4.2 Analytification of Perfk

We define the analytification Perfank as in Section 3 by first restricting to dAffafp
k and then

performing left Kan extension along the analytification (−)an : dAffafp
k → dAfdk. In a similar

way, we define the analytification Perfank of the Cat∞-valued stack Perfk.

Remark 4.2. The maximal∞-groupoid functor (−)≃ : Cat∞ → S does not commute with colimits
in general. Therefore, for U ∈ dAfdk we can no longer identify Perfank (U) with

(
Perfank (U)

)≃
.

Since Perfank is defined by left Kan extension, in order to give a morphism7

ε∗ : Perfank −→ AnPerfk , (4.3)

it is enough to produce a natural transformation

Perfk −→ AnPerfk ◦ (−)an .

If X ∈ dAffafp
k , then Xan ∈ dAfdk, and therefore the underlying Tét(k)-structured topos

(
Xan

)alg
is well defined. Pulling back along the natural map

θX :
(
Xan

)alg −→ X

provides an analytification functor that respects perfect complexes:

(−)anX : Perf(X) −→ Perf
((
Xan

)alg)
.

Observe that, according to our definitions, Perf
((
Xan

)alg) ≃ Perf
(
Xan

)
. The same construction

also provides a morphism Perfank → AnPerfk, which we still denote by ε∗.

Our goal is to prove that ε∗ : Perfank → AnPerfk is an equivalence, and we will do so by
verifying the hypotheses of Proposition 3.14. Therefore, fix X ∈ dAfdk. The first step is to make
the construction of the morphism

ε∗X : Gp
X(Perfk) −→ F s

X(AnPerfk)

7The notation suggests that this morphism is induced by pullback along a certain map ε. We will make this idea
explicit below.
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explicit. Let U ∈ Xét, and define

AU := Γ
(
U ;Oalg

U

)
.

Then

Gp
X(Perfk)(U) ≃ Perf(AU )

≃ , while F s
X(AnPerfk)(U) ≃ Perf(U)≃ .

The universal property of Spec proven in [Lur11a, Theorem 2.2.12] provides us with a canonical
morphism in T opR (Tét(k))

εU : (U ,Oalg
U ) −→ Spec(AU ) .

Pullback along εU provides a functor

ε̃∗U : OAU
-Mod −→ OU -Mod .

This is simply the pullback along εU , but we reserve the notation ε∗U for the restriction

ε∗U : AU -Mod ≃ QCoh(Spec(AU )) OAU
-Mod OU -Mod .

iU ε̃∗U

The functor ε∗U preserves perfect complexes and therefore further restricts to

ε∗U : Perf(AU ) −→ Perf(U) ,

which coincides with the functor induced by ε∗ : Perfank → AnPerfk.

Notice that we also have a functor in the opposite direction:

Γ(U ;−) : OU -Mod −→ AU -Mod .

Observe that ε∗U and Γ(U ;−) are not adjoint to each other. However, the inclusion iU : AU -Mod ↪→
OAU

-Mod admits a left adjoint

LU : OAU
-Mod −→ AU -Mod ,

and, similarly, the functor ε̃∗U : OAU
-Mod→ OU -Mod admits a right adjoint

ε̃U∗ : OU -Mod −→ OAU
-Mod .

Then Γ(U ;−) is naturally equivalent to the functor LU ◦ ε̃U∗, and we have two canonical zig-zags
of natural transformations

LU ◦ iU

Γ(U ;−) ◦ ε∗U IdAU -Mod ,

ε̃∗U ◦ ε̃U∗

ε∗U ◦ Γ(U ;−) IdOU -Mod .

(4.4)

Notice that LU ◦ iU → IdAU -Mod is always an equivalence. In particular, we obtain a well-defined
natural transformation

δ : IdAV -Mod −→ Γ(U ;−) ◦ ε∗U .
We now summarize the most basic properties of the functors we introduced so far.

Proposition 4.5. Let U ∈ dAfdk be a derived k-affinoid (respectively, Stein) space. Then:

(1) The lax symmetric monoidal functor

Γ(U ;−) : OU -Mod −→ AU -Mod

is t-exact and symmetric monoidal when restricted to the full subcategory Coh(U) of un-
bounded complexes with coherent cohomology.
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(2) The functor

ε∗U : AU -Mod −→ OU -Mod

is t-exact and monoidal, and its restriction to Coh(AU ) factors through Coh(U).

(3) The restriction of the composition

Γ(U ;−) ◦ ε∗U : AU -Mod −→ AU -Mod

to Coh(AU ) factors through Coh(AU ).

(4) The natural transformation

δ : IdAU -Mod −→ Γ(U ;−) ◦ ε∗U
is an equivalence when restricted to Coh(AU ).

(5) The functor ε∗U : AU -Mod→ OU -Mod commutes with filtered colimits, and it is conservative.

Proof. In the non-archimedean case points (1)–(4) have been proved in [PY21, Theorems 3.1
and 3.4]. In the C-analytic setting point (1) follows from Cartan’s theorem B. The t-exactness
part of point (2) follows from the flatness result proven in Lemma A.3. At this point, we are left
to check that ε∗U takes Coh♡(AU ) to Coh♡(U). This follows immediately from the fact that AU

is taken to OU and the fact that every object in Coh♡(AU ) admits a finite presentation. Point
(3) follows immediately from point (4). Point (4) is a consequence of Cartan’s Theorem B and
point (2).

We now prove point (5). Observe that the inclusion

AU -Mod♡ ↪−−→ OAU
-Mod♡

commutes with filtered colimits. Since AU -Mod ↪→ OAU
-Mod is t-exact and fully faithful, it

follows that it also commutes with filtered colimits. Therefore, ε∗U has the same property. We
now prove conservativity. Since ε∗U is an exact functor, it is enough to prove that if F is such
that ε∗U (F) ≃ 0, then F ≃ 0. Since ε∗U is t-exact and the t-structures on AU -Mod and OU -Mod
are complete, we can reduce to the case where F ∈ AU -Mod♡. In this case we can write

F ≃
⋃
α

Fα ,

where the union ranges over all finitely generated AU -submodules of F . Since ε∗U is t-exact, we
see that ε∗U (Fα) is a submodule of ε∗U (F). This implies that ε∗U (Fα) = 0. Since Fα ∈ Coh♡(AU ),
point (4) implies that Fα = 0 for every α. In particular, F = 0, whence the conclusion.

In the non-archimedean case, we can strengthen the above result.

Lemma 4.6 (cf. [PY21, Theorem 3.4]). Let U be a derived k-affinoid space, and let AU :=

Γ
(
U ;Oalg

U

)
. Then the functors ε∗U and Γ(U ;−) realize an equivalence of stable ∞-categories

Coh(U) ≃ Coh(AU ) ,

which furthermore restricts to an equivalence

Perf(U) ≃ Perf(AU ) .

In particular, there is an equivalence Perf(U)≃ ≃ Perf(AU )
≃.

Proof. Theorem 3.4 in [PY21] shows that the global section functor induces a t-exact equivalence
of stable ∞-categories

Coh(U) ≃ Coh(AU ) .
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On the other hand, we know that Perf(AU ) coincides with the smallest full stable subcategory
of Coh−(AU ) closed under retracts and containing AU . As AU is mapped to OU under the above
equivalence, we see that Perf(AU ) is mapped into Perf(U). It is therefore sufficient to prove
that the global section functor takes Perf(U) to Perf(AU ). Fix F ∈ Perf(U), and let {Ui} be

a finite derived affinoid cover of U so that F|Ui belongs to Perfstrict(Ui). Let Ai := Γ
(
Ui;Oalg

Ui

)
.

In this case, we immediately see that Γ(Ui;F|Ui) ∈ Perf(Ai). In particular, Γ(Ui;F|Ui) has finite
tor-amplitude. As the maps A→ Ai are faithfully flat and

Γ(Ui;F|Ui) ≃ Γ(X;F)⊗A Ai ,

we conclude that Γ(X;F) also has finite tor-amplitude by [Lur18, Proposition 2.8.4.2 (5)]. In par-
ticular, it belongs to Perf(A).

This verifies the hypotheses of Proposition 3.14 for the map ε∗ : Perfank → AnPerfk in the
non-archimedean setting. In the C-analytic case the analogue of Lemma 4.6 is simply false: indeed,
the restriction of the functor Γ(U ;−) to Perf(U) does not factor through Perf(AU ). However,
Proposition 3.14 asks for a different statement: we have to check that for every compact Stein
subset K of X, the map ε∗ : Perfank → AnPerfk induces an equivalence

colim
K⊂U⊂X

Perf(AU )
≃ −→ colim

K⊂U⊂X
Perf(U)≃ , (4.7)

where the colimits run through the open Stein neighbourhoods U of K inside X. In order to
prove that (4.7) is an equivalence, it is easier (and more natural) to work with the stacks with
values in Cat∞. We will prove below that ε∗ : PerfanC → AnPerfC induces an equivalence

colim
K⊂U⊂X

Perf(AU ) −→ colim
K⊂U⊂X

Perf(U) .

However, since the maximal ∞-groupoid functor (−)≃ does not commute with colimits, it is not
straightforward to deduce that (4.7) is an equivalence from the above statement. To circumvent
this problem, we prove the following stronger statement.

Theorem 4.8. Let X ∈ dAnC, and let K be a compact Stein subset of X. The functors

ε∗U : Perf(AU ) −→ Perf(U)

induce a morphism

ε∗(K) : “colim”
K⊂U⊂X

Perf(AU ) −→ “colim”
K⊂U⊂X

Perf(U)

in Ind
(
Catst,⊗∞

)
, which is furthermore an equivalence.

The proof of this theorem is technical, and it will occupy the rest of this section. Before
delving into the details, let us record its main consequence.

Proposition 4.9. Let k be either the field of complex numbers or a non-archimedean field
equipped with a non-trivial valuation. The natural morphism ε∗ : Perfank → AnPerfk is an
equivalence of derived analytic stacks. In particular, AnPerfk is a locally geometric derived
analytic stack.

Proof. We know that Perfk is a locally geometric stack locally almost of finite presentation. It
is therefore enough to check that the hypotheses of Proposition 3.14 are satisfied. Fix a derived
Stein (respectively, k-affinoid) space U , and let V ⊂ U be an open Stein subspace (respectively,
k-affinoid domain embedding). Unravelling the definitions, we see that

Gp
U (Perfk)(V ) ≃ Perf(AV )

≃ , F s
U (AnPerfk)(V ) ≃ Perf(V )≃ .
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In the non-archimedean case the conclusion therefore follows from Lemma 4.6. In the C-analytic
case the equivalence of ind-objects provided by Theorem 4.8 induces an equivalence

“colim”
K⊂V⊂U

Perf(AV )
≃ −→ “colim”

K⊂V⊂U
Perf(V )≃

in Ind(S). By realizing this equivalence of ind-objects, we see that the hypotheses of Proposi-
tion 3.14 are satisfied. The second statement follows at once because the analytification functor
preserves locally geometric stacks.

4.3 Proof of Theorem 4.8

We now turn to the proof of Theorem 4.8. As in Lemma 4.6, we will deduce the statement
from the analogous statement concerning unbounded complexes with coherent cohomology. As
we already remarked, the difference from the non-archimedean setting is that the composition

Coh(U) −→ OU -Mod
Γ(U ;−)−−−−→ AU -Mod

does not factor through Coh(AU ). We therefore lack a candidate for the inverse of ε∗U . When
working with ind-objects, however, the situation improves thanks to the following couple of
lemmas. For the notion of relatively compact, see Definition A.1.

Lemma 4.10. Let U ∈ dStnC, and let V ⋐ U be a relatively compact Stein subset. Then the
composition

Coh(U)
(−)|V−−−→ Coh(V )

Γ(V ;−)−−−−→ AV -Mod

factors, as a symmetric monoidal functor, through Coh(AV ). Moreover, if F ∈ Perf(U), then
Γ(V ;F|V ) ∈ Perf(AV ).

Proof. We know from Proposition 4.5 that Γ(V ;−) is t-exact and monoidal. Therefore, it is
enough to check that when F ∈ Coh♡(U), we have Γ(V ;F|V ) ∈ Coh♡(AV ). This follows at once
from Cartan’s Theorem B and [PY16, Lemma 8.12].

Now suppose F ∈ Perf(U). We have to prove that Γ(V ;F|V ) has finite tor-amplitude. If
F ∈ Perfstrict(U), then F|V ∈ Perfstrict(V ) and therefore Γ(V ;F|V ) ∈ Perfstrict(AV ). In general,
we can find a cover {Ui}i∈I of U such that F|Ui belongs to Perfstrict(Ui). Now choose a cover
{Vj}j∈J of V satisfying the following properties:

(1) For every j ∈ J there exists an i ∈ I such that Vj ⊂ Ui.

(2) For every j ∈ J the open Vj is Stein and relatively compact inside V .

It follows that each Γ(Vj ;F|Vj ) is perfect over AVj . Since Vj ⋐ V ⋐ U , we can apply Lemma A.3
to deduce that the family of maps {AV → AVj} is faithfully flat. Similarly, Corollary A.4 shows
that the natural morphism

Γ(V ;F|V )⊗AV
AVj −→ Γ(Vj ;F|Vj )

is an equivalence. At this point, [Lur18, Proposition 2.8.4.2(5)] implies that Γ(V ;F|V ) has finite
tor-amplitude over AV , completing the proof.

This lemma shows that the functor Γ(U ;−) : Coh(U) → AU -Mod induce a morphism in
Ind

(
Catst,⊗∞

)
Γ(K) : “colim”

K⊂V⊂U
Coh(U) −→ “colim”

K⊂V⊂U
Coh(AU ) .

We now wish to prove that Γ(K) and ε∗(K) form an equivalence of ind-objects. We need the
following lemma.
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Lemma 4.11. Let U be a derived Stein space, and let W ⋐ V ⋐ U be two nested relatively
compact Stein subsets. For any F ∈ Coh(U) the OAW

-module ε̃W∗(F|W ) is a coherent sheaf over
Spec(AW ).

Proof. We already know from Lemma 4.10 that the global sections of ε̃W∗(F|W ) belong to
Coh(AW ). It is therefore enough to prove that all its cohomologies are quasi-coherent. For this,
it is enough to check that for every principal open W ′ of Spec(AW ), the canonical map

Γ(W ;F|W )⊗AW
AW ′ −→

(
ε̃W∗

(
F|W

))(
W ′)

is an equivalence. We immediately observe that

ε̃W∗(F|W )
(
W ′) = F(ε−1

W

(
W ′)) .

It follows from the discussion in [GR84, § 1.4.4] and from the reconstruction theorem proved in

[GR79, § IV.7.4] that W̃ ′ := ε−1
W

(
W ′) is itself a Stein space. Furthermore, we have W̃ ′ ⋐ V . We

can therefore apply Corollary A.4 to the sequence of nested derived Stein subsets W̃ ′ ⋐ V ⋐ U
to deduce that

Γ(W ;F|W )⊗AW
A

W̃ ′ ≃ Γ(V ;F|V )⊗AV
A

W̃ ′ .

The proof is therefore complete.

Lemma 4.12. Let U be a derived Stein space, and let W ⋐ V ⋐ U be two nested relatively
compact Stein subsets. Let ρU,W : OU -Mod → OW -Mod be the restriction functor, and let
jU : Coh(U) ↪→ OU -Mod be the natural inclusion. Then:

(1) The natural transformation

ε̃W∗ ◦ ρU,W ◦ jU −→ iW ◦ LW ◦ ε̃W∗ ◦ ρU,W ◦ jU
is an equivalence.

(2) The natural transformation

ϑ : ε∗W ◦ Γ(W ;−) ◦ ρU,W ◦ jU −→ ρU,W ◦ jU
induced by the zig-zag (4.4) and by the previous point is an equivalence.

Proof. Point (1) is a direct consequence of Lemma 4.11 because ε̃W∗ ◦ ρU,W ◦ jU factors through
Coh(AW ) and the unit of the adjunction LW ⊣ iW is an equivalence on the objects belonging
to AW -Mod. As for point (2), all the functors appearing are t-exact. It is therefore sufficient to
check that θ is an equivalence when evaluated on objects in Coh♡(U). This follows immediately
from [PY16, Lemma 8.11].

We are now ready to state and prove the key result.

Theorem 4.13. Let X ∈ dAnC, and let K be a compact Stein subset of X. The morphism

ε∗(K) : “colim”
K⊂U⊂X

Coh(AU ) −→ “colim”
K⊂U⊂X

Coh(U) (4.14)

is an equivalence in Ind
(
Catst,⊗∞

)
, whose inverse is given by Γ(K).

Proof. Proposition 4.5 implies that the natural transformation δ : IdAU -Mod → Γ(U ;−)◦ ε∗U is an
equivalence when evaluated on objects in Coh(AU ), for every open Stein neighbourhood U of K
in X. This shows that Γ(K) ◦ ε∗(K) is equivalent to the identity of the left-hand side of (4.14).
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For the other direction, the natural transformation θ we constructed in Lemma 4.12 provides
a path between morphisms in Ind

(
Catst,⊗∞

)
ε∗(K) ◦ Γ(K) −→ IdCoh((K)U ) ,

where Coh((K)U ) denotes the right-hand side of (4.14). Moreover, Lemma 4.12 shows that this
morphism is invertible, thereby completing the proof.

From here, deducing Theorem 4.8 is straightforward.

Proof of Theorem 4.8. It is enough to check that the functors ε∗(K) and Γ(K) restrict to morphism
of ind-objects

ε∗(K) : “colim”
K⊂U⊂X

Perf(AU ) −→ “colim”
K⊂U⊂X

Perf(U) , Γ(K) : “colim”
K⊂U⊂X

Perf(U) −→ “colim”
K⊂U⊂X

Perf(AU ) .

In the case of ε∗(K) this follows directly from the construction, while for Γ(K) this has already
been in checked in Lemma 4.10.

By realizing the equivalences of ind-objects obtained in Theorems 4.13 and 4.8, we obtain the
following weaker result, which is closer in spirit to [Tay02, Proposition 11.9.2]. Before stating it,
let us fix some notation: first of all, we write

ε∗K : colim
K⊂U⊂X

Perf(AU ) −→ colim
K⊂U⊂X

Perf(U)

and

ΓK : colim
K⊂U⊂X

Perf(U) −→ colim
K⊂U⊂X

Perf(AU )

for the realizations of ε∗(K) and Γ(K). We also set

AK := colim
K⊂U⊂X

AU .

Then we have the following.

Corollary 4.15. Let X ∈ dAnC, and let K be a compact Stein inside X. Then there is
a canonical equivalence

Perf(AK) ≃ colim
K⊂U⊂X

Perf(U) .

Proof. By realizing the equivalence of Theorem 4.8, we see that the functors ΓK and ε∗K induce
an equivalence

colim
K⊂U

Perf(AU ) ≃ colim
K⊂U⊂X

Perf(U) .

On the other hand, it is proven in [Lur18, Corollary 4.5.1.8] that the construction R 7→ Perf(R)
commutes with filtered colimits. Therefore, we also have an equivalence

Perf(AK) ≃ colim
K⊂U⊂X

Perf(AU ) .

The conclusion follows.

Let us give another application that stems from the combination of Corollary 4.15 and The-
orem 2.15.

Proposition 4.16. Let X be a derived C-analytic space. Then the subcategory Perf(X) ⊂
Coh−(X) coincides exactly with the subcategory of dualizable objects.
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Proof. Denote by AnPerfX and AnCoh−X the restrictions of AnPerf and AnCoh− to Xtop. Let
F ∈ Coh−(X) be a dualizable object. Then we observe that for every compact Stein subset
K ⊂ X, the object Γ(K)(F) is dualizable in Coh−(AK), and hence it belongs to Perf(AK). We
now use the equivalence

Perf((K)X) ≃ Perf(AK)

provided by Corollary 4.15, and we observe that under the equivalence

Sh
(
Xtop; Catst,idem∞

)
≃ ShK

(
Xtop,Catst,idem∞

)
provided by Theorem 2.15, the sheaf AnPerfX corresponds to the stack sending a compact
Stein subset K ⊂ X to Perf((K)X). Therefore, F defines a global section of AnPerfX ; that is,
F ∈ Perf(X).

Conversely, suppose F ∈ Perf(X). Then the functor

F ⊗OX
− : OX -Mod −→ OX -Mod

is left adjoint to

HomOX
(F ,−) : OX -Mod −→ OX -Mod .

In particular, we have unit and counit transformations

G −→ HomOX
(F ,F ⊗OX

G) , F ⊗OX
HomOX

(F ,G) −→ G

satisfying the triangular identities. Furthermore, as F is a perfect complex, the canonical mor-
phism

HomOX
(F ,OX)⊗OX

F ⊗OX
G −→ HomOX

(F ,F ⊗OX
G)

is an equivalence. Taking G = OX , we obtain the evaluation and coevaluation morphisms for F
and HomOX

(F ,OX). All that is left to check is therefore that HomOX
(F ,OX) is perfect. Com-

bining once again Theorems 4.15 and 2.15, we are reduced to checking that for every compact
Stein subset K ⊂ U , we have

Γ(K)(HomOX
(F ,OX)) ∈ Perf(AK) .

However, for every open Stein neighbourhood V of K inside X, one has

Γ(V ;HomOV
(F|V ,OV )) ≃ HomAV

(Γ(V ;F|V ), AV ) .

Hence

Γ(K)(HomOX
(F ,OX)) ≃ HomAK

(Γ(K)(F), AK) ∈ Perf(AK) .

This completes the proof.

5. GAGA properties

In this section we discuss several variations of the GAGA property on derived stacks locally
almost of finite presentation. We verify that they are satisfied in a number of different examples,
proving a relative version of Proposition 4.9.

5.1 (Universally) GAGA stacks

We start by generalizing the natural transformation ε∗ : Perfank → AnPerfk introduced in the

previous section. Fix X ∈ dAffafp
k and U ∈ dAfdk. As usual, we set AU := Γ

(
U ;Oalg

U

)
. The
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counit of the analytification adjunction εX :
(
Xan

)alg → X induces a well-defined morphism

εX,U :
(
Xan × U

)alg −→ (
Xan

)alg × Spec(AU ) −→ X × Spec(AU ) .

The pullback functor along εX,U induces a well-defined symmetric monoidal functor

ε∗X,U : QCoh(X × Spec(AU )) −→ OXan×U -Mod ,

which is natural in both X and U . Moreover, it restricts to a symmetric monoidal functor

ε∗X,U : Perf(X × Spec(AU )) −→ Perf
(
Xan × U

)
.

The naturality inX allows us to extend this map by colimits. Therefore, we obtain a commutative
square

Perf(X × Spec(AU )) Perf
(
Xan × U

)
QCoh(X × Spec(AU )) OXan×U -Mod

ε∗X,U

ε∗X,U

for every X ∈ dStafpk . When U = Sp(k), we write ε∗X instead of ε∗X,Sp(k).

Definition 5.1. Let X ∈ dStafpk be a derived stack locally almost of finite presentation.

(1) We say that X satisfies the GAGA property if the functor ε∗X : QCoh(X) → OXan-Mod is
conservative and t-exact and the functor

ε∗X : Perf(X) −→ Perf
(
Xan

)
is an equivalence of ∞-categories.

(2) Let k be a non-archimedean field, and let U ∈ dAfdk be a derived k-affinoid space. We say
that X satisfies the GAGA property relative to U if the functor

ε∗X,U : QCoh(Spec(AU )×X) −→ OU×Xan-Mod

is conservative and t-exact and the functor

ε∗X,U : Perf(Spec(AU )×X) −→ Perf
(
U ×Xan

)
is an equivalence.

(3) Let U ∈ dStnC be a derived Stein space, and let K ⊂ U be a compact Stein subset. We say
that X satisfies the pro-GAGA property relative to (K)U if for every Stein neighbourhood V
of K inside U , the map

ε∗X,V : QCoh(Spec(AV )×X) −→ OV×Xan-Mod

is conservative and t-exact and the morphism

ε∗X,(K) : “colim”
K⊂V⊂U

Perf(Spec(AV )×X) −→ “colim”
K⊂V⊂U

Perf
(
V ×Xan

)
.

induced by the functors ε∗X,V is an equivalence in Ind
(
Catst,⊗∞

)
. We say that X satisfies the

GAGA property relative to U if it satisfies the pro-GAGA property relative to (K)U for
every compact Stein subset K ⊂ U .

(4) We say that X satisfies the universal GAGA property if it satisfies the GAGA property
relative to U for every U ∈ dAfdk.
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Fix X ∈ dStafpk . For every S ∈ dAffafp
k the analytification functor

Perf(X × S) −→ Perf
(
Xan × San

)
induces a natural transformation of Cat∞-valued stacks

Map(X,Perfk) −→ AnMap
(
Xan,AnPerfk

)
◦ (−)an ,

which restricts to a natural transformation

Map(X,Perfk) −→ AnMap
(
Xan,AnPerfk

)
◦ (−)an.

By adjunction, this morphism determines a map

µX : Map(X,Perfk)
an −→ AnMap

(
Xan,AnPerfk

)
.

The universal GAGA property enables us to check that µX is an equivalence.

Proposition 5.2. Let X ∈ dStafpk be a derived stack locally almost of finite presentation.
Suppose that

(1) the mapping stack Map(X,Perfk) is locally geometric and locally almost of finite presen-
tation;

(2) the stack X satisfies the universal GAGA property.

Then the canonical morphism

µX : Map(X,Perfk)
an −→ AnMap(X,AnPerfk)

is an equivalence.

Proof. We apply Proposition 3.14. Notice that for U ∈ dAfdk and V ∈ Uét, we have

Gp
U (Map(X,Perfk))(V ) ≃ Perf(X × Spec(AV ))

≃ ,

F s
U (AnMap(X,AnPerfk))(V ) ≃ Perf

(
Xan × V

)≃
.

In the non-archimedean case the conclusion therefore follows directly from the assumption on X.
In the C-analytic case we have to check that for every compact Stein subset K ⊂ U , the natural
map

colim
K⊂V⊂U

Perf(X × Spec(AV ))
≃ −→ colim

K⊂V⊂U
Perf

(
Xan × V

)≃
is an equivalence. Since X satisfies the universal GAGA property, the natural map

“colim”
K⊂V⊂U

Perf(X × Spec(AV )) −→ “colim”
K⊂V⊂U

Perf
(
Xan × V

)
is an equivalence in Ind

(
Catst,⊗∞

)
. The conclusion therefore follows by applying the maximal

∞-groupoid functor (−)≃ and then realizing the equivalence in Ind(S).

The following example is of course expected.

Example 5.3. A proper derived geometric stack locally almost of finite presentation over C
satisfies the GAGA property. Indeed, it follows from [Por19, Theorem 7.2] that the analytification
functor induces an equivalence Perf(X) ≃ Perf

(
Xan

)
. The argument given in loc. cit. is an

extension to the derived setting of the analogous statement for underived stacks, which has been
proven in [PY16] in both the C-analytic and the non-archimedean setting. The same extension
argument works in the non-archimedean case, which shows thatX satisfies the GAGA property in
this situation too. Furthermore, the map QCoh(Spec(AU )×X) −→ OU×Xan-Mod is conservative
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and t-exact: this easily follows by choosing a smooth hypercover of X by derived affine schemes
and observing that t-exactness and conservativeness can be checked locally with respect to this

hypercover. In the affine case, the result follows from the flatness of the natural map
(
Xan

)alg →
X; see [Por19, Corollary 5.15] in the C-analytic case and [PY20b, Proposition 4.17] in the k-
analytic case.

This example covers a great variety of situations. Indeed, the following are special cases of
proper derived geometric stacks locally almost of finite presentation over k:

(1) proper schemes and algebraic spaces,

(2) proper Deligne–Mumford stacks,
(For instance, if X is a smooth and proper algebraic variety over k and Mg,n(X) denotes
the moduli stack of stable curves of genus g with n marked points, thenMg,n(X) is a proper
Deligne–Mumford stack. The same holds true for its natural derived enhancement.)

(3) higher classifying stacks K(G,n), where G is a compact (and abelian if n ⩾ 2) algebraic
group scheme.
(For the case of BG with G reductive, see Section 5.2.5.)

We would like to prove that a proper derived geometric stack locally almost of finite presen-
tation over k also satisfies the universal GAGA property. Notice that when X = Spec(k), saying
that X satisfies the GAGA property relative to U is equivalent to Lemma 4.6 (in the k-analytic
case) and to Theorem 4.8 (in the C-analytic case). Extending these results to a more general X
requires some effort. We start by dealing with the non-archimedean case, where the argument is
technically easier. However, we first state explicitly a lemma implicitly used in [Por19].

Lemma 5.4. Let X be a derived geometric stack locally almost of finite presentation over k. Let
F ,G ∈ Cohb(X). Then the canonical map

HomOX

(
F ,G

)an −→ HomOXan

(
Fan,Gan

)
is an equivalence.

Proof. This question is local on X, and we can therefore suppose that X is affine. Notice that
the map

γF ,G : HomOX
(F ,G)an −→ HomOXan

(
Fan,Gan

)
is defined for all F ,G ∈ QCoh(X). It is tautologically an equivalence when F = OX . From here,
it follows that it is an equivalence whenever F is perfect. When F ∈ Cohb(X) is arbitrary, we use
[Lur17, Proposition 7.2.4.11(5)] to write some shift of F as a geometric realization F ≃ |P•| of
a simplicial diagram P• such that each Pn is perfect. By shifting G if necessary, we may assume
that F itself is |P•|. We then have

HomOX
(F ,G) ≃ lim

[n]∈∆
HomOX

(Pn,G) .

On the other hand, since (−)an commutes with arbitrary colimits, we have a canonical equivalence
Fan ≃ |Pan

• |. As a consequence, we obtain the equivalence

HomOXan

(
Fan,Gan

)
≃ lim

[n]∈∆
HomOXan

(
Pan
n ,Gan

)
.

It is therefore enough to prove that the natural map(
lim

[n]∈∆
HomOX

(Pn,G)
)an
−→ lim

[n]∈∆
HomOX

(
Pn,G

)an
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is an equivalence. In order to check this, it is enough to check that for every integer m ∈ Z the
above map induces an isomorphism

πm

(
lim

[n]∈∆
HomOX

(Pn,G)
)an
−→ πm lim

[n]∈∆
HomOX

(Pn,G)an .

Since the analytification is t-exact, we are therefore reduced to checking that the map(
πm

(
lim

[n]∈∆
HomOX

(Pn,G)
))an

−→ πm

(
lim

[n]∈∆
HomOX

(Pn,G)an
)

is an isomorphism. Now observe that there exists an m′ ≫ 0 such that

πm

(
lim

[n]∈∆
HomOX

(Pn,G)
)
≃ πm

(
lim

[n]∈∆⩽m′
HomOX

(Pn,G)
)

and similarly

πm

(
lim

[n]∈∆
HomOX

(Pn,G)an
)
≃ πm

(
lim

[n]∈∆⩽m′
HomOX

(Pn,G)an
)
.

Since ∆⩽m is a finite category and (−)an is an exact functor between stable ∞-categories, we
deduce that the canonical map(

lim
[n]∈∆⩽m′

HomOX
(Pn,G)

)an
−→ lim

[n]∈∆⩽m′
HomOX

(Pn,G)an

is an equivalence. The conclusion follows.

Theorem 5.5. Let k be either the field of complex numbers or a non-archimedean field equipped
with a non-trivial valuation. Let X be a proper derived geometric stack locally almost of finite
presentation over k. Then X satisfies the universal GAGA property.

In particular, if X is as above, Proposition 5.2 gives us the following result.

Corollary 5.6. Let k be either the field of complex numbers or a non-archimedean field
equipped with a non-trivial valuation. Let X be a derived geometric stack locally almost of
finite presentation over k. Assume that

(1) the stack X is proper;

(2) the stack Map(X,Perfk) is locally geometric and locally almost of finite presentation.

Then the canonical map

µX : Map(X,Perfk)
an −→ AnMap

(
Xan,AnPerfk

)
is an equivalence.

Remark 5.7. In Corollary 5.6, the need for the geometricity and locally almost of finite pre-
sentation assumption as well on Map(X,Perfk) ultimately comes from Theorem 3.13. The
main theorem of [TV07] shows that this assumption is satisfied when X is a smooth and proper
scheme over k. More generally, this problem can be seen as a particular instance of the geometric-
ity of Map(X,Y ) for X,Y ∈ dStk. In [Lur12, Proposition 3.3.8] it is shown that Map(X,Y )
is geometric and locally almost of finite presentation whenever X is a proper and flat derived
algebraic space and Y is a derived Deligne–Mumford stack locally almost of finite presenta-
tion.

These results can be improved: we expect Map(X,Perfk) to be locally geometric whenever
X is proper and of finite tor-amplitude. The main tool to prove this theorem is the version of
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Artin–Lurie’s representability theorem for derived Artin stacks that will appear in [Lur18, Chap-
ter 27]. As usual, the critical assumptions to be verified are the integrability of Map(X,Perfk)
and the existence of its cotangent complex. The latter can easily be established by combining
properness and finite tor-amplitude following the method of [Lur11d, Proposition 3.3.23]. Notice
that we do not need the functor f+ to be defined on the whole QCoh(X ×Map(X,Perfk)) but
that it is enough to have it defined on Perf(X ×Map(X,Perfk)); see [PY21, Lemma 8.4] for a
similar situation where f+ can only be defined for perfect complexes. On the other hand, the in-
tegrability of Map(X,Perfk) can be reduced to the statement of the formal GAGA equivalence
for the stack X × Spec(R) → Spec(R), for R a local complete noetherian ring. This result can
be obtained by extension from the analogous statements for proper schemes over Spec(R) in the
same way as in [PY16].

Finally, let us remark that, in the absence of the strong version of Artin–Lurie’s representabil-
ity theorem, one can combine the main theorem of [Ols06] with the weak version of Lurie’s repre-
sentability theorem [Lur18, Theorem 18.1.0.2] to deduce the representability of Map(X,Perfk)
from the representability of its truncation. In order for this method to go through, one needs to
assume X to be proper and flat over k.

We now turn to the proof of the theorem.

Proof of Theorem 5.5. Let us first deal with the non-archimedean setting. In this case we have
to check that the analytification functor

(−)an : Perf(Spec(AV )×X) −→ Perf
(
V ×Xan

)
(5.8)

is an equivalence. We will in fact prove that the analytification functor

(−)an : Coh(X × Spec(AV )) −→ Coh
(
Xan × V

)
(5.9)

is an equivalence. Notice that the flatness of derived analytification proved in [PY20b, Proposi-
tion 4.17] together with [Lur18, Proposition 2.8.4.2(5)] implies that an F ∈ Coh(X × Spec(AV ))
is a perfect complex if and only if Fan belongs to Perf

(
Xan × V

)
. From this remark and the

claimed equivalence, it follows immediately that (5.8) is an equivalence as well.

We start by proving that the functor (5.9) is fully faithful. Recall that pushing forward along
the natural closed immersions

t0(X × Spec(AV )) ↪−−→ X × Spec(AV ) , t0
(
Xan × V

)
↪−−→ Xan × V

induces equivalences of abelian categories

Coh♡(X × Spec(AV )) ≃ Coh♡(t0(X × Spec(AV ))) , Coh♡(Xan × V ) ≃ Coh♡(t0(X
an × V )) .

Notice that t0(X×Spec(AV )) ≃ t0(X)×Spec(π0(AV )). Furthermore, π0(AV ) ≃ Γ
(
t0(V );Oalg

t0(V )

)
.

Applying [PY16, Theorem 7.1], we see that the diagram

Coh♡(t0(X)× Spec(π0(AV ))) Coh♡
(
t0
(
Xan

)
× t0(V )

)
Coh(π0(AV )) Coh(t0(V ))

(−)an

p∗ pan∗

46



Analytification of mapping stacks

commutes. Since the diagram

Coh(π0(AV )) Coh(t0(V ))

Coh(AV ) Coh(V )

commutes as well, we may form a cube with five commuting faces and deduce that its sixth face,
the diagram

Coh♡(X × Spec(AV )) Coh♡
(
Xan × V

)
Coh(AV ) Coh(V ) ,

q∗ qan∗

also commutes. From here, proceeding by induction on the cohomological amplitude as in the
proof of [Por19, Theorem 7.1], we deduce that the diagram (written in homological convention)

Coh−(X × Spec(AV )) Coh−(Xan × V )

Coh(AV ) Coh(V )

q∗ qan∗

commutes as well. Now let F ,G ∈ Cohb(X × Spec(AV )). Applying Lemma 5.4, we see that

HomX×Spec(AV )(F ,G)an ≃ HomXan×V

(
Fan,Gan

)
. (5.10)

Notice furthermore that the functor Coh(AV )→ Coh(V ) coincides with the equivalence provided
by [PY21, Theorem 3.4]. Combining the equivalence Coh(AV ) ≃ Coh(V ) with (5.10) and with
the commutativity of the above diagram, we deduce that the analytification functor restricts to
a fully faithful functor

Cohb(X × Spec(AV )) −→ Coh
(
Xan × V

)
.

From here, a second induction on the cohomological amplitude such as the one that can be found
in [Por19, Theorem 7.2] proves that the functor (5.9) is also fully faithful.

For essential surjectivity we first use [PY16, Theorem 7.4] to deduce that the analytification
induces an equivalence

Coh♡(X × Spec(AV )) ≃ Coh♡
(
Xan × V

)
.

Next we bootstrap on this using the full faithfulness of (5.9) to deduce that the analytification
functor on unbounded coherent sheaves is also essentially surjective. The conclusion follows.

We now turn to the C-analytic situation. In this case we have to prove that for every compact
Stein subset K ⊂ U , the morphism

“colim”
K⊂V⊂U

Perf(X × Spec(AV )) −→ “colim”
K⊂V⊂U

Perf
(
Xan × V

)
is an equivalence in Ind

(
Catst,⊗∞

)
. Just as in the non-archimedean setting, we prove below that

actually the map

“colim”
K⊂V⊂U

Coh(X × Spec(AV )) −→ “colim”
K⊂V⊂U

Coh
(
Xan × V

)
(5.11)

is an equivalence, where the two colimits range over the open Stein neighbourhoods ofK inside U .
Notice that when X = Spec(k), this is exactly the result proven in Theorem 4.13.
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In order to prove that the functor (5.11) is an equivalence, we will need the following two
claims, which will be proved below:

(1) For every open Stein neighbourhood V of K in U , the analytification map

Coh(X × Spec(AV )) −→ Coh
(
Xan × V

)
is fully faithful (see Proposition 5.13 below).

(2) Let W ⋐ V ⋐ U be two relatively compact Stein neighbourhoods of K inside U . Then the
map

Coh
(
Xan × V

)
−→ Coh

(
Xan ×W

)
factors through Coh(X × Spec(AW ))→ Coh

(
Xan ×W

)
(see Proposition 5.15 below).

We can therefore promote the functors of assertion (2) to a morphism

“colim”
K⊂V⊂U

Coh
(
Xan × V

)
−→ “colim”

K⊂V⊂U
Coh(X × Spec(AV )) .

It is easily checked that this forms an equivalence together with the functor (5.11).

To prove the claims, we need the following preliminary result.

Lemma 5.12. Let X be a proper derived geometric C-stack. Let U ∈ dStnC be a derived Stein
space. Write AU := Γ(U ;OU ), and let pU : X × Spec(AU ) → Spec(AU ) and panU : Xan × U → U
be the two canonical projections. Then the diagram (written in homological convention)

Coh−(X × Spec(AU )) Coh−
(
Xan × U

)
Coh−(Spec(AU )) Coh−(U)

pU∗

ε∗X,U

panU∗

ε∗U

canonically commutes. Here ε∗U denotes the functor introduced in Section 4.2.

Proof. Proceeding by induction on the cohomological amplitude as in the proof of [Por19, The-
orem 7.1], we see that it is enough to prove that the diagram

Coh♡(X × Spec(AU )) Coh♡
(
Xan × U

)
Coh−(Spec(AU )) Coh−(U)

pU∗

ε∗X,U

panU∗

ε∗U

commutes.

We first deal with the case where X is a proper derived C-scheme. Fix an object F ∈
Coh♡(X × Spec(AU )). In this case, the Čech complex computing both pU∗(F) and panU∗(Fan) is
cohomologically bounded. As Proposition 4.5 shows that ε∗U is t-exact, we deduce that ε∗U (pU∗(F))
is also cohomologically bounded. We are therefore left to check that the canonical map

γF : ε∗U (pU∗(F)) −→ panU∗
(
Fan

)
between objects in Cohb(U) is an equivalence. Let G := fib(γF ). Equivalently, we have to prove
that G ≃ 0. Since G is cohomologically bounded, the cohomological Nakayama’s lemma implies
that it is enough to check that for every closed point x : Sp(C) → U , one has x∗G ≃ 0. On the

48



Analytification of mapping stacks

other hand, the derived base change and its analytic counterpart8 imply that the two diagrams

Coh+(X × Spec(AU )) Coh+(X)

Coh+(AU ) Coh+(C)

pU∗

(idX×x)∗

p∗

x∗

and

Coh+
(
Xan × U

)
Coh+

(
Xan

)
Coh+(U) Coh+(C)

panU∗

(idXan×x)∗

pan∗

x∗

are commutative. In this way, we can reduce to the case where U = Sp(C), and in this case the
statement follows from the equivalences

Coh♡(X × Spec(AU )) ≃ Coh♡(t0(X)× Spec(π0(AU ))) ,

Coh♡
(
Xan × U

)
≃ Coh♡(t0(X)an × t0(U))

and [PY16, Theorem 7.1] (in fact, the classical GAGA theorem that can be found in [Gro63,
Exposé XII, Théorème 4.4] is enough for this step).

At this point, we proceed by induction on the geometric level of X. We notice that the same
proof as in [PY16, Theorem 7.1] applies. The reader should be wary that in this case too, the
noetherian induction has to be performed on X (and not on X × Spec(AU )). The reader should
also be aware that in loc. cit. the cohomological convention was used, while in this paper we are
following the homological one.

Proposition 5.13. Let X be a proper derived geometric C-stack. Let U ∈ dStnC be a derived
Stein space. Then the analytification functor

Coh(X × Spec(AU )) −→ Coh
(
Xan × U

)
is fully faithful.

Proof. Fix F ,G ∈ Coh(X × Spec(AU )). We have to prove that the natural morphism

ψF ,G : MapstX×Spec(AU )(F ,G) −→ MapstXan×U

(
Fan,Gan

)
is an equivalence. Let p : X × Spec(AU ) → Spec(C) and pan : Xan × U → Sp(C) be the two
canonical maps to the point. It follows from the definitions that we have natural equivalences

MapstX×Spec(AU )(F ,G) ≃ τ⩾0p∗HomX×Spec(AU )(F ,G) ,

MapstXan×U

(
Fan,Gan

)
≃ τ⩾0p

an
∗ HomXan×U

(
Fan,Gan

)
.

If F ,G ∈ Cohb(X × Spec(AU )), then the same argument as given in Lemma 5.4 shows that the
canonical map

ζF ,G : HomX×Spec(AU )(F ,G)an −→ HomXan×U

(
Fan,Gan

)
is an equivalence. Moreover, in this case HomX×Spec(AU )(F ,G) belongs to Coh−(X ×Spec(AU )),
and therefore we can use Lemma 5.12 to deduce that the canonical map

ε∗U
(
pU∗

(
HomX×Spec(AU )(F ,G)

))
−→ panU∗

(
HomX×Spec(AU )(F ,G)an

)
is an equivalence. Composing with the equivalence ζF ,G , applying the global section functor
Γ(U ;−) and using Proposition 4.5(4), we deduce that the canonical map

p∗HomX×Spec(AU )(F ,G) −→ pan∗ HomXan×U

(
Fan,Gan

)
8Since x : Sp(C) ↪→ U is a closed immersion, the analytic base change follows from the unramifiedness of Tan(C).
This can be proved as in [PY21, Lemma 6.4]; the key ingredients in the derived setting are [Lur11c, Proposi-
tions 11.12(3) and 12.10].
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is an equivalence. Therefore, the conclusion follows in the case where F and G are (locally)
cohomologically bounded. At this point, the argument given in [Por19, proof of Theorem 7.2]
shows that the map ψF ,G is an equivalence whenever F ,G belong to Coh(X).

For later use we record the following useful consequence.

Corollary 5.14. Let X be a proper derived geometric C-stack, and let j : Xred → X be the
canonical map. Let U ∈ dStC be a derived affinoid. Then for F ∈ Coh

(
U ×Xan

)
the following

conditions are equivalent:

(1) The coherent sheaf F is algebraizable; that is, it belongs to the essential image of the functor
Coh(Spec(AU )×X)→ Coh

(
U ×Xan

)
.

(2) The discrete sheaf Hi(F) is algebraizable for every i ∈ Z.

If furthermore F ∈ Coh+
(
U ×Xan

)
, then the above conditions are equivalent to the following:

(3) The pullback (idU × jan)∗F ∈ Coh
(
U ×Xan

red

)
is algebraizable.

Proof. Since the analytification functor (−)an : Coh(Spec(AU )×X)→ Coh
(
U ×Xan

)
is t-exact,

it commutes with both the limit and the colimit of the Postnikov tower. This shows immediately
that F is algebraizable if and only if for every n,m ∈ Z the sheaf τ⩽nτ⩾m(F) is algebraizable.
Moreover, Proposition 5.13 shows that this functor is also fully faithful. A simple induction
on the number of non-vanishing cohomology groups therefore implies the equivalence between
conditions (1) and (2).

Now assume that F ∈ Coh+(U ×Xan). Then the implication (1) ⇒ (3) is clear. Let us prove
that condition (3) implies condition (2). Since F is eventually connective, we can choose the
minimum integer i such that Hi(F) is non-zero. Using the fibre sequence

τ⩽i+1F −→ F −→ Hi(F) ,

we see that it is enough to prove that Hi(F) is algebraizable. We can furthermore replace both
U and X with their truncations and therefore assume that they are underived. Let J be the
nilradical ideal sheaf of X, let J an be its analytification, and let J an

U be pullback of J an along
U ×Xan → Xan. Since X is proper, there exists an integer n such that J n = 0. We now observe
that

Hi(F)/J an
U Hi(F) ≃ L0

(
idU × jan

)∗
Hi(F) ≃ Hi

((
idU × jan

)∗F) .
This implies that Hi(F)/J an

U is algebraizable. Proceeding by induction on m as in [PY16, The-
orem 5.13], we see that Hi(F)/

(
J an
U

)m
Hi(F) is algebraizable for every m ⩾ 1. Taking m = n we

conclude that Hi(F) is algebraizable, thus completing the proof.

At this point the only missing piece needed for the proof of Theorem 5.5 is the following.

Proposition 5.15. Let X be a proper derived geometric C-stack. Let U ∈ dStnC be a derived
Stein space, and let W ⋐ V ⋐ U be a nested sequence of relatively compact open Stein subsets
of U . Then there exists a functor Coh(Xan × U)→ Coh(X × Spec(AW )) making the diagram

Coh(X × Spec(AW ))

Coh
(
Xan × U

)
Coh

(
Xan ×W

)(−)an

commutative.
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Proof. Using Corollary 5.14, we see that it is enough to prove the same statement at the level
of hearts. Using Proposition 5.13, we see that the relative analytification functor

(−)an : Coh♡(X × Spec(AW )) −→ Coh♡
(
Xan ×W

)
(5.16)

is fully faithful. Therefore, it is enough to prove that the restriction functor

Coh♡
(
Xan × U

)
−→ Coh♡

(
Xan ×W

)
factors through the essential image of (−)an.

We first deal with the case where X is a scheme. Notice that, using the equivalences

Coh♡(X × Spec(AU )) ≃ Coh♡(t0(X)× Spec(π0(AU ))) ,

Coh♡
(
Xan × U

)
≃ Coh♡

(
t0
(
X
)an × t0(U)

)
,

we can assume that both X and U (and hence V and W ) are underived. Under this hypothesis,
we proceed by noetherian induction on the dimension of X. Using Chow’s lemma as in [Gro63,
Exposé XII, Théorème 4.4], we are readily reduced to the case of projective space, X = Pn

C.
Write Pn

C :=
(
Pn
C
)an

. Let

pU : Pn
C × Spec(AU ) −→ Spec(AU ) , panU : Pn

C × U−→ U ,

qU : Pn
C × Spec(AU ) −→ Pn

C , qanU : Pn
C × U−→ Pn

C

be the natural projections. For m ∈ Z we write

OPn
C×Spec(AU )(m) := q∗UOPn

C
(m) , OPn

C×U (m) := qan∗U OPn
C
(m) .

Given F ∈ Coh♡
(
Pn

C × U
)
, we consider the canonical map

ϕm : G := L0pan∗U R0panU∗(F(−m))⊗OPn
C×U (m) −→ F .

For every point x ∈ V there is an integer mx ∈ Z such that for m ⩾ mx the pullback of this
morphism along idPn

C
× x : Pn

C → Pn
C × U becomes surjective. As both G and F are coherent,

Nakayama’s lemma implies that there exists a neighbourhood Ux of x such that for m ⩾ mu the
map ϕm becomes surjective when restricted to Ux. As V is compact, we can therefore find an
open Stein subset U ′ of U containing V and an integer m such that the restriction of ϕm to U ′ is
surjective. In particular, the restriction of ϕm to V is surjective. Repeating the same reasoning
for the kernel of ϕ on U ′, we find a second open Stein subset U ′′ of U containing V such that
F|U ′′ admits a presentation of the form

H f−→ G −→ F|U ′′ −→ 0 ,

where H and G can be written as

H ≃ L0pan∗U ′′ (H0)⊗OPn
C×U ′′(m2) , G ≃ L0pan∗U ′′ (G0)⊗OPn

C×U ′′(m1)

for H0,G0 ∈ Coh♡(U ′′) and m1,m2 ≫ 0. In particular, the same remains true after restricting

to V . Using Theorem 4.13, we see thatH0|W , G0|W come from objectsHalg
0 and Galg0 in Coh♡(AW )

via the functor ε∗W . Since we already argued that the functor (5.16) is fully faithful, we can find
a map

falg : p∗W
(
Halg

0

)
⊗OPn

C×Spec(AW )(m2) −→ p∗W
(
Galg0

)
⊗OPn

C×Spec(AW )(m1)

whose analytification coincides with the map f : H → G. Set Falg := coker
(
falg

)
. Then we have(

Falg
)an≃ F ; that is, F belongs to the essential image of the analytification functor. At this

point the extension to a generic proper geometric stack X goes as in [PY16, Theorem 7.4].

51



J. Holstein and M. Porta

5.2 More examples

Building on Theorem 5.5, we can prove that a number of different stacks satisfy the universal
GAGA property. We start by discussing the case of formal completions. Next we study three
stacks coming from Hodge theory, the de Rham, Betti and Dolbeault stacks. Although we briefly
recall their definitions below, we refer the reader to [PTVV13, § 2.1] for a more thorough discus-
sion. Finally, we consider the case of BG where G is a complex reductive algebraic group.

5.2.1 Formal completions. Let X be a derived geometric stack locally almost of finite pre-
sentation over k, and let Y ↪→ X be a closed immersion. We also suppose that Y is locally almost
of finite presentation.

Definition 5.17. Let Nil/X(Y ) be the full subcategory of (dStk)Yred//X spanned by morphisms
Yred → Z → X, where Z is a derived geometric stack locally almost of finite presentation and
the map Yred → Z induces an equivalence Yred ≃ Zred.

Definition 5.18. Let X, Y be derived geometric stacks locally almost of finite presentation
over k, and let i : Y ↪→ X be a closed immersion. We define the formal completion of X along Y
as the colimit

X∧
Y := colim

Z∈Nil/X(Y )
Z .

The same definitions can be applied in the analytic setting. We have the following global
analogue of [Por19, Proposition 8.2].

Lemma 5.19. The analytification functor induces an equivalence of ∞-categories

(−)an : Nil/X(Y ) ≃ Nil/Xan

(
Y an

)
.

Proof. We first remark that for every derived geometric stack Z locally almost of finite presen-
tation over k, the canonical map

(Zred)
an −→

(
Zan

)
red

is an equivalence. This implies that the analytification functor induces a well-defined map

(−)an : Nil/X(Y ) −→ Nil/Xan

(
Y an

)
.

Let U• be an affine hypercover of X, and let Y• := Y ×X U•. Then for any [n] ∈ ∆ the map
Yn → Un is a closed immersion, and in particular Yn is an affine derived scheme almost of finite
presentation. We have canonical equivalences

Nil/X(Y ) ≃ lim
∆

Nil/U•(Y•) , Nil/Xan

(
Y an

)
≃ lim

∆
Nil/Uan

•

(
Y an
•

)
.

We are therefore reduced to the case where X itself is affine.

We first prove that it is fully faithful. Let Z, T ∈ Nil/Y (X). Since X is affine, we have

MapY an
red//X

an

(
Zan, T an

)
≃ Map(Y an

red)
alg//X

((
Zan

)alg
, T

)
.

Now fix T ∈ Nil/Y (X), and consider the full subcategory C of Nil/X(Y ) spanned by those Z for
which the canonical map

MapYred//X
(Z, T ) −→ Map(Yred)alg//X

((
Zan

)alg
, T

)
is an equivalence. We observe that
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(1) the object Yred belongs to C;
(2) the category C is closed under colimits in Nil/X(Y ).

Proceeding by induction, we are therefore left to check that if Z ∈ C and M ∈ Coh⩾1(Z), then
Z[M ] ∈ C. This follows at once from [PY20b, Theorem 5.21]. This shows that the functor is fully
faithful. For essential surjectivity recall from [Por19, Proposition 8.1] that a derived geometric
analytic stack Z is algebraizable if and only if t0(Z) is algebraizable. Since t0(Z) is algebraizable
if and only if t0(Z)red = Zred is algebraizable, we conclude that the above functor is essentially
surjective.

Corollary 5.20. Let X, Y be derived geometric stacks locally almost of finite presentation
over k. The canonical morphism (

X∧
Y

)an −→ (
Xan

Y an

)∧
is an equivalence.

Proof. This follows from the fact that (−)an commutes with colimits by construction and from
Lemma 5.19.

Proposition 5.21. Let X, Y be derived geometric stacks locally almost of finite presentation
over k. Let U ∈ dAfdk be a derived k-affinoid (respectively, Stein) space. The canonical map

(−)an : QCoh
(
Spec(AU )×X∧

Y

)
−→ OU×(X∧

Y )an-Mod (5.22)

is conservative and t-exact.

Proof. For every Z ∈ Nil/X(Y ) we let

jZ : Z −→ X∧
Y , jZan : Zan −→ (XY )

∧

be the two canonical maps. The morphisms

j∗Z : QCoh
(
Spec(AU )×X∧

Y

)
−→ QCoh(Spec(AU )× Z) ,

j∗Zan : OU×(X∧
Y )an-Mod −→ OU×Zan-Mod

are jointly conservative as Z varies in Nil/X(Y ). Since Z is a derived geometric stack, Example 5.3
implies that the map

(−)an : QCoh(Spec(AU )× Z) −→ OU×Zan-Mod

is conservative. As

QCoh
(
Spec(AU )×X∧

Y

)
≃ lim

Z∈Nil/X(Y )
QCoh(Spec(AU )× Z) ,

OU×(X∧
Y )an-Mod ≃ lim

Z∈Nil/X(Y )
OU×Zan-Mod ,

it follows that (5.22) is conservative.

It is also clear that the functor (5.22) is left t-exact. Now let F ∈ QCoh(Spec(AU )×X∧
Y )

⩽0.
We have to prove that for every G ∈ OU×(X∧

Y )an-Mod⩾1 we have

MapOU×(X∧
Y

)an -Mod

(
G,Fan

)
≃ 0 .

By definition, we have

MapOU×(X∧
Y

)an -Mod

(
G,Fan

)
≃ lim

Z∈Nil/X(Y )
MapOU×Zan

(
j∗ZanG, j∗ZanFan

)
.
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However, j∗ZanFan ≃
(
j∗ZF

)an
and the analytification functor

(−)an : QCoh(Spec(AU )× Z) −→ OU×Zan-Mod

is t-exact. Since in this case j∗ZanG ∈ OU×Zan-Mod⩾1 by the definition of the t-structure on
OU×(X∧

Y )an-Mod, the conclusion follows.

Proposition 5.23. Let X, Y be derived geometric stacks locally almost of finite presentation
over k. Suppose furthermore that Y is proper. Then the formal completion X∧

Y satisfies the
universal GAGA property.

Proof. Since the analytification is defined as a left Kan extension, we have a natural equivalence(
X∧

Y

)an ≃ (
Xan

)∧
Y an .

We have

Perf
(
X∧

Y × Spec(AU )
)
≃ lim

Z→X
Perf

(
Z × Spec(AU )

)
and similarly

Perf
((
Xan

)∧
Y an × U

)
≃ lim

Z→X
Perf

(
Zan × U

)
.

Notice that each Z is still a proper derived geometric stack locally almost of finite presentation.
In the non-archimedean setting, Theorem 5.5 shows that the analytification functor

Perf(Z × Spec(AU )) −→ Perf
(
Zan × U

)
is an equivalence. In the C-analytic case as always Theorem 5.5 shows that for every compact
Stein subset K ⊂ U and every open Stein neighbourhood V of K, the functor

Perf(Z × Spec(AV )) −→ Perf
(
Zan × V

)
is fully faithful. In particular, we obtain that

Perf
(
X∧

Y × Spec(AU )
)
−→ Perf

((
Xan

)∧
Y an × U

)
is fully faithful as well. In order to prove that

“colim”
K⊂V⊂U

Perf
(
X∧

Y × Spec(AV )
)
−→ “colim”

K⊂V⊂U
Perf

((
Xan

)∧
Y an × V

)
is an equivalence in Ind

(
Catst,⊗∞

)
, it is therefore enough to prove that given a relatively compact

Stein open neighbourhood W ⋐ V of K in V , the restriction functor

Perf
((
Xan

)∧
Y an × V

)
−→ Perf

((
Xan

)∧
Y an ×W

)
factors through Perf(X∧

Y × Spec(AW )). This fact follows directly from Proposition 5.15. Notice
that the choice of W does not depend on Z ∈ Nil/X(Y ).

5.2.2 De Rham stacks. The de Rham stack can be defined in both the algebraic and analytic
setting as follows. Let

j : Affred
k −→ dAffk

be the natural inclusion. This is a continuous and cocontinuous morphism of sites with respect
to the étale topology on both sides. In particular, the functor

js : dStk −→ St
(
Affred

k , τét
)

admits both a left adjoint js and a right adjoint sj. We set

(−)dR := sj ◦ js , (−)red := js ◦ js .
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It can be shown that when X = Spec(A), we have Xred ≃ Spec(π0(A)red), while it is always true
that

XdR(Spec(A)) ≃ X(Spec(π0(A))red) .

The same definitions can be carried over in the analytic setting, using Afdredk instead of Affred
k .

See [Por17b, § 3] for the C-analytic case.

Lemma 5.24. Let X ∈ dStafpk be a derived stack locally almost of finite presentation. Then there
is a canonical map (

XdR

)an −→ (
Xan

)
dR

which is furthermore an equivalence when X is a smooth geometric stack.

Proof. We observe that the analytification functor takes Affred,afp
k to Afdredk . In particular, the

natural transformation (−)an◦(−)dR → (−)dR◦(−)an is simply a Beck–Chevalley transformation.
When X is smooth and geometric, we observe that the maps

X −→ XdR , Xan −→ (Xan)dR

are effective epimorphisms. Their Čech nerves can be identified with the simplicial objects
(
X•)∧

X

and
((
Xan

)•)∧
Xan given by the formal completions of Xn and

(
Xan

)n
along the small diagonals.

The conclusion now follows from Corollary 5.20.

Proposition 5.25. Let X be a smooth geometric stack locally almost of finite presentation
over k. Then for any U ∈ dAfdk the canonical map

(−)an : QCoh(Spec(AU )×XdR) −→ OU×Xan
dR
-Mod

is conservative and t-exact.

Proof. Write X•/XdR and (Xan)•/Xan
dR to denote the Čech nerves of the maps X → XdR and

Xan → Xan
dR. Since X is smooth, we have

XdR ≃
∣∣X•/XdR

∣∣ , Xan
dR ≃

∣∣(Xan
)•
/Xan

dR

∣∣ .
In turn, this provides canonical equivalences

QCoh(Spec(AU )×XdR) ≃ lim
∆

QCoh(Spec(AU )× (X•/XdR)) ,

OU×Xan
dR
-Mod ≃ lim

∆
OU×((Xan)•/Xan

dR)-Mod .

The argument given in [Por17b, Proposition 5.1] shows that we can endow QCoh(Spec(AU )×
XdR) and OU×Xan

dR
-Mod with t-structures characterized by the fact that the forgetful functors

QCoh(Spec(AU )×XdR) −→ QCoh(Spec(AU )×X) , OU×Xan
dR
-Mod −→ OU×X -Mod

are t-exact. Moreover, the analytification functor is obtained by passing to the limit from the
analytification functors

(−)an : QCoh(Spec(AU )× (X•/XdR)) −→ OU×((Xan)•/Xan
dR)-Mod .

Since we can identify Xn/XdR and
(
Xan

)n
/Xan

dR with the formal completion of the small diagonal
in Xn and in

(
Xan

)n
, respectively, the conclusion now follows from Proposition 5.21.

Proposition 5.26. Let X be a smooth and proper geometric stack locally almost of finite
presentation over k. Then XdR satisfies the universal GAGA property.
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Proof. Let us first assume that k is a non-archimedean field. Then thanks to Proposition 5.25,
we only have to check that the canonical map

Perf(Spec(AU )×XdR) −→ Perf
(
U ×Xan

dR

)
is an equivalence for every U ∈ dAfdk. Let X

•/XdR and (Xan)•/Xan
dR be the Čech nerves of the

maps X → XdR and Xan → Xan
dR, respectively. Then

Perf(Spec(AU )×XdR) ≃ lim
∆

Perf(Spec(AU )× (X•/XdR))

and

Perf
(
U ×Xan

dR

)
≃ lim

∆
Perf

(
U ×

((
Xan

)•
/Xan

dR

))
.

The conclusion now follows directly from Proposition 5.23.

We now turn to the C-analytic case. Therefore, fix a compact Stein subset K ⊂ U . Since
we can identify both Xn/XdR and (Xan)n/Xan

dR with the formal completion of the small diag-
onal in Xn and in (Xan)n, we can use Proposition 5.23 to deduce that for every open Stein
neighbourhood V of K in U , the map

Perf
(
Spec(AV )×

(
Xn/XdR

))
−→ Perf

(
V ×

((
Xan

)n
/Xan

dR

))
is fully faithful. Therefore, to prove that the map

“colim”
K⊂V⊂U

Perf
(
Spec(AV )×XdR

)
−→ “colim”

K⊂V⊂U
Perf

(
V ×Xan

dR

)
is an equivalence in Ind

(
Catst,⊗∞

)
, it is enough to check that if W ⋐ V is a relatively compact

open Stein neighbourhood of K in V , then the restriction functor

Perf
(
V ×Xan

dR

)
−→ Perf

(
W ×Xan

dR

)
factors through Perf(Spec(AW )×Xan

dR). This follows immediately from Proposition 5.15.

5.2.3 Betti stacks. The canonical functor π : dAffafp
k → {∗} induces an adjunction

πs : dSt
afp
k S :πs .

Given a space K ∈ S, we set

KB := πs(K) .

We refer to KB as the Betti stack associated with B. In other words, KB is the sheafification
of the constant presheaf with values K. We similarly define Kan

B as the constant analytic stack
associated with K.

Lemma 5.27. There is a canonical equivalence (KB)
an ≃ Kan

B .

Proof. Let us denote by φ the derived analytification functor

φ := (−)an : dAffafp
k −→ dAnk .

Then φs(Kan
B ) ≃ πs(K) ≃ KB. Consequently,

MapdAnStk

((
KB

)an
,Kan

B

)
≃ Map

dStafpk

(
KB, φ

s
(
Kan

B

))
.

Therefore, the identity of KB corresponds to a canonical morphism (KB)
an → Kan

B . We now
observe that this morphism is an equivalence when K ≃ ∗, and moreover both (−)an and the
formation of Kan

B commute with arbitrary colimits. The conclusion therefore follows.
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Proposition 5.28. Let K ∈ S be a space. Then for any U ∈ dAfdk the Betti stack KB satisfies
the universal GAGA property.

Proof. We first observe that

QCoh(KB × Spec(AU )) ≃ Fun(K,AU -Mod) , OKan
B ×U -Mod ≃ Fun(K,OU -Mod) . (5.29)

Moreover, the analytification functor is simply obtained by composition with the analytification
functor

ε∗U : AU -Mod −→ OU -Mod .

As Proposition 4.5 guarantees that ε∗U is t-exact and conservative, we deduce that the same goes
for the functor (5.29). Next, in the non-archimedean case, the equivalence Perf(AU ) ≃ Perf(U)
immediately implies that the analytification

Perf(KB × Spec(AU )) −→ Perf
(
Kan

B × U
)

is an equivalence. In the C-analytic case, fix a compact Stein subset K ⊂ U . Then Proposi-
tion 5.13 implies that for each open Stein neighbourhood V of K inside U , the canonical map

Perf(KB × Spec(AV )) −→ Perf
(
Kan

B × V
)

is fully faithful, while Lemma 4.10 implies that if W ⋐ V is a relatively compact open Stein
neighbourhood of K inside V , then the restriction

Perf
(
Kan

B × V
)
−→ Perf

(
Kan

B ×W
)

factors through Perf(KB × Spec(AW )). This implies that the canonical map

“colim”
K⊂V⊂U

Perf(KB × Spec(AV )) −→ “colim”
K⊂V⊂U

Perf
(
Kan

B × V
)

is an equivalence.

5.2.4 Dolbeault stacks. The Dolbeault stack of a derived formal stackX appears in Simpson’s
non-abelian Hodge theory in dealing with Higgs bundles. It is defined as follows: let

TX := SpecX(SymOX
(LX))

be the derived tangent bundle to X. Let T̂X be the formal completion of TX along the zero
section. Using [Lur17, Proposition 4.2.2.9], we can convert the natural commutative group struc-
ture of TX relative to X (seen as an associative one) into a simplicial diagram T•X : ∆op →
(dStk)/X . Unwinding the definitions, we see that T•X can be identified with the n-fold product
TX ×X · · · ×X TX. The zero section X → TX allows us to promote T•X to a simplicial diagram

T•X : ∆op −→ (dStk)X//X .

Formal completion along the natural maps X → TnX provides us with a new simplicial object

T̂•X : ∆op −→ (dStk)/X .

Definition 5.30. The Dolbeault stack of X is the geometric realization

XDol :=
∣∣T̂•X

∣∣ ∈ (dStk)/X .

The Dolbeault stack can be defined directly at the analytical level by the exact same proce-
dure. We have the following.
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Lemma 5.31. Let X be a derived geometric k-stack locally almost of finite presentation. Then
there is a natural equivalence (XDol)

an ≃ (Xan)Dol.

Proof. Combining the universal property of the analytification and of the cotangent complex,
we find a canonical comparison map

(LX)an −→ Lan
Xan .

We claim that this map is an equivalence. Since both sides satisfy smooth descent in X, it suffices
to check this when X is a derived affine almost of finite presentation. In this case the statement
directly follows from [PY20b, Theorem 5.21].

From here, the conclusion follows directly from Corollary 5.20 and from the fact that the
analytification functor (−)an : dStafpk → dAnStk commutes with finite limits and arbitrary colim-
its.

Proposition 5.32. Let X be a proper derived geometric k-stack. For any U ∈ dAfdk the
Dolbeault stack XDol satisfies the universal GAGA property.

Proof. Since the face maps in the simplicial diagram T̂•X are flat, we deduce directly from
Proposition 5.21 that the canonical map

QCoh(XDol × Spec(AU )) −→ OXan
Dol×U -Mod

is conservative and t-exact.

In the non-archimedean case, Proposition 5.23 implies that the analytification functor induces
an equivalence

Perf
(
T̂nX × Spec(AU )

)
≃ Perf

(
T̂nXan × U

)
for every U ∈ dAfdk and every n ⩾ 0. Therefore, we deduce that the canonical map

Perf
(
XDol × Spec(AU )

)
−→ Perf

(
Xan

Dol × U
)

is an equivalence as well. In the C-analytic case, we deduce from Proposition 5.23 that each map

Perf
(
T̂nX × Spec(AU )

)
−→ Perf

(
T̂nXan × U

)
is fully faithful, and therefore that for every U ∈ dStC the functor

Perf
(
XDol × Spec(AU )

)
−→ Perf

(
Xan

Dol × U
)

is fully faithful. Now let K ⊂ U be a compact Stein subset. It is enough to prove that if W ⋐ V
are two open Stein neighbourhoods of K inside U , with W relatively compact inside V , then the
canonical map

Perf
(
Xan

Dol × V
)
−→ Perf

(
Xan

Dol ×W
)

factors through Perf
(
XDol × Spec(AW )

)
. This follows once again from Proposition 5.15.

5.2.5 Classifying stack of a complex reductive group. In the previous sections we discussed
several examples of derived stacks satisfying the universal GAGA property. All the examples we
considered so far are consequences of the analysis carried out in order to prove Theorem 5.5. We
now consider a different kind of example.

Let G be a connected reductive group over C. Then BG is a smooth geometric stack, but it is
not proper in the sense of [PY16, Definition 4.8]. We nevertheless can prove the following result.

Proposition 5.33. If G is a connected reductive group over C, then BG satisfies the GAGA
property.
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Proof. Let us start by remarking that since the analytification functor commutes with colimits,
we have a canonical equivalence (BG)an ≃ B(Gan). We will therefore use the notation BGan since
no confusion can arise. Next, we observe that the argument given in Example 5.3 shows that the
canonical map

QCoh(BG) −→ OBGan-Mod

is t-exact and conservative. All we are left to check is therefore that the canonical functor

Perf(BG) −→ Perf
(
BGan

)
is an equivalence. We will prove more generally that the morphism

Coh(BG) −→ Coh
(
BGan

)
is an equivalence of stable∞-categories. Since both sides are equipped with complete t-structures
and the functor between them is t-exact, we are reduced to proving the following two statements:

(1) The analytification functor

Coh♡(BG) −→ Coh
(
BGan

)
is fully faithful.

(2) The functor

Coh♡(BG) −→ Coh♡
(
BGan

)
is essentially surjective.

Notice that the second statement is entirely classical and is, in fact, well known. In the case
where G is semi-simple, it is proven for instance in [Tay02, Corollary 15.8.7]. For tori it is well
known. Finally, a general reductive group G admits a finite cover by a product of a torus and
a semi-simple group, and from here it is straightforward to obtain the statement for G.

It is therefore enough to prove the first statement. Since we work over C, it follows from
[HR15] that QCoh(BG) is compactly generated and in particular that

QCoh(BG) ≃ D
(
QCoh♡(BG)

)
.

Since G is reductive, for M,N ∈ QCoh♡(BG) the mapping space MapQCoh(BG)(M,N) is dis-
crete and coincides with the hom set HomG(M,N). We let Man and Nan denote the analytic
representations of Gan associated with M and N . Since M and N are coherent, we have an
equivalence

HomG(M,N) ≃ HomGan

(
Man, Nan

)
≃ π0MapQCoh(BGan)

(
Man, Nan

)
,

which readily follows from [Tay02, Corollary 15.8.7]. In order to complete the proof, we have to
check that πiMapQCoh(BGan)

(
Man, Nan

)
≃ 0 for i ̸= 0. We denote by H

(
Gan

)
the category of

holomorphic representations of Gan on topological vector spaces with continuous Gan-invariant
maps between them. We now invoke the results of [HM66]. Since G is reductive, it has a maximal
compact subgroup, which is ample in the sense of [HM66]. Moreover, any finite-dimensional
representation of Gan is complete and locally convex. Therefore, [HM66, Proposition 2.3] implies
that Nan is holomorphically injective, and therefore that

HomGan

(
Man, Nan

)
≃ MapD(H(Gan))

(
Man, Nan

)
.

We are now reduced to proving that there is an equivalence

MapD(H(Gan))

(
Man, Nan

)
≃ MapOBGan-Mod

(
Man, Nan

)
.
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We will use the completed tensor product ⊗̂ of locally convex spaces. As we are working with
global sections over Stein spaces, the locally convex spaces are nuclear, see [Dem12, Proposi-
tion IX.5.18], and there is no distinction between projective and injective tensor product. In
particular, ⊗̂ preserves subspaces; see [Dem12, Proposition IX.5.6].

Let (Gan)• be the Čech nerve of the map p : Sp(C) → BGan. We can compute the Exts in
OBGan-Mod by means of the equivalence

OBGan-Mod ≃ lim
[n]∈∆

O(Gan)×n-Mod .

Write qn :
(
Gan

)×n → Sp(C) and pn :
(
Gan

)×n → BG for the standard projection maps. We have
canonical identifications pn ≃ p◦ qn. The cosimplicial object computing MapBGan(Man, Nan) has

MapCoh♡((Gan)×n)

(
p∗nM

an, p∗nN
an
)
≃ MapC

(
p∗Man, qn∗p

∗
nN

an
)

in degree n. As
(
Gan

)×n
is Stein and p∗Man and p∗Nan are globally finitely generated in the

sense of [PY16, Lemma 8.11], we have an equivalence

HomCoh((Gan)×n)

(
p∗nM

an, p∗nN
an
)
≃ Homcts

O((Gan)×n)

(
qn∗p

∗
nM

an, qn∗p
∗
nN

an
)
.

Here the superscript cts denotes the subset of continuous maps for the unique complete topology
on the global sections of a coherent sheaf over a Stein space. We further have the following
equivalence:

Homcts
O((Gan)×n)

(
qn∗p

∗
nM

an, qn∗p
∗
nN

an
)
≃ Homcts

C
(
p∗Man, p∗Nan ⊗̂O((Gan)×n)

)
.

We claim that there is a further isomorphism

Homcts
C
(
p∗Man, p∗Nan ⊗̂O

((
Gan

)×n)) ≃ HomH(Gan)

(
Man, Nan ⊗̂O

((
Gan

)×n+1))
.

This would follow if we could show that the forgetful functor from H
(
Gan

)
to topological vector

spaces has a right adjoint given by −⊗̂O
(
Gan

)
, equivalently that pushforward from the point

to BGan is given by −⊗̂O
(
Gan

)
. Unfortunately, this situation does not seem to be treated in the

literature and goes beyond the scope of this article. We will prove a weaker statement that is
sufficient for our purposes, using the fact that M is finite-dimensional.

Firstly, observe that HomH(Gan)

(
M,O

(
Gan

)) ∼= Hom(M,C). There is clearly an embedding
of the right-hand side into the left-hand side as O

(
Gan

)
contains the regular functions on G. But

this embedding is surjective as any G-equivariant map from M to O
(
Gan

)
is determined by the

image of a basis of M evaluated at the identity; that is, the space of such maps has dimension
dimM .

Now we consider HomH(Gan)

(
M,V ⊗̂O

(
Gan

))
, where we write V for the trivial G-representa-

tion N⊗̂O
(
Gan

)×n
. Any function from M factors through some Vi⊗̂O

(
Gan

)
, where Vi is a finite-

dimensional subspace of V . Thus we need to compute HomH(Gan)(M, colimVi⊗̂O(Gan)), where we
take the colimit over all finite-dimensional subspaces. Now Hom out ofM commutes with filtered
colimits over admissible maps, and we are reduced to showing that for V ′ finite-dimensional
HomH(Gan)

(
M,V ′ ⊗O

(
Gan

)) ∼= Hom(M,V ′), which readily follows from the case where V ′ is 1-
dimensional. Then HomH(Gan)

(
M, colimVi ⊗ O

(
Gan

)) ∼= Homcts
(
M, colimVi

) ∼= Homcts(M,V ).
This proves the claim.

Now we have a complex of holomorphic representations of Gan which computes cohomol-
ogy in H

(
Gan

)
. The complex

(
O
(
Gan

)⊗•+1 ⊗ N
)
is quasi-isomorphic to N by the usual bar

complex arguments, and by [HM66, Proposition 2.1], it is levelwise injective, thus injective as

it is bounded below. We note that the Gan-action on O
(
Gan

)⊗n+1
is on the last factor since
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(qn)∗p
∗
nN ∼= O

(
Gan

)⊗n ⊗N has the trivial Gan-action as p∗N forgets the Gan-action. This gives
HomH(Gan)

(
M,N⊗̂O

(
Gan

)×•+1) ≃ HomH(Gan)(M,N)

This shows that the Čech complex computation recovers the (trivial) holomorphic group
cohomology of Gan.

Remark 5.34. In the above example we used in an essential way that G is a reductive group
over the field of complex numbers. We do not know what happens if G is a reductive group over
a non-archimedean field, but it would be interesting to know if the same property holds.

6. Tannaka duality

In this section we prove the main theorem of this paper. Our goal is to find sufficient conditions
on a geometric derived stack Y and a (not necessarily geometric) derived stack X so that the
canonical morphism

MapdStk
(X,Y )an −→MapdAnStk

(
Xan, Y an

)
is an equivalence. When both X and Y are proper underived schemes, Serre’s GAGA theorem
and a simple graph argument imply that

HomSchk(X,Y ) ≃ HomAnk

(
Xan, Y an

)
.

The relative version of the GAGA theorem implies that the same holds true for the hom schemes.
Unfortunately, this argument breaks down when Y is no longer proper, or when Y is taken to
be a stack (in both cases, it is the graph argument which fails). The idea to fix this problem was
first introduced by Lurie [Lur04]. He allows X to be a proper Deligne–Mumford stack over C
and Y to be a geometric stack satisfying several conditions making Tannakian reconstruction
for Y possible. Lurie contents himself with proving that under these assumptions the canonical
map

MapStk(X,Y ) −→ MapAnStk

(
Xan, Y an

)
is an equivalence. Our goal is to generalize this result in several directions: firstly, we aim to prove
a relative version of the result; that is, we consider mapping stacks rather than just mapping
spaces. Secondly, we want to allow X to be a more general object than a Deligne–Mumford stack.
For instance, in Section 7 we will be interested in the situation where X is SdR for S a smooth
and proper k-scheme. Finally, we want to allow X, Y and the mapping stacks to be derived.

The general strategy for the proof of our main theorem is the same as the one employed
in [Lur04]. However, the technical tools used in [Lur04]d needed to be generalized and sharpened
in order to apply to the situations we are concerned with. These improved tools also form the
other main theorems of this paper. Notably, we are referring to Theorems 3.13, 4.15 and 5.5.

Throughout this section all∞-categories are assumed to be k-linear (in the sense of [GH15]),
and all functors are assumed to be k-linear. If C and D are two k-linear ∞-categories, we let
Fun(C,D) denote the ∞-category of k-linear and exact functors.

6.1 Analytification and Tannaka duality

We start this section by briefly reviewing the notion and the machinery of Tannaka duality. The
main references for the algebraic theory are [Lur11b] and [Lur18, § III.9]. Our goal is to study
how the Tannaka property interacts with the analytification functor. Recall that we have an
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∞-functor

Perfk : dAff
op
k −→ Catst,⊗∞

with values in stably symmetric monoidal ∞-categories that sends Spec(A) to the ∞-category
Perf(A), equipped with its canonical symmetric monoidal structure. We also have at our disposal
an ∞-functor

QCohk : dAff
op
k −→ Catst,⊗∞

sending Spec(A) to the ∞-category QCoh(A) ≃ A-Mod equipped with its natural symmetric
monoidal structure. Given stably symmetric monoidal ∞-categories C and D, we denote by
Fun⊗ex(C,D) the∞-category of symmetric monoidal exact functors from C to D. Recall that both
Perfk and QCohk satisfy étale descent. In particular, they extend to functors

Perfk,QCohk : dSt
op
k −→ Catst,⊗∞ ,

and in particular for every pair of derived stacks locally almost of finite presentation, X and Y ,
we obtain morphisms

P : MapdStk(X,Y ) −→ Fun⊗(Perf(Y ),Perf(X))

and

P̂ : MapdStk(X,Y ) −→ Fun⊗(QCoh(Y ),QCoh(X)) .

Definition 6.1. We say that a derived stack Y : dAffop
k → S is weakly Tannakian (or that Y

satisfies the weak Tannaka property) if it satisfies the following condition:

(1) For any derived stack X : dAffop
k → S, the ∞-functor

P̂ : MapdStk(X,Y ) −→ Fun⊗(QCoh(Y ),QCoh(X))

is fully faithful.

We say that a derived stack Y : dAffop
k → S is Tannakian (or that Y satisfies the Tannaka

property) if it is weakly Tannakian and it satisfies the following supplementary condition:

(2) The essential image of the ∞-functor P̂ consists of exact symmetric monoidal functors
QCoh(Y )→ QCoh(X) that commute with colimits and preserve both connective objects
and flat objects.

Notice that a symmetric monoidal functor F : QCoh(Y ) → QCoh(X) preserves dualizable
objects. As Perf(Y ) and Perf(X) coincide with the full subcategories of QCoh(Y ) and QCoh(X)
spanned exactly by dualizable objects, we conclude that each such functor gives rise to a functor
F : Perf(Y )→ Perf(X), which is again symmetric monoidal. This argument also shows that the
inclusion Perf(X) ↪→ QCoh(X) induces an equivalence

Fun⊗(Perf(Y ),Perf(X)) ∼−→ Fun⊗(Perf(Y ),QCoh(X)) .

Lemma 6.2. Suppose that QCoh(Y ) is compactly generated by perfect complexes; that is,
we have QCoh(Y ) ≃ Ind(Perf(Y )). Then Y is weakly Tannakian if and only if the functor
P : MapdStk(X,Y )→ Fun⊗(Perf(Y ),Perf(X)) is fully faithful.

Proof. Under the assumption QCoh(Y ) ≃ Ind(Perf(Y )), we have

Fun⊗(Perf(Y ),Perf(X)) ≃ Fun⊗(Perf(Y ),QCoh(X)) ≃ Fun⊗L (QCoh(Y ),QCoh(X)) ,

where the subscript L denotes the full subcategory spanned by those functors that commute with
arbitrary colimits. The conclusion follows.
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Example 6.3. Theorem 9.3.0.3 of [Lur18] guarantees that if k is a field of characteristic zero
and X is a geometric stack with affine diagonal, then it is Tannakian. Notice that the notion of
geometric stack in loc. cit. is different from the one used in this paper. See Remark 2.12.

Remark 6.4. In this section we do not need to assume k to be of characteristic zero. Neverthe-
less, since all known criteria to guarantee that a derived stack X is Tannakian in the sense of
Definition 6.1, it is likely that in order to apply our main theorem, Theorem 6.14, one needs to
assume characteristic zero. As our main applications take place in the C-analytic setting, this is
not an issue for us.

Definition 6.1 is difficult to export to the analytic setting. The main obstruction is that there
is no truly satisfactory notion of quasi-coherent sheaf in the analytic setting. (After the initial
version of this paper was completed, a major breakthrough was obtained in this direction by
Clausen and Scholze using the ∞-category of quasi-coherent liquid sheaves C(X,X); see [CS22,
Lecture VI].)

However, perfect complexes make perfect sense, and in particular for every pair of derived
analytic stacks X,Y : dAfdopk → S, we have a natural map

P : MapdAnStk
(X,Y ) −→ Fun⊗(Perf(Y ),Perf(X)) .

In virtue of Lemma 6.2, we might be tempted to use the map P to define at least the weak
Tannakian property in the analytic setting. However, this would still not be a satisfactory notion:
indeed, the condition QCoh(Y ) ≃ Ind(Perf(Y )) is a rather strong one, which in particular implies
that Perf(Y ) is a saturated stable ∞-category in the sense of [TV08a]. Theorem 1.1 in [TV08a]
implies that an analytic space X is algebraizable if and only if Perf(X) is saturated. In the case
where Y actually comes from analytification, we can prove the following result.

Theorem 6.5. Let Y ∈ dStafpk be a derived stack locally almost of finite presentation. Suppose
that

(1) the stable ∞-category QCoh(Y ) satisfies QCoh(Y ) ≃ Ind(Perf(Y ));

(2) Y is Tannakian.

Then for every X ∈ dAnStk the composition

MapdAnStk

(
X,Y an

) P−→ Fun⊗
(
Perf

(
Y an

)
,Perf(X)

)
−→ Fun⊗(Perf(Y ),Perf(X)) (6.6)

is fully faithful. Here the second map is the one induced by the analytification functor Perf(Y )→
Perf

(
Y an

)
.

Proof. We adapt the strategy of Proposition 3.14 in the current setting. Let us denote the
composite functor (6.6) by

τX,Y : MapdAnStk
(X,Y an) −→ Fun⊗(Perf(Y ),Perf(X)) .

This map is functorial in both X and Y . Notice that the left- and right-hand sides commute
separately with colimits in X ∈ dAnStk. We can therefore reduce to the case where X is a derived
k-affinoid (respectively, Stein) space to begin with. Introduce the presheaf

TY : dAfdopX −→ Cat∞

sending a map U → X to the ∞-category Fun⊗(Perf(Y ),Perf(U)). Notice that TY is in fact
a sheaf, and the maps τU,Y assemble into a natural transformation

τY : F s
X

(
Y an

)
−→ TY .
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Let τY denote the composition

τY : Gp
X(Y ) −→ Gs

X(Y )
αY−→ F s

X

(
Y an

) τY−→ TY ,

where αY is the map from Theorem 3.13. Now recall that the∞-topos underlying X has enough
points. Since full faithfulness can be tested on stalks and since Gs

X(Y ) is the sheafification
of Gp

X(Y ) (hence they have the same stalks), we are reduced to proving that τY is fully faithful.

We start dealing with the k-analytic case. Fix U ∈ dAfdX , and let AU := Γ(U ;Oalg
U ). Then,

unwinding the definitions, we have

Gp
X(Y )(U) ≃ MapdStk(Spec(AU ), Y ) .

Since Y is Tannakian and QCoh(Y ) ≃ Ind(Perf(Y )), the canonical map

P : MapdStk(Spec(AU ), Y ) −→ Fun⊗(Perf(Y ),Perf(AU ))

is fully faithful. On the other hand,

TY (U) ≃ Fun⊗(Perf(Y ),Perf(U)) .

Using Lemma 4.6, we see that the global section functor Γ(U ;−) induces an equivalence

Perf(U) ∼−→ Perf(AU ) ,

whence the full faithfulness of τY .

We now turn to the C-analytic case. Using the correspondence provided by Theorem 2.15, we
extend both Gp

X(Y ) and TY to compact subsets of X. We let once again τY denote the induced
natural transformation between them. Using Lemma 2.16 we see that it is enough to prove that
for every compact Stein subset K ⊂ X of X, the natural map

τY,(K)X : Gp
X(Y )((K)X) −→ TY ((K)X)

is fully faithful. Unravelling the definitions, we see that we have to prove that the functor

colim
K⊂U⊂X

MapdStk(Spec(AU ), Y ) −→ colim
K⊂U⊂X

Fun⊗(Perf(Y ),Perf(U)) (6.7)

is fully faithful. Here the colimit is taken over all Stein open neighbourhoods U of K inside X.
We start by dealing with the left-hand side. Since Y is Tannakian and QCoh(Y ) ≃ Ind(Perf(Y )),
we have fully faithful embeddings

MapdStk(Spec(AU ), Y ) ↪−−→ Fun⊗(Perf(Y ),Perf(AU )) .

Let Fun⊗ind denote the mapping space in the∞-category Ind(Catst,⊗∞ ). Then we have a tautological
equivalence

colim
K⊂U⊂X

Fun⊗(Perf(Y ),Perf(AU )) ≃ Fun⊗ind
(
Perf(Y ), “colim”

K⊂U⊂X
Perf(AU )

)
.

On the other hand, we also have

colim
K⊂U⊂X

Fun⊗(Perf(Y ),Perf(U)) ≃ Fun⊗ind
(
Perf(Y ), “colim”

K⊂U⊂X
Perf(U)

)
.

Notice that the functor Γ(K) of Theorem 4.13 induces an equivalence in Ind
(
Catst,⊗∞

)
Γ(K) : “colim”

K⊂U⊂X
Perf(U) ∼−→ “colim”

K⊂U⊂X
Perf(AU ) ,
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making the diagram

colimK⊂U⊂X MapdStC(Spec(AU ), Y ) colimK⊂U⊂X MapdAnStC

(
U, Y an

)
Fun⊗ind

(
Perf(Y ), “colim”K⊂U⊂X Perf(AU )

)
Fun⊗ind

(
Perf(Y ), “colim”K⊂U⊂X Perf(U)

)Γ(K)

commutative. Notice that the composition of the right vertical functor with the top horizontal
one coincides with (6.7). As the left vertical arrow is fully faithful and the bottom horizontal
one is an equivalence, we can therefore conclude that (6.7) is fully faithful, thus completing the
proof.

Corollary 6.8. Let Y ∈ dStafpk be a derived stack locally almost of finite presentation. Suppose
that

(1) the stable ∞-category QCoh(Y ) is compactly generated by perfect complexes; that is,
QCoh(Y ) ≃ Ind(Perf(Y ));

(2) Y satisfies the GAGA property (cf. Definition 5.1(1));

(3) Y is Tannakian.

Then for every derived analytic stack X : dAfdopk → S, the functor

P : MapdAnStk

(
X,Y an

)
−→ Fun⊗

(
Perf

(
Y an

)
,Perf(X)

)
is fully faithful.

Proof. Since Y satisfies the GAGA property, we see that the analytification functor Perf(Y )→
Perf

(
Y an

)
is an equivalence of ∞-categories. In particular, we are reduced to checking that the

composition

MapdAnStk

(
X,Y an

) P−→ Fun⊗
(
Perf

(
Y an

)
,Perf(X)

)
−→ Fun⊗(Perf(Y ),Perf(X))

is fully faithful. We have shown in Theorem 6.5 that this is true even without the assumption
that Y satisfies the GAGA property.

In the proof of Theorem 6.14, we will need some control over the essential image of the functor

MapdAnStk
(X,Y an) −→ Fun⊗(Perf(Y ),Perf(X))

that we just proved is fully faithful. Already in the algebraic case, it is unreasonable to ex-
pect a characterization of the essential image (unless more restrictive hypotheses are formulated
on Y ; see [Bha16, Theorem 2.1]). Under the assumption QCoh(Y ) ≃ Ind(Perf(Y )), we have an
equivalence

Fun⊗L (Perf(Y ),OX -Mod) ≃ Fun⊗L (QCoh(Y ),OX -Mod) .

It is then much more reasonable to expect to be able to characterize the essential image of the
fully faithful functor

MapdAnStk
(X,Y an) −→ Fun⊗L (QCoh(Y ),OX -Mod) ,

As usual, there is a difference between the k-analytic case and the C-analytic one: in the former,
we do obtain a characterization of the above functor whenever X ∈ dAfdk; in the latter, however,
we are forced to replace X with a compact Stein subspace.

We start with the following definition.
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Definition 6.9. Let X ∈ dAfdk be a derived k-affinoid (respectively, Stein) space. We say that
an object F ∈ OX -Mod is flat if for every G ∈ Coh♡(X) the tensor product F ⊗ G belongs to
OX -Mod♡.

Lemma 6.10. Let Y ∈ dStafpk be a derived stack locally almost of finite presentation. Suppose
that Y satisfies the same assumptions as in Theorem 6.5 and that it is moreover geometric. Then
for every derived k-affinoid (respectively, Stein) space X ∈ dAfdk, the essential image of the
functor

MapdAnStk

(
X,Y an

)
−→ Fun⊗L (QCoh(Y ),OX -Mod)

factors through the full subcategory spanned by those functors F ∈ Fun⊗L (QCoh(Y ),OX -Mod)
that preserve flat objects and connective objects and take the full subcategory Perf(Y ) of
QCoh(Y ) to Perf(X).

Proof. Let f : X → Y an be a given morphism. Then its image F in Fun⊗L (QCoh(Y ),OX -Mod)
is obtained by extending by colimits along Perf(Y ) ↪→ QCoh(Y ) the composition

Perf(Y ) −→ Perf
(
Y an

) f∗
−→ Perf(X) −→ OX -Mod .

Since Perf(Y ) ↪→ QCoh(Y ) is fully faithful, we see that F takes Perf(Y ) to Perf(X) by construc-
tion.

For the other statements we proceed by induction on the geometric level of Y . First suppose
that Y = Spec(A) is affine. Let F ∈ QCoh(Y ) be a flat object. In this case Lazard’s theorem
[Lur17, Theorem 7.2.2.15(1)] implies that F can be written as filtered colimit of finitely generated
free A-modules. In particular, f∗(F) can also be written as filtered colimit of free OX -modules,
and hence it is flat. Similarly, [Lur17, Proposition 1.4.4.11] implies that QCoh(Y )⩾0 coincides with
the smallest full subcategory of QCoh(Y ) closed under colimits and extensions and containing A.
Since the functor f∗ : QCoh(Y ) → OX -Mod is exact and commutes with filtered colimits, it
commutes with arbitrary colimits. The conclusion now follows from the fact that connective
objects in OX -Mod are stable under colimits.

Now assume that the statements have been proven for n-geometric derived stacks, and let Y
be an (n+ 1)-geometric derived stack. Let u : U → Y be a smooth atlas, and let U• be its Čech
nerve. Then ∣∣Uan

•
∣∣ ≃ Y an .

Given f : X → Y an, we therefore see that, up to a cover V → X, we can suppose that f factors
through Uan:

Uan

V X Y an .

uan

g

f

Since we can check that f∗ commutes with flat objects and connective objects locally on X,
we can assume from the very beginning that f factors as f ≃ uan ◦ g. The inductive hypothesis
guarantees that g∗ commutes with flat objects and connective objects. The same is true for (uan)∗

because u is a smooth atlas and the analytification functor QCoh(U) → OUan-Mod commutes
with flat objects and connective objects. Therefore, the conclusion follows.

Our goal is to prove that the converse to Lemma 6.10 holds. We start by dealing with the
non-archimedean case, where the converse holds literally.
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Proposition 6.11. Let k be a non-archimedean field, and let Y ∈ dStafpk be a derived k-
stack locally almost of finite presentation. Suppose that Y satisfies the same assumptions as
in Theorem 6.5. Then for every derived k-affinoid space X ∈ dAfdk, the essential image of the
functor

MapdAnStk

(
X,Y an

)
−→ Fun⊗L (QCoh(Y ),OX -Mod)

contains all those functors that preserve flat objects and connective objects and take the full
subcategory Perf(Y ) of QCoh(Y ) to Perf(X).

Proof. Let A := Γ
(
X;Oalg

X

)
. Lemma 4.6 provides us with a canonical equivalence Perf(X) ≃

Perf(A). Let F ∈ Fun⊗L (QCoh(Y ),OX -Mod) be a functor satisfying the conditions in the state-
ment of the proposition. By assumption, F restricts to a symmetric monoidal functor F : Perf(Y )
→ Perf(X). Using the above equivalence, we can redefine F as a functor F : Perf(Y )→ Perf(A).
Consider the extension F̃ : QCoh(Y ) → A-Mod. The functor ε∗X : A-Mod → OX -Mod which we
defined in Section 4.2 commutes with filtered colimits. As a consequence, we can identify the
composition

QCoh(Y )
F̃−→ A-Mod

ε∗X−→ OX -Mod

with the original functor F . Since ε∗X is conservative, strong monoidal, t-exact and preserves flat

and coherent objects, we see that F̃ preserves flat objects and connective objects. Therefore, we
can use the Tannakian property of Y to see that F̃ comes from a map f̃ : Spec(A) → Y . Let
f : X → Y an be the image of f̃ via the canonical map

MapdStk(Spec(A), Y ) = Gp
X(Y )(X) −→ F s

X

(
Y an

)
= MapdAnStk

(
X,Y an

)
.

Since the diagram

MapdStk(Spec(A), Y ) MapdAnStk

(
X,Y an

)
Fun⊗(Perf(Y ),Perf(A)) Fun⊗(Perf(Y ),Perf(X))

Fun⊗L (QCoh(Y ), A-Mod) Fun⊗L (QCoh(Y ),OX -Mod)

commutes, the conclusion follows.

Proposition 6.12. Let Y ∈ dStafpC be a derived stack locally almost of finite presentation
satisfying the same assumptions as in Theorem 6.5. Let X ∈ dAfdC be a derived Stein space,
and let V ⋐ U ⋐ X be a nested sequence of relatively compact Stein subspaces. Let F ∈
Fun⊗L (QCoh(Y ),OX -Mod) be a functor preserving perfect complexes, flat objects and connective
objects. Then there exists a map f : V → Y an so that the diagram

QCoh(Y ) OX -Mod

OY an-Mod OV -Mod

F

f∗

commutes.

Proof. Since F : QCoh(Y ) → OX -Mod preserves perfect complexes, it restricts to a functor
Perf(Y ) → Perf(X). Furthermore, since QCoh(Y ) ≃ Ind(Perf(Y )) by assumption, we see that
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the extension of

Perf(Y ) −→ Perf(X) −→ OX -Mod

along Perf(Y ) ↪→ QCoh(Y ) coincides with F . Let AX := Γ
(
X;Oalg

X

)
, AU := Γ

(
U ;Oalg

U

)
and

AV := Γ
(
V ;Oalg

V

)
. Using Lemma 4.10, we obtain a well-defined functor

F : Perf(Y ) −→ Perf(X) −→ Perf(AU ) .

Consider the functor F̃ : QCoh(Y ) → AU -Mod obtained by extending by filtered colimits the
composition

Perf(Y )
F−→ Perf(AU ) ↪−−→ AU -Mod

along the inclusion Perf(Y ) ↪→ QCoh(Y ). Lemma 4.12 implies that the composition

Perf(X)
Γ(U ;−)−−−−→ Perf(AU ) −→ Perf(AV )

ε∗V−→ Perf(V )

coincides with the restriction functor Perf(X)→ Perf(V ). It follows that the outer diagram in

Perf(Y ) Perf(X)

Perf(AU ) Perf(U)

Perf(AV ) Perf(V )

ε∗U

ε∗V

commutes. In turn, this implies that the diagram

QCoh(Y ) OX -Mod

AV -Mod OV -Mod

F

F̃
ε∗V

(6.13)

commutes. Now recall from Proposition 4.5 that the functor ε∗V commutes with filtered colimits,
and it is conservative, t-exact and preserves flat, coherent and connective objects. Therefore, we
deduce that the symmetric monoidal functor F̃ : QCoh(Y ) → AV -Mod commutes with colimits
and preserves flat objects and connective objects. In particular, [Lur18, Theorem 9.3.0.3] implies
the existence of a map g : Spec(AV ) → Y so that F̃ ≃ g∗. The map g defines an element in
Gp

X(Y )(V ). Let f be the image of g via the canonical map

Gp
X(Y )(V ) −→ Gs

X(Y )(V ) ≃ F s
X

(
Y an

)
(V ) ≃ MapdAnStk

(
V, Y an

)
.

Then unravelling the definitions, we see that the diagram

QCoh(Y ) AV -Mod

OY an-Mod OV -Mod

F̃

ε̃∗V
f∗

commutes. Combining this with the commutativity of the diagram (6.13), we see that the con-
clusion follows.

6.2 Mapping stacks with Tannakian target

We now turn to the main result of this paper.
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Theorem 6.14. Let X,Y ∈ dStafpk be a derived stacks locally almost of finite presentation.
Assume that

(1) the stack Y is a geometric, Tannakian stack such that QCoh(Y ) ≃ Ind(Perf(Y ));

(2) the mapping stack Map(X,Y ) is locally geometric and locally almost of finite presentation.

If X satisfies the GAGA property, then the canonical map

Map(X,Y ) −→ Map
(
Xan, Y an

)
is an equivalence. Furthermore, if X satisfies the universal GAGA property, then the canonical
map

Map(X,Y )an −→ AnMap
(
Xan, Y an

)
is an equivalence.

Proof. We first observe that when U = Sp(k), we have

Map(X,Y )an(U) ≃ Map(X,Y ) ,

so the first statement follows from the proof of the second.9

Now let U ∈ dAfdk be a derived k-affinoid (respectively, Stein) space. Assume that X satisfies
the GAGA property relative to U . We will prove that the natural morphism

Map(X,Y )an(U) −→ AnMap
(
Xan, Y an

)
(U)

is an equivalence. We work on XU . Using Lemma 3.7, we are reduced to checking that the natural
morphism

F s
U

(
Map(X,Y )an

)
−→ F s

U

(
AnMap

(
Xan, Y an

))
is an equivalence. Using Theorem 3.13 and the fact that Map(X,Y ) is geometric, we obtain
a natural equivalence

Gs
U (Map(X,Y )) −→ F s

U

(
Map(X,Y )an

)
.

We consider as in Proposition 3.14 the induced map

Gp
U (Map(X,Y )) −→ F s

U

(
AnMap

(
Xan, Y an

))
. (6.15)

We first deal with the non-archimedean case. In this case we claim that the map (6.15) is an
equivalence. Fix an étale map V → U from a derived k-affinoid space V . Let

AV := Γ
(
V ;Oalg

V

)
.

Then

Gp
U (Map(X,Y ))(V ) ≃ MapdStk(Spec(AV ),Map(X,Y )) ≃ MapdStk(Spec(AV )×X,Y ) .

Since Y is Tannakian, we have a fully faithful embedding

Q : MapdStk(Spec(AV )×X,Y ) ↪−−→ Fun⊗(Perf(Y ),Perf(Spec(AV )×X) .

On the other hand, Theorem 6.5 provides us with a fully faithful embedding

Qan : F s
U

(
AnMap

(
Xan, Y an

))
(V )

≃ MapdAnStk

(
V ×Xan, Y an

)
↪−−→ Fun⊗

(
Perf(Y ),Perf

(
V ×Xan

))
.

9Note that since Sp(C) is a compact Stein space (and may be considered as a constant pro-object), this is indeed
a special case of our result. Of course a direct proof in this case would be significantly easier than in the relative
case that is our main interest.
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Now, since X satisfies the universal GAGA property, the functor

ε∗X,V : Perf(Spec(AV )×X) ≃ Perf
(
V ×Xan

)
is an equivalence. We therefore obtain the following diagram:

MapdStk(Spec(AV )×X,Y ) MapdAnStk

(
V ×Xan, Y an

)
Fun⊗(Perf(Y ),Perf(Spec(AV )×X)) Fun⊗

(
Perf(Y ),Perf

(
V ×Xan

))
.

Q Qan

∼
ε∗X,V

This immediately implies that the top horizontal map is fully faithful. We are therefore left to
check that it is essentially surjective. To do so, we fix a morphism

f : V ×Xan −→ Y an .

Consider the extended diagram

MapdStk(Spec(AV )×X,Y ) MapdAnStk

(
V ×Xan, Y an

)
Fun⊗(Perf(Y ),Perf(Spec(AV )×X)) Fun⊗

(
Perf(Y ),Perf

(
V ×Xan

))
Fun⊗L (QCoh(Y ),QCoh(Spec(AV )×X)) Fun⊗L (QCoh(Y ),OV×Xan-Mod) .

Q Qan

∼
ε∗X,V

ε∗X,V

Let

F : Perf(Y ) −→ Perf(Spec(AV )×X)

be the functor corresponding to f∗ : Perf(Y )→ Perf
(
V ×Xan

)
via the equivalence ε∗X,V , and let

F̃ : QCoh(Y ) −→ QCoh(Spec(AV )×X)

be the functor obtained by extension along Perf(Y ) ↪→ QCoh(Y ) ≃ Ind(Perf(Y )). Since Y is
Tannakian, it is enough to check that F̃ commutes with flat objects and connective objects. We
observe that ε∗X,V ◦ F̃ ≃ f̃∗, where

f̃∗ : QCoh(Y ) −→ OV×Xan-Mod

is the functor obtained by left Kan extension of f∗ along Perf(Y ) ↪→ Ind(Perf(Y )) ≃ QCoh(Y ).
As such, Lemma 6.10 implies that it preserves flat objects and connective objects. We now
observe that since X satisfies GAGA relative to V , the functor

ε∗X,V : QCoh(Spec(AV )×X) −→ OV×Xan-Mod

is conservative and t-exact. As flatness and connectivity of an object F ∈ QCoh(Spec(AV )×X)
can be checked locally with respect to X, we conclude that F is flat (respectively, connective) if
and only if ε∗X,V (F) is flat (respectively, connective). Since we know that f̃∗ preserves flat objects

and connective objects, it follows that the same is true for F̃ . Since Y is Tannakian, we see that
F comes from a morphism f : Spec(AV )×X → Y . Moreover, the commutativity of the diagram
implies that f

an ≃ f . This completes the proof in the non-archimedean case.

We now deal with the C-analytic case. We adapt the idea of Proposition 3.14 to this context.
As usual, the overall strategy stays the same, but instead of proving that the map (6.15) is an
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equivalence on the spot, we prove that it becomes an equivalence after passing (via Theorem 2.15)
to compact Stein subsets of U . We will conclude by Lemma 2.16. Therefore, let K ⊂ U be
a compact Stein in U , and let (K)U be the associated pro-object in dAnStC. If V ⊂ U is an open

Stein subspace, we let AV := Γ
(
V ;Oalg

V

)
. Then, unravelling the definitions, we have

Gp
U (Map(X,Y ))((K)U ) ≃ colim

K⊂V⊂U
MapdStC(Spec(AV )×X,Y ) ,

where the colimit ranges over all the open Stein neighbourhoods of K inside U . Since Y is
Tannakian, we have a fully faithful embedding

QV : MapdStC(Spec(AV )×X,Y ) ↪−−→ Fun⊗(Perf(Y ),Perf(Spec(AV )×X)) .

Since fully faithful functors are stable under filtered colimits, we obtain a fully faithful inclusion

Q(K) : colim
K⊂V⊂U

MapdStC(Spec(AV )×X,Y ) ↪−−→ colim
K⊂V⊂U

Fun⊗(Perf(Y ),Perf(Spec(AV )×X) .

We work as in Theorem 6.5 and introduce Fun⊗ind, the mapping space in Ind
(
Catst,⊗∞

)
. Then we

have a tautological equivalence

colim
K⊂V⊂U

Fun⊗(Perf(Y ),Perf(Spec(AV )×X)) ≃ Fun⊗ind
(
Perf(Y ), “colim”

K⊂V⊂U
Perf(Spec(AV )×X)

)
.

On the other hand, Theorem 6.5 provides us with fully faithful embeddings

Qan
V : MapdAnStC

(
V ×Xan, Y an

)
↪−−→ Fun⊗

(
Perf(Y ),Perf

(
V ×Xan

))
.

These embeddings assemble into a fully faithful functor

Qan
(K) : colim

K⊂V⊂U
MapdAnStC

(
V ×Xan, Y an

)
↪−−→ colim

K⊂V⊂U
Fun⊗

(
Perf(Y ),Perf

(
V ×Xan

))
.

Once again, we can formally rewrite

colim
K⊂V⊂U

Fun⊗
(
Perf(Y ),Perf

(
V ×Xan

))
≃ Fun⊗ind

(
Perf(Y ), “colim”

K⊂V⊂U
Perf

(
V ×Xan

))
.

Now consider the following commutative diagram:

colim
K⊂V⊂U

MapdStC(Spec(AV )×X,Y ) colim
K⊂V⊂U

MapdAnStC

(
V ×Xan, Y an

)

Fun⊗ind
(
Perf(Y ), “colim”

K⊂V⊂U
Perf(Spec(AV )×X)

)
Fun⊗ind

(
Perf(Y ), “colim”

K⊂V⊂U
Perf

(
V ×Xan

))
.

Q(K) Qan
(K)

Recall that X satisfies the GAGA property relative to U (see Definition 5.1(3)). In other words,
the canonical morphism

“colim”
K⊂V⊂U

Perf(Spec(AV )×X) −→ “colim”
K⊂V⊂U

Perf
(
V ×Xan

)
is an equivalence in Ind

(
Catst,⊗∞

)
. This implies that the bottom horizontal arrow in the above

diagram is an equivalence. As Q(K) and Qan
(K) are fully faithful embeddings, we deduce that

the top horizontal morphism is fully faithful as well. We are therefore left to check that it is
essentially surjective as well. Let

[f ] ∈ colim
K⊂V⊂U

MapdAnStC

(
V ×Xan, Y an

)

71



J. Holstein and M. Porta

be any element, and let f : V ×Xan → Y an be a representative for [f ]. By construction, we have

Qan
(K)([f ]) ≃ [f∗] ∈ Fun⊗ind

(
Perf(Y ), “colim”

K⊂V⊂U
Perf

(
V ×Xan

))
≃ colim

K⊂V⊂U
Fun⊗

(
Perf(Y ),Perf

(
V ×Xan

))
.

Via the equivalence

ε∗X,(K) : Fun⊗ind
(
Perf(Y ), “colim”

K⊂V⊂U
Perf(Spec(AV )×X)

)
−→ Fun⊗ind

(
Perf(Y ), “colim”

K⊂V⊂U
Perf

(
V ×Xan

))
,

we can select an open Stein neighbourhood W of K and a symmetric monoidal functor

FW : Perf(Y ) −→ Perf(Spec(AW )×X)

such that [ε∗X,W ◦ FW ] ≃ [f∗]. Without loss of generality, we can suppose that W ⊂ V . Let
fW : W×Xan → Y an be the restriction of f alongW×Xan → V ×Xan. Then since [ε∗X,W ◦FW ] ≃
[f∗W ], we see that up to shrinking W again, we can suppose that there is a natural equivalence

ε∗X,W ◦ FW ≃ f∗W
of functors Perf(Y )→ Perf(W ×Xan). Let

F̃W : QCoh(Y ) −→ QCoh(Spec(AV )×X)

be the extension of FW along Perf(Y ) ↪→ QCoh(Y ) ≃ Ind(Perf(Y )). We claim that F̃W commutes
with flat objects and connective objects. As Y is Tannakian, this will suffice to complete the proof.
To prove the claim, consider the commutative diagram

QCoh(Y )

QCoh(Spec(AW )×X) OV×Xan-Mod .

f∗
WF̃W

ε∗X,W

Since flatness and connectivity of an object in QCoh(Spec(AW ) × X) can be tested locally on
X, we can reduce to the case where X is affine. In this case, the conclusion follows from the fact
that ε∗X,W is t-exact and conservative and from Lemma 6.10.

Corollary 6.16. LetX,Y ∈ dStafpk be derived stacks locally almost of finite presentation over k.
Then the natural map

Map(X,Y )an −→ AnMap
(
Xan, Y an

)
is an equivalence whenever Y is geometric and Tannakian and QCoh(Y ) ≃ Ind(Perf(Y )) and
whenever X belongs to one of the following cases:

(1) X is a derived proper geometric stack locally almost of finite presentation over k such that
Map(X,Y ) is a geometric stack again locally almost of finite presentation.

(2) X is of the form ZdR or ZDol for some smooth and proper scheme Z.

(3) X is of the form KB for some finite homotopy type K.

Proof. We have to check that X satisfies the universal GAGA property and that Map(X,Y )
is geometric and locally almost of finite presentation. For point (1) being geometric and locally
almost of finite presentation is part of the assumption, and the universal GAGA property is
exactly the content of Theorem 5.5. In point (2), the geometricity and local finite presentation
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can be deduced from Lurie’s representability theorem. See also the examples following [PTVV13,
Theorem 2.15] and [Sim09]. The universal GAGA property for these cases has been verified in
Propositions 5.26 and 5.32. Finally, for point (3) it is enough to observe that geometric stacks
locally almost of finite presentation are closed under finite limits, while the universal GAGA
property has been proven in Proposition 5.28.

Remark 6.17. We discussed the question of the geometricity of Map(X,Y ) in Remark 5.7. As for
the assumptions on Y , let us remark that they are satisfied in the following two important cases:

(1) Y is a quasi-compact quasi-separated Deligne–Mumford stack.

(2) Y is the classifying stack of an affine group scheme of finite type in characteristic zero.

Both examples are Tannakian by [Lur11b, Theorem 3.4.2]. Compact generation is proved in
[HR17, Theorem A] (see also Example 9.4) for the first case and in the corollary to [HR17,
Theorem B] for the second.

7. Applications

In this section we develop some applications of the main results of this paper.

7.1 Further consequences of Theorem 3.13

Theorem 3.13 is one of the key technical results of this paper. It is certainly the main tool we
have to deal with analytification of geometric stacks that are not Deligne–Mumford. We use
it here to deduce some other general properties of the analytification functor. The following is
a generalization of Lemma 4.6 and Theorem 4.8.

Proposition 7.1. Let C ∈ Cat∞, and let PerfCk be the derived stack sending A to the∞-category
Fun(C,Perfk(A)). Similarly, let AnPerfCk be the derived analytic Cat∞-valued stack sending U
to Fun(C,AnPerfk(U)). Then:

(1) If k is non-archimedean, then for every derived k-affinoid space U ∈ dAfdk, there is a
canonical equivalence

PerfCk(AU ) ≃ AnPerfCk(U) .

(2) If k = C, then for every derived Stein space U ∈ dStnC and every compact Stein subset K
in U , there is a canonical equivalence

“colim”
K⊂U⊂X

PerfCC(AU ) ≃ “colim”
K⊂U⊂X

AnPerfCC(U)

in Ind
(
Catst,⊗∞

)
.

Proof. Constructing a natural transformation10

ηC :
(
PerfCk

)an −→ AnPerfCk

is equivalent to constructing a natural transformation

PerfCk −→ AnPerfCk ◦ (−)an .

The latter is simply induced by composition with the analytification functor

ε∗X : Fun(C,Perf(X)) −→ Fun
(
C,Perf

(
Xan

))
.

10See Remark 3.6 for the meaning of analytification for Cat∞-valued stacks.
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At this point, in the non-archimedean setting the conclusion follows immediately from Lemma 4.6.
In the C-analytic case consider the functor

Fun(C,−) : Catst,⊗∞ −→ Catst,⊗∞ .

Applying the ind-construction, we obtain a functor

Ind(Fun(C,−)) : Ind
(
Catst,⊗∞

)
−→ Ind

(
Catst,⊗∞

)
,

which takes an ind-object “colim”i∈I Di to “colim”i∈I Fun(C,Di). Evaluating this functor on the
equivalence obtained in Theorem 4.8, we therefore get the equivalence

“colim”
K⊂U⊂X

Fun(C,Perf(AU )) ≃ “colim”
K⊂U⊂X

Fun(C,Perf(U))

we were looking for.

Similarly to what we did in Section 4, we can now obtain the following analogue of Proposi-
tion 4.9.

Corollary 7.2. Let C ∈ Cat∞ be a compact object, and let PerfCk (respectively, AnPerfCk) be
the derived stack (respectively, derived analytic stack) associated with PerfCk and AnPerfCk . Then
the canonical morphism (

PerfCk
)an −→ AnPerfCk

is an equivalence.

Notice that PerfCk(X) ≃ Fun(C,Perf(X))≃, which is different from Fun(C,Perf(X)).

Proof. In Proposition 7.1 we constructed a morphism ηC :
(
PerfCk

)an → AnPerfCk which induces a

canonical morphism
(
PerfCk

)an → AnPerfCk . In order to check that the latter is an equivalence,
we verify that the hypotheses of Proposition 3.14 are satisfied. First of all, since C is compact,
PerfCk is still a locally geometric stack locally almost of finite presentation (as follows from [TV07,
Theorem 0.2]). Unwinding the definitions, we see that we have to check that the map

Fun(C,Perf(AU ))
≃ −→ Fun(C,Perf(U))≃

is an equivalence for every U ∈ dAfdk when k is non-archimedean and that

colim
K⊂V⊂U

Fun(C,Perf(AV ))
≃ −→ colim

K⊂V⊂U
Fun(C,Perf(V ))≃

is an equivalence for every U ∈ dStnC and every compact Stein subset K of U . Both statements
follow at once from Proposition 7.1.

The following result answers a question raised by G. Ginot.

Proposition 7.3. Let I be a finite ∞-category, and let F : I → dStafpk be a diagram. Suppose
that for every i ∈ I the object Xi := F (i) is a geometric stack. Then(

lim
i∈I

F (i)
)an −→ lim

i∈I
F (i)an

is an equivalence.

Proof. Let X := limi∈I Xi ∈ dStk be the limit. Since I is finite, we see that X is a geometric
stack.

It is now enough to check that for every derived k-affinoid (respectively, Stein) space U ∈
dAfdk, the canonical map MapdAnStk

(
U,Xan

)
→ limi∈I MapdAnStk

(
U,Xan

i

)
is an equivalence.
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We work in the ∞-topos XU . Since MapXU
(1U ,−) commutes with limits, Lemma 3.7 implies

that it is enough to prove that the canonical map F s
U

(
Xan

)
→ limi∈I F

s
U

(
Xan

i

)
is an equivalence.

Since X and all of the Xi are geometric stacks, we can use Theorem 3.13 to obtain (functorial)
equivalences

Gs
U (X) ≃ F s

U

(
Xan

)
, Gs

U (Xi) ≃ F s
U

(
Xan

)
.

Since the sheafification commutes with finite colimits, we see that the canonical map Gs
U (X)→

limi∈I G
s
U (Xi) is induced by sheafification from the map Gp

U (X) → limi∈I G
p
U (Xi). It is then

sufficient to prove that this second map is an equivalence. For every étale map from a derived
k-affinoid (respectively, Stein) space V → U , we can rewrite

Gp
U (X)(V ) ≃ MapdStk(Spec(AV ), X) , Gp

U (Xi)(V ) ≃ MapdStk(Spec(AV ), Xi) ,

where we set AV := Γ
(
V ;Oalg

V

)
as usual. The conclusion now follows from the fact that X ≃

limi∈I Xi in dStk.

7.2 The derived period domain

As a further consequence of Corollary 7.2, we can clarify a construction that arises in the study
of the derived period map introduced in [DH19]. This is a derived enhancement of Griffith’s
classical period map, that associates with a smooth projective family of derived stacks a map
from the base to a derived period domain. Let us start by briefly recalling the definition of the
derived period domain.

Assume that we are given a perfect complex V ∈ PerfC, concentrated in degrees 0 to 2n,
equipped with a 2n-shifted bilinear form q : V ⊗V → C[2n] that is non-degenerate on cohomology.
The typical example is the cohomology complex of a smooth projective variety. With the pair
(V, q) we can associate a derived geometric stack Dn(V, q), which classifies families of decreasing
filtrations {F ∗} of V of length n+ 1 satisfying the following two additional properties:

(1) The filtration {F ∗} descends to a filtration on cohomology groups of V .

(2) The filtration {F ∗} satisfies the Hodge–Riemann orthogonality relation with respect to Q;
that is, Q vanishes on F i ⊗ Fn+1−i.

For more precise definitions and statements, we refer to [DH19, Theorem 3.4]. The coarse moduli
space of the underived truncation of Dn(V, q) recovers the closure of the classical period domain.

Next we consider the following conditions:

(3) The filtration {F ∗} induces Hodge structures on cohomology groups; that is, we have
F pHn ⊕ Fn+1−pHn ∼= Hn(V ).

(4) The shifted bilinear form q satisfies the Hodge–Riemann non-degeneracy conditions on the
cohomology groups of V ; that is, ip−qq(φ,φ) > 0 for φ ∈ F pHp+q(V ) ∩ F qHp+q(V ).

Conditions (2)–(4) state that the filtration {F ∗} induces polarized Hodge structures on the
cohomology groups of V .

Imposing conditions (3) and (4) singles out an open analytic substack U of the analytification
Dn(V, q)

an, which is the derived period domain. In [DH19] it is shown that U is a geometric
analytic stack and that it is the target of the derived period map. Using Corollary 7.2, we can
give a modular description for U .

Corollary 7.4. Let (V, q) be a 2n-shifted quadratic perfect complex, and assume that Q is
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non-degenerate on the cohomology of V . The functor

Pn(V, q) : dStn
op −→ S

which sends S ∈ dStn to the space of filtrations {F ∗} on π∗SV ∈ Perf(S) satisfying conditions (1)
through (4) above is representable by a geometric derived analytic stack. Here πS : S → Sp(C)
denotes the canonical map. Furthermore, Pn(V, q) coincides with the derived period domain U
considered in [DH19].

Proof. It suffices to show that Dn(V, q)
an is equivalent to the derived analytic moduli stack clas-

sifying filtrations satisfying Hodge–Riemann orthogonality, which we will denote by AnDn(V, q).
Then U and Pn(V, q) are defined by the same open conditions (3) and (4).

To prove this, we observe that following the proof of [DH19, Theorem 3.4], the stack Dn(V, q)
is constructed in a categorical way from the stack of perfect complexes PerfC. The stack of
(n+ 1)-term filtrations Filtn is defined as the stack of n composable morphisms in PerfC; that
is, Filtn ≃ Perf∆

n

C . The derived flag variety Flagn(V ) is defined as the fibre at V ∈ PerfC
of the natural map Filtn → PerfC forgetting the filtration. The forgetful map also induces a
forgetful map of morphism stacks Filt∆

1

1 → Perf∆
1

C , and we define the stack Flag1(V, q) as the

fibre of Filt∆
1

1 → Perf∆
1

C over q : Sym2 V → C[2n]. Then we define D′
n(V, q) as the pullback

D′
n(V, q) Flag1(V, q)

Flagn(V ) Flag1

(
Sym2 V

)
× Flag1(C[2n]) .

e

σ

Here e is just given by the evaluation maps at the source and target. The map σ sends a
filtration Fn → · · · → F 0 to S × (0→ O[2n]), where S is the 2-term filtration on Sym2 F 0 given
by the image of ⊕i(F

i ⊗ Fn+1−i). Thus the points of D′
n(V, q) are those flags in V satisfying

the orthogonality condition (2). The derived stack Dn(V, q) is defined as the open substack of
D′

n(V, q) satisfying condition (1).

We can now perform the exact same constructions starting fromAnPerfC instead ofPerfC to
obtain AnDn(V, q). We first consider AnFiltn := AnPerf∆

n

C . Corollary 7.2 supplies a natural
equivalence AnFiltn ≃ Filtann . Similarly AnFlagn(V ), defined as the fibre of AnPerf∆n

C →
AnPerfC over V , is the analytification of Flagn(V ) since analytification commutes with finite
limits in virtue of Proposition 7.3. The same holds for AnFlag1(q), and putting all of this
together with condition (1), we see that AnDn(V, q) is a derived analytic moduli stack which is
equivalent to the analytification of Dn(V, q).

7.3 The derived Riemann–Hilbert correspondence

One of the main applications of the techniques of this paper is to obtain an extended version of
the derived Riemann–Hilbert correspondence first proven in [Por17b]. There, the second-named
author, following a suggestion of C. Simpson, introduced for every C-analytic spaceX a morphism

ηRH : XdR −→ XB

called the Riemann–Hilbert transformation. He then showed that if X is smooth, the canonical
morphism

η∗RH : AnMap(XB,AnPerfC) −→ AnMap(XdR,AnPerfC)

is an equivalence (see [Por17b, Theorem 6.11]).
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Corollary 7.5. Let X be a smooth proper scheme over C. Then ηRH induces an equivalence

Map
(
XB,PerfC

)an ≃Map
(
XdR,PerfC

)an
.

Proof. It follows from Sections 5.2.2 and 5.2.3 that XdR and XB satisfy the universal GAGA
property. In other words, we proved that the canonical maps

Map
(
XB,PerfC

)an −→ AnMap
((
XB

)an
,AnPerfC

)
and

Map
(
XdR,PerfC

)an −→ AnMap
((
XdR

)an
,AnPerfC

)
are equivalences. Furthermore, we saw in Section 5.2.2 that there is a canonical morphism(

XdR

)an −→ (
Xan

)
dR

which is furthermore an equivalence because X is smooth. Since there is an obvious equiva-
lence

(
XB

)an ≃ (
Xan

)
B
, we can use the Riemann–Hilbert transformation for Xan to obtain the

equivalence we are looking for.

As our last application, we notice that Proposition 6.12 and Theorem 6.14 together imply
that the Riemann–Hilbert correspondence with coefficients in an algebraic stack satisfying the
Tannakian property is still an equivalence.

Corollary 7.6. Let Y ∈ dStafpC be a derived stack locally almost of finite presentations and sat-
isfying the assumptions of Theorem 6.14. Then for every smooth analytic space X, the Riemann–
Hilbert transformation ηRH : XdR → XB induces an equivalence

η∗RH : AnMap
(
XB, Y

an
)
−→ AnMap(XdR, Y

an) .

Proof. Fix a derived Stein space S ∈ dStnC. We have to prove that ηRH : XdR → XB induces an
equivalence

η∗RH : MapdAnStC

(
S ×XB, Y

an
)
−→ MapdAnStC

(
S ×XdR, Y

an
)
.

Consider the commutative diagram

MapdAnStC

(
S ×XB, Y

an
)

MapdAnStC

(
S ×XdR, Y

an
)

Fun⊗(Perf(Y ),Perf(S ×XB)) Fun⊗(Perf(Y ),Perf(S ×XdR)) ,

where the vertical morphisms are the ones induced by Theorem 6.5. This proposition shows
furthermore that they are fully faithful. The bottom horizontal morphism is an equivalence by
virtue of [Por17b, Theorem 6.11]. It follows that the top horizontal functor is fully faithful, too.

We are left to check that it is essentially surjective. Fix a morphism f : S ×XdR → Y an, and
let

F : Perf(Y ) −→ Perf(S ×XdR)

be the induced symmetric monoidal functor. Let

G : Perf(Y ) −→ Perf(S ×XB)

be the symmetric monoidal functor induced by the equivalence η∗RH : Perf(S ×XB)
∼−→ Perf(S ×

XdR). We would like to invoke Proposition 6.12, but for this we first have to replace XB with
a colimit of derived Stein spaces.
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Applying the argument of [PY16, Lemma 5.14 and Remark 5.15], we produce three open
hypercovers W•, V• and U• of X satisfying the following conditions:

(1) For every integer m the spaces Um, Vm and Wm are disjoint unions of contractible open
Stein subspaces of X.

(2) For every integer m we have Wm ⋐ Vm ⋐ Um.

Observe that for every integer m we have canonical equivalences

(Um)B ≃
∐
IU

Sp(C) , (Vm)B ≃
∐
IV

Sp(C) , (Wm)B ≃
∐
IW

Sp(C)

and that |(W•)B| ≃ |(V•)B| ≃ |(U•)B| ≃ XB. Therefore, we can represent G as an element in the
limit

lim
m∈∆op

Fun⊗(Perf(Y ),Perf(S × (Um)B)) .

For every integer m denote by Gm the induced symmetric monoidal functor

Gm : Perf(Y ) −→ Perf(S × (Um)B) ≃
∏
IU

Perf(S) .

Let

G̃m : QCoh(Y ) −→ OS×(Um)B-Mod ≃
∏
IU

OS-Mod

be the symmetric monoidal functor obtained by left Kan extension along Perf(Y ) ↪→ Ind(Perf(Y ))
≃ QCoh(Y ). We claim that each G̃m commutes with perfect complexes, flat objects and connec-
tive objects. Assuming this claim, Proposition 6.12 shows that the composition

QCoh(Y )
Gm−−→ OS×(Um)B-Mod −→ OS×(Wm)B-Mod

can be represented by a morphism gm : S × (Wm)B → Y an. The full faithfulness provided by
Theorem 6.5 shows that the morphisms gm can be glued back to a morphism g : S ×XB → Y an.
Finally, the construction shows that g ◦ ηRH ≃ f .

We are therefore left to prove the above claim. Reasoning as in [Por17b, Proposition 5.1],
we see that pulling back along the canonical morphism X → XdR produces a conservative and
t-exact functor OS×XdR

-Mod→ OS×X -Mod. Let

F̃ : QCoh(Y ) −→ OS×XdR
-Mod

be the left Kan extension of F along Perf(Y ) ↪→ Ind(Perf(Y )) ≃ QCoh(Y ), and define G̃
similarly. Then

G̃ ≃ η∗RH(̃F ) .

Invoking [Por17b, Corollary 5.3], it suffices to prove that F̃ commutes with perfect complexes,
flat objects and connective objects.

First observe that there is a canonical equivalence |(U•)dR| ≃ XdR. Next consider the following
Čech nerve:

U•,⋆ := Č(U• −→ (U•)dR) .

We can identify U•,⋆ with a bisimplicial object in dAnStC. Moreover, [Por17b, Lemma 4.1] pro-
vides canonical identifications

Um,n ≃ colim
i∈N

∆
n,(i)
Um

,
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where ∆n
Um

denotes the (small) diagonal of Um in (Um)×n and ∆
n,(i)
Um

denotes the ith infinitesimal
neighbourhood of ∆n

Um
inside (Um)×n. With similar notation, we obtain the following descrip-

tions: Let J := ∆op ×∆op × N. Since dAnStC is an ∞-topos, colimits are universal in dAnStC,
and in particular we obtain

colim
([m],[n],i)∈J

S ×∆
n,(i)
Um
≃ S ×XdR .

It follows that we can represent the functor F : Perf(Y ) → Perf(S ×XdR) as an element in the
limit

lim
([m],[n],i)∈J

Fun⊗
(
Perf(Y ),Perf

(
S ×∆

n,(i)
Um

))
.

Let

F i
m,n : Perf(Y ) −→ Perf

(
S ×∆

n,(i)
Um

)
denote the projection of F on Perf

(
S ×∆

n,(i)
Um

)
, and let

F̃ i
m,n : QCoh(Y ) −→ O

∆
n,(i)
Um

-Mod

be the left Kan extension of F i
m,n along Perf(Y ) ↪→ Ind(Perf(Y )) ≃ QCoh(Y ). Notice that each

S ×∆
n,(i)
Um

is a derived Stein space. Therefore, Lemma 6.10 implies that F̃ i
m,n preserves perfect

complexes, flat objects and connective objects. From here, we deduce that the same is true for F̃ .
The proof is therefore complete.

Appendix. Some lemmas on derived Stein spaces

In this appendix we prove some basic facts on Stein spaces that do not fit in the main body of
the text. We mainly focus on the C-analytic setting as the non-archimedean setting has already
been addressed in [PY21].

Given a derived C-analytic space X ∈ dAnC, we denote by Xét its small étale site. This is the
∞-site spanned by étale maps Y → X, where Y is a derived Stein space. The truncation functor

t0 : Xét −→ (t0(X))ét

is an equivalence of ∞-categories. This follows directly from [Por19, Lemma 3.4]. In virtue of
this fact, we give the following definition.

Definition A.1. Let f : U → V be an open immersion of derived Stein spaces. We say that U
is relatively compact in V (via f) if the closure of t0(U) inside t0(V ) is compact. In this case we
write U ⋐ V .

Lemma A.2. Let U be a derived Stein space, and let AU := Γ
(
U ;Oalg

U

)
. Then there is a canonical

equivalence

πi(AU ) ≃ Γ
(
U ;πi

(
Oalg

U

))
.

Proof. First of all, we observe that πi
(
Oalg

U

)
is by assumption a coherent sheaf on the underived

Stein space t0(U). Therefore, Cartan’s Theorem B implies that Γ
(
U ;πi

(
Oalg

U

))
is concentrated in

cohomological degree zero. In turn, this implies that the spectral sequence computing Γ
(
U ;Oalg

U

)
degenerates at page E2, yielding the desired equivalence.
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Lemma A.3. Let W ⋐ V ⋐ U be a nested sequence of relatively compact derived Stein spaces.
Set

AU := Γ
(
U ;Oalg

U

)
, AV := Γ

(
V ;Oalg

V

)
, AW := Γ

(
W ;Oalg

W

)
.

Then the natural map AV → AW is flat.

Proof. Since W ⋐ V , we can use [PY16, Lemma 8.13] to see that π0(AV )→ π0(AW ) is flat. All
we are left to check is therefore that the canonical map

πi(AV )⊗π0(AV ) π0(AW ) −→ πi(AW )

is an isomorphism. Lemma A.2 provides us with natural equivalences

πi(AV ) ≃ Γ
(
V ;πi

(
Oalg

V

))
, πi(AW ) ≃ Γ

(
W ;πi

(
Oalg

W

))
.

We now observe that πi
(
Oalg

V

)
is a coherent sheaf on the underived Stein space t0(V ) and fur-

thermore πi
(
Oalg

V

)
|W = πi

(
Oalg

W

)
. Therefore, [Dou73, Proposition 2] implies that

Γ
(
W ;πi

(
Oalg

W

))
≃ πi

(
Oalg

V

)
(W ) ≃ Γ

(
V ;Oalg

V

)
⊗̂π0(AV )π0(AW ) .

We now observe that πi
(
Oalg

V

)
is the restriction to t0(V ) of the coherent sheaf π0

(
Oalg

U

)
on t0(U).

Since V ⋐ U , Lemmas 8.11 and 8.12 of [PY16] imply that Γ
(
V ;Oalg

V

)
is finitely generated over

π0(AV ). Therefore, the canonical map

Γ
(
V ;Oalg

V

)
⊗π0(AV ) π0(AW ) −→ Γ

(
V ;πi

(
Oalg

V

))
⊗̂π0(AV )π0(AW )

is an equivalence. The conclusion follows.

The same technique used to prove Lemma A.3 also allows us to prove the following more
general result.

Corollary A.4. Let W ⋐ V ⋐ U be a nested sequence of relatively compact derived Stein
spaces. Let AU , AV and AW be defined as in Lemma A.3. Then for any F ∈ Coh(U) the natural
map

γF : Γ(V ;F|V )⊗AV
AW −→ Γ(W ;F|W )

is an equivalence.

Proof. It is enough to check that for every integer i ∈ Z the map γF induces an isomorphism

πi(Γ(V ;F|V )⊗AV
AW ) −→ πi(Γ(W ;F|W )) .

Thanks to Lemma A.3, we know that the map AV → AW is flat. As a consequence, the Tor
spectral sequence of [Lur17, Proposition 7.2.1.19] degenerates at the page E2, yielding an equiv-
alence

πi (Γ(V ;F|V )⊗AV
AW ) ≃ πi(Γ(V ;F|V ))⊗AV

AW .

On the other hand, Cartan’s Theorem B supplies a natural equivalence

πi(Γ(V ;F|V )) ≃ Γ(V ;πi(F)|V ) .

Since πi(F) is a coherent sheaf on the underived Stein space t0(U), we can use [Dou73, Propo-
sition 2] to obtain an equivalence

Γ(V ;πi(F)|V )⊗̂π0(AV )π0(AW ) ≃ Γ(W ;πi(F)|W ) .
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We now apply [PY16, Lemmas 8.11 and 8.12] to the sheaf π(F) to deduce that Γ(V ;πi(F)|V ) is
finitely generated over π0(AV ). In particular, the natural map

Γ(V ;πi(F)|V )⊗π0(AV ) π0(AW ) −→ Γ(V ;πi(F)|V )⊗̂π0(AV )π0(AW )

is an isomorphism. The conclusion follows.
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342 (2008), no. 4, 789–831; doi:10.1007/s00208-008-0257-9.
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