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Deformations and rigidity for mixed period maps

Gregory Pearlstein and Chris Peters

Abstract

We prove a rigidity criterion for period maps of admissible variations of graded-
polarizable mixed Hodge structure, and establish rigidity in a number of cases, including
families of quasi-projective curves, projective curves with ordinary double points, the
complement of the canonical curve in families of Kynev–Todorov surfaces, period maps
attached to the fundamental groups of smooth varieties and normal functions.

1. Introduction

1.1 Historical background

The rigidity concept the title refers to concerns a Hodge-theoretic variant of a rigidity property
that S. Arakelov [Ara71] discovered. He showed that one cannot deform families {Cs}s∈S̄ of curves
of genus g ⩾ 2 parametrized by a smooth projective curve S̄ with varying moduli, keeping S̄
fixed as well as the set, say Σ, over which singular fibres occur. In terms of Mg, the moduli
space of curves of genus g, this result states that if the moduli map µ : S = S̄ − Σ → Mg is
not constant, it is rigid, keeping source and target fixed. For a discussion of S. Arakelov’s result
from the point of view of Teichmüller theory; see [IS88]. In the remainder of this introduction,
we shall only consider deformations of maps keeping source and target fixed.

The cohomology groups H1(Cs,Z) admit a canonical polarizable weight 1 Hodge struc-
ture. These are classified by a period domain, in this case the generalized Siegel upper half-
space hg. Since the group of integral automorphisms preserving the polarization is the symplectic
group SpZ(g), the period map in this case is a holomorphic map F : S → Ag := SpZ(g)\hg which
factors through the morphism Mg → Ag. The latter morphism is an embedding (this is Torelli’s
theorem).

It might be the case that, although µ is rigid keeping
(
S̄,Σ

)
fixed, this need not be the case

for F . Geometrically interpreted, polarized weight 1 Hodge structures are polarized abelian vari-
eties, and G. Faltings, in [Fal83], investigated the analogue of Arakelov rigidity in this situation.
Let us recall his result in Hodge-theoretic terms. The period domain hg classifies (polarized)
weight 1 Hodge structure on a free Z-module H. Such a Hodge structure induces Hodge struc-
tures of weight 0 on End(H) as well as on its subspace End(H,Q) of Q-endomorphisms, that is,
those u ∈ EndH for which Q(ux, y)+Q(x, uy) = 0 for all x, y ∈ H. By means of the period map
F : S → Ag, Hodge structures F (s) of weight 1 are put on H. The group Γ acts on H as well as
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End(H,Q). In particular, its commutant

EndΓ(HC, Q) :=
{
u ∈ End(HC, Q) | γ◦u◦γ−1 = u for all γ ∈ Γ

}
inherits natural Hodge structures as well. By W. Schmid’s result [Sch73, Corollary 7.23], these
Hodge structures are independent of s. In technical terms, the period map defines a local system
on S carrying a variation of Hodge structure inducing one on the endomorphism bundles, and the
Hodge decomposition extends as a flat decomposition, hence is independent of s. See Section 2.1.
G. Faltings’ result is as follows.

Theorem ([Fal83, Theorem 2]). The space of infinitesimal deformations of a period map F :
S → Ag over a curve S can be canonically identified with the direct summand of EndΓ(HC, Q)
of Hodge type (−1, 1). Consequently, if F is not constant, F is rigid if and only if EndΓ(H,Q) is
pure of type (0, 0).

G. Faltings gave an example with g = 8 for which EndΓ(H,Q)−1,1 ̸= 0; this gives a non-rigid
(non-isotrivial) family of 8-dimensional abelian varieties. M.-H. Saito [Sai93] made a systematic
study and classified these in any dimension.

The Hodge-theoretic rigidity question for higher weight and over any quasi-projective smooth
base was first considered by the second author in [Pet90], and it turns out that G. Faltings’ result
is in essence valid for all weights. There are a couple of differences. Of course, since S is allowed
to be higher-dimensional, one has to impose the condition that the period map is generically
an immersion instead of being non-constant. Secondly, on a more fundamental level, one should
incorporate “Griffiths’ transversality” (cf. [Gri68]), an infinitesimal property of variations of
geometric origin which is automatic for weight 1 but gives a constraint for most types of higher-
weight variations. Geometrically, this condition means that tangents to the image of the period
map belong to the so-called horizontal tangent bundle. This is encapsulated in the statement that
period maps are horizontal. It is natural to demand that deformations preserve this property.
The result from [Gri68] indeed takes this into account.

Theorem ([Pet90, Theorem 3.4]). Let S be smooth and quasi-projective and F : S → Γ\D a pe-
riod map. The space of infinitesimal deformations of F remaining horizontal can be canonically
identified with EndΓ(HC, Q)−1,1.

The proof of this result is reviewed in Section 2.

1.2 Main results on deformations of mixed period maps

For the purpose of this introduction, a free Z-module H is said to carry a mixed Hodge structure
if HQ = H ⊗Q carries an increasing finite filtration W , the weight filtration, and HC = H ⊗ C
carries a decreasing filtration F , the Hodge filtration, which induces a pure Hodge structure of
weight k on GrWk H. If, moreover, each of those is polarized by Qk, then we write Q for the
collection of the Qk and say that (H,W,F,Q) is a graded-polarized mixed Hodge structure.

Motivated by geometry, for classifying purposes we keep the weight filtration and the po-
larization fixed. So on a fixed triple (H,W,Q), we allow only the Hodge filtration to vary. The
associated period domains and period maps have been studied in [Usu84, Pea00, Pea01, Pea06].

There are several important differences with the pure situation. First of all, HC does not
have a “mixed” Hodge decomposition but, instead, a canonical decomposition, introduced by
P. Deligne [Del71], the Deligne decomposition HC = ⊕Ip,q, where Ip,q has the same dimension
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as the (p, q)-component of the Hodge structure on GrWp+q, but it is no longer the case that Iq,p is
the complex conjugate of Ip,q.

Secondly, although, as in the pure case, the period domain D is homogeneous under a Lie
group G, say D = G/GF , the isotropy group GFneed not be compact. Moreover, the group G
has in general no real structure: it generally strictly contains GR, the automorphism group of
(HR,W,Q).

As in the pure case, the polarization induces a Hodge metric on the tangent bundle to D,
which is equivariant with respect to GR but not the full group G. Period maps are holomorphic,
and there exist a notion of Griffiths’ transversality and a concept of horizontal tangent bundle.
Period maps F have tangents in that bundle. As before, through the period map one gets mixed
Hodge structures on H depending on s; that is, the holomorphic vector bundle H on S with
fibres ≃ HC receives a variation of mixed Hodge structure (VMHS). The induced varying mixed
Hodge structures on the Lie algebra

gR = EndW (HR, Q)

of endomorphisms which preserveW and act by infinitesimal isometries on GrW defines a VMHS
on the holomorphic vector bundle

g(H) = EndW (H, Q)

over S and, again by [Sch73, Corollary 7.23], the Deligne decomposition on the space of global Γ-
equivariant sections of g(H) is a flat decomposition, that is, “constant in s ∈ S”. The horizontality
constraint implies that we restrict our attention to

U−1g(H) =
⊕
q⩽1

g−1,q(H) ,

the horizontal endomorphism bundle. The main result can now be stated as follows.

Theorem (= Theorem 6.3). Let S be quasi-projective and F : S → Γ\D a horizontal holomor-
phic map to a mixed domain D parametrizing mixed Hodge structures on (H,W,Q) such that
the corresponding VMHS is admissible. Suppose that v ∈ U−1g(H) is Hodge-harmonic, that
moreover v is equivariant with respect to the monodromy group Γ and that the Hodge norm ∥v∥
is bounded near infinity.

Then infinitesimal deformations of F that stay horizontal correspond one-to-one to Γ-equiv-
ariant horizontal endomorphisms of g(H). The space of such deformations is smooth at F .

The statement requires some explanation. Let v(s) be a section of the bundle U−1g(H) on S
of the horizontal endomorphisms of g(H). In the pure case, as shown in the proof of [Pet90,
Theorem 3.2], negativity of the bisectional curvature in horizontal directions implies that its
Hodge norm gives rise to a plurisubharmonic function s 7→ ∥v(s)∥. One can do with a slightly
weaker condition which is more suitable in the mixed situation. This weaker condition is the
plurisubharmonicity of an endomorphism v of g(H) and will be explained in Section 4.2. In the
pure case it indeed implies plurisubharmonicity of the Hodge norm ∥v∥, and we show that this
is also true for several types of mixed Hodge structures of geometric interest. As is well known
(see for example [Lel68]), bounded plurisubharmonic functions on a quasi-projective manifold
are constant. To make use of this, it suffices to show that ∥v(s)∥ is bounded near infinity when-
ever v is preserved by the local monodromy at infinity. This is indeed the case for pure Hodge
structures, as follows from W. Schmid’s norm estimates in [Sch73]. Unfortunately, as Section 5.11
shows, the desired estimates do not hold for mixed variations in general, not even for admissible
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variations. However, for several cases of geometric interest, boundedness still holds, as shown in
the remainder of Section 5.

Remark 1.1. Although we only consider period maps to “classical” mixed period domains, the
same methods apply to variations with extra structure corresponding to period maps to mixed
Mumford–Tate domains. To explain this, first of all, the differential-geometric input based on
curvature calculations only uses Lie-theoretic calculations involving the mixed Hodge metric and
the Deligne types, and these calculations remain the same. Indeed, a Mumford–Tate domain is
a homogeneous space of the formM/MF , whereM is a subgroup of a group G acting transitively
on some mixed domain D and MF = M ∩ GF so that the Hodge metric is the one from D
restricted to M/MF , and the Deligne types are the same as the ones for the mixed Hodge
structure of the Lie algebra of G. See also [PP19, Remarks 1.1 and 2.4].

Secondly, the calculations for boundedness of the mixed Hodge metric are based on the SL2-
orbit theorem. Its proof uses Lie theory within a given group, and one can show that these
calculations stay within M ⊂ G. See [KPR19, § 4], where the pure case is treated. For the mixed
situation, the arguments are the same.

1.3 Boundedness results

Although for our purposes we only need a one-variable boundedness result, there is one situation
where we prove a multivariable version which may be of independent interest.

Theorem (= Theorem 5.2). A flat section of an admissible Hodge–Tate variation H with unipo-
tent monodromy has bounded Hodge norm with respect to the mixed Hodge metric, and likewise
for a flat section of EndH.

Recall from [Pea06] that a variation is of type (I) if there exists an integer k such that the
Hodge numbers hp,q are zero unless p + q = k, k − 1 (that is, GrW has exactly two non-zero
weight-graded quotients which are adjacent) and it is of type (II) if there is an integer k such that
hp,q = 0 unless (p, q) = (k, k), (k−1, k−1) or p+q = 2k−1 and hk,k, hk−1,k−1 are non-zero. Using
this terminology, we prove the following one-variable results, similarly of independent interest.

Theorem (= Theorems 5.6 and 5.16, Corollaries 5.15 and 5.20). Let H be a one-variable ad-
missible variation with unipotent monodromy of one of the following types:

(1) a variation of unipotent type,

(2) a variation of type (I) or (II),

(3) a variation whose only weight-graded quotients are GrW0
∼= R(0) and GrW−2,

(4) a variation whose only weight-graded quotients are GrW0
∼= Z(0), GrW−2 and GrW−4

∼= Z(2).

Then a flat section of H or of g(H) has bounded mixed Hodge norm.

We also show that for variations whose only weight-graded quotients are GrW0 = Z and GrW−k

for k > 2, the norm estimates required to obtain rigidity need not hold. See Lemma 5.21.

1.4 Geometric applications

The first application concerns families of quasi-projective smooth curves of genus g. In Exam-
ple 7.2 we show that if the monodromy acts irreducibly on cohomology, the family is rigid in the
(−1, 0)-directions provided that the curves can be completed by adding fewer than 2g points.
The mixed Hodge structures on projective curves with k double points are in a certain sense dual
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to the ones on quasi-projective curves which can be compactified to smooth projective curves
upon adding k points. Indeed, there is a dual result for families of curves with more than 2g
double points (see Example 7.7). Perhaps worth mentioning here is the use of the rather recent
concept of pure variations having maximal Higgs field, a concept introduced by E. Viehweg and
exploited in [VZ03]. For instance, in Proposition 2.9 we state and prove that having a weight 1
maximal Higgs field implies rigidity. Hence, for the preceding examples, having maximal Higgs
field leads to period maps being rigid in all horizontal directions.

Next we mention families of Kynev and Todorov surfaces. V. Kynev [Kyn77] has given a con-
struction of surfaces of general type with invariants h1,0 = 0, h2,0 = 1, K2 = 1 that violate the
infinitesimal Torelli theorem. Other counterexamples to the infinitesimal Torelli theorem were
given by A. Todorov [Tod81]. His surfaces have the same invariants h1,0 = 0 and h2,0 = 1 but
2 ⩽ K2 ⩽ 8. The period domains of both types of surfaces resemble that of a K3 surface. Like
a K3 surface, there is an up-to-scaling unique holomorphic 2-form, but here it vanishes along the
canonical curve, which is smooth for a generic such surface. Removing this curve gives an open
surface intrinsically associated to a Kynev or Todorov surface. Its cohomology then provides
an example of a mixed Hodge structure. The Todorov surfaces with K2 = 2, . . . , 8 general-
ize Kynev surfaces that were previously also investigated in detail by F. Catanese [Cat80] and
A. Todorov [Tod80], and so we shall call these CKT surfaces. We show (cf. Proposition 7.5) that
a modular family of open CKT surfaces or of Todorov surfaces is rigid, as is any sufficiently
generic subfamily.

We shall also consider deformations of certain unipotent variations. Firstly Hodge–Tate vari-
ations (Section 4.3, Example (2)) and, secondly, variations associated to the fundamental group
of an algebraic manifold (Section 4.3, Example (3)). For the latter, an explicit rigidity criterion
is stated later as Proposition 7.9. It involves the geometry of the exterior algebra of the 1- and
2-forms of S.

Deformations of other types of algebraic families are investigated in Example (1) and, more
elaborately, in Section 7. These include normal functions and certain higher normal functions
and biextensions coming from higher Chow groups.

1.5 Structure of the paper

In Section 2 we recall in detail the pure case and the proof of the main result from [Pet90]. The
proof presented here differs slightly from the one given in op. cit. since we want to highlight
where problems arise for the mixed case. Further basic developments have taken place since the
publication of [Pet90]; we recall them in Section 2.4. Several of these newer examples serve as
building blocks in the mixed situation to which we turn in later sections.

In Section 3 we recall some basic material concerning mixed period maps.

One of the main ingredients in the proof of our results is the curvature calculation from [PP19].
We explained in op. cit. that, unlike in the pure case, the holomorphic sectional curvature is not
in general less than or equal to 0 in horizontal directions, and so this is a fortiori true for the
holomorphic bisectional curvature. The latter plays a central role in the proof from [Pet90], and
our original strategy was to list classes of types of mixed Hodge structure for which this is also
true. In Section 4 we come back to the calculations of [PP19] and show that instead of focusing
on bisectional curvature, it is better to use a new property, that of plurisubharmonicity of certain
global endomorphisms of the Hodge bundle.

The second main ingredient, the norm estimates for the Hodge metric, are given in Section 5.
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The techniques employed in this section are of an entirely different, mainly Lie-theoretic, nature.

The proper topic of this paper, deformation theory in the mixed situation, is treated in
Section 6, where we prove the main theorem, Theorem 6.3, and give criteria for rigidity. The
main technical result, Proposition 4.4, leads to the geometric examples which are treated in detail
in Section 7.

In Appendix A the notion of admissibility is reviewed, and in Appendix B we show that, like
in the pure case, the monodromy action on the period domain coming from a mixed variation
with an integral structure is properly discontinuous, so that the quotient has the structure of an
analytic space.

2. The pure case

Although most material in this section concerns published results, we decided to include it for
several reasons. Firstly, the new results on deformations in the mixed case build upon those
from [Pet90] valid in the pure case, but since the mixed case is considerably more involved, it
is instructive to explain the pure case in a way that is geared towards techniques we use in the
mixed case. Secondly, as explained in the introduction, besides results from [Pet90, Pet92], we
want to include new results in the pure case since these lead to more examples in the mixed
setting.

2.1 Basics on period domains and period maps

Recall that a period domain parametrizes polarized Hodge structures of weight k on a finite-
dimensional real vector spaceHR with given Hodge numbers {hp,q}, polarized by a non-degenerate
bilinear form Q of parity (−1)k. Such a domain D is homogeneous under the real Lie group
GR ⊂ GL(HR) of automorphisms of the polarization Q. The isotropy groups GF

R for F ∈ D are
compact. The domain D is an open set in the compact dual Ď upon which the complexifica-
tion GC of GR acts transitively:

GR/G
F
R = D ⊂ Ď = GC/G

F
C .

The Hodge structure on HR given by F induces a Hodge structure on the Lie algebra of GR
as a sub-Hodge structure of EndHR. It has weight 0 with Hodge decomposition gC =

⊕
p g

p,−p,

where gp,−p consists of those endomorphisms that send Hs,t to Hs+p,t−p.

A point F ∈ Ď can be considered as a filtration on HC. Then F 0gC is the Lie algebra of
the stabilizer of F in GC. Hence the tangent space TF Ď of Ď at F is isomorphic to gC/F

0gC.
Accordingly, since F pgC =

⊕
a⩾p g

a,−a, it follows that

TFD = gC/F
0gC ≃

⊕
a>0

g−a,a . (2.1)

Every Hodge structure F ∈ D defines a Hodge metric on HC which is given by

hF (x, y) := Q(CFx, ȳ) , x, y ∈ HC , (2.2)

where CF |Hp,q = ip−q is the Weil-operator. The Hodge metric is a hermitian metric relative
to which the Hodge decomposition of HC is orthogonal. The induced metric on gC satisfies
ga,−a ⊥ gb,−b unless a = b. In particular, via the isomorphism TFD ≃

⊕
a>0 g

−a,a, we obtain
a Hodge metric on TFD. Moreover, since

hgF (x, y) = hF
(
g−1x, g−1y

)
, g ∈ GR ,
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it follows that the Hodge metric defines a GR-invariant metric on the tangent bundle of D.
A (real) variation of polarized Hodge structure over a complex manifold S consists of a local
system HR of finite-dimensional real vector spaces equipped with a weight k Hodge structure
polarized by a (−1)k-symmetric form Q such that

– the Hodge filtrations glue to a holomorphic filtration F of the holomorphic bundle H =
HR ⊗OS ;

– (Griffiths’ transversality) the natural flat connection ∇ induces a vector bundle map Fp →
Fp+1 ⊗ Ω1

S .

Remark. The motivation of this concept is geometric: if f : X → S is a smooth, proper morphism
between complex algebraic varieties, then, by the work of P. Griffiths [Gri68], the associated lo-
cal system HR = Rkf∗RX underlies a variation of pure Hodge structure of weight k. It comes
equipped with a natural polarization induced by the cup product and the Lefschetz decompo-
sition in cohomology. In fact, we may instead consider cohomology with rational coefficients
and consider polarizations defined by ample classes. In this way we obtain a rational variation
of polarized Hodge structure. There is even a canonical flat integral structure equipped with
a polarizing form.

By its very definition, locally in a simply connected open neighbourhood U of s ∈ S, the
assignment s 7→ Fs gives a holomorphic period map U → D. To make sense of this globally,
one needs to incorporate the effect of the fundamental group at s: giving a local system H is
equivalent to giving a representation on H, the fibre of H at s. This representation preserves Q,
and so the image of the fundamental group is a subgroup Γ of G, the monodromy group of
the variation. For variations coming from geometry, this subgroup belongs to GZ, the subgroup
preserving the integral structure coming from integral cohomology. The monodromy group, being
closed and discrete, acts properly discontinuously on D. It follows that the quotient Γ\D is an
analytic space. The period map in its global incarnation is the holomorphic map

F : S → Γ\D .

The Griffiths’ transversality property is equivalent to the statement that the derivative of the
tangent map at s lands in

T hor
F (s)D = F−1gC/F

0gC ≃ g−1,1 ,

the horizontal tangent space at F . The corresponding vector bundle is the horizontal tangent
bundle

T horD = F−1g(H)/F0g(H) ≃ g(H)−1,1 , (2.3)

where the isomorphism is in the category of C∞ hermitian vector bundles. Conversely, a holo-
morphic map from a complex manifold to a quotient of a period domain D by a discrete closed
subgroup of G is a period map provided that it is locally liftable to D as a horizontal holomorphic
map.

2.2 Curvature properties

By [GS69, Theorem 9.1], the holomorphic sectional curvature of D along horizontal tangents
is negative and bounded away from zero. As shown in [Pet90], the full curvature tensor along
a (1, 0)-tangent vector of u ∈ g−1,1 is given by R(u, ū) = − ad([u, ū]), so that the bisectional
curvature in the (u, v) unit-norm direction becomes

KF (u, v) = hF (R(u, ū)v, v) = −hF ([[u, ū]v], v) = ∥[u, v]∥2F − ∥[ū, v]∥2F .
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As recalled below, in geometric situations, u and v commute, which implies KF (u, v) ⩽ 0. We
shall outline how this implies that for a global section η of g(H) which is of Hodge type (−1, 1),
the function F 7→ ∥η(F )∥2 is plurisubharmonic on S.

This phenomenon occurs more generally for sections η of any holomorphic vector bundle E
equipped with a hermitian metric h. Recall that there is a unique metric (1, 0)-connection D,
the Chern connection for (E , h). The bisectional curvature appears in a Bochner-type formula
[CMP17, Proposition 11.1.5], a special case of which reads

∂u∂ū∥v∥2 = ∥Duv∥2 − h(RD(u, ū)v, v) , u ∈ T 1,0
s S , v = η(s) . (2.4)

Recall that a real C2-function f on an open subset U of Cn is plurisubharmonic if i∂∂̄f is
a positive-definite (1, 1)-form. This is equivalent to ∂u∂ūf ⩾ 0 for all type (1, 0) tangent vectors
on U . If h(RD(u, ū)v, v) ⩽ 0, formula (2.4) shows that s 7→ ∥η(s)∥ is a plurisubharmonic function
on S.

We apply this to our situation with E the bundle g(H) on S. A holomorphic section η of
this bundle is invariant under the global monodromy and so in particular invariant under local
monodromy at infinity. We now invoke the following.

Proposition 2.1 ([Sch73, Corollary 6.7′]). Let there be given a polarized variation over the
punctured disk. Then an invariant holomorphic section of the Hodge bundle remains bounded.

Quasi-projective manifolds do not admit bounded plurisubharmonic functions except con-
stants (cf. [Lel68]). Consequently, in the present situation, the Hodge norm ∥η∥ is constant along
curves in S and hence on all of S. The bundles on S are pullbacks under the period map F of
bundles on D, and the calculation takes place on D. In particular, tangent vectors from ξ ∈ TsS
of type (1, 0) are pushed to u = F∗ξ ∈ F∗(TsS) ⊂ T hor

F (s)D = g−1,1
F (s). Summarizing the discussion

so far, we have shown the following.

Lemma 2.2. Let there be given a polarized variation of Hodge structure (H, Q,F) over a quasi-
projective complex manifold S. Let η be a holomorphic section of the endomorphism bundle g(H)
which is of Hodge type (−1, 1).

Suppose that for all u ∈ T hor
F D tangent to the image of the period map at F = F (s), where

s ∈ S, one has [u, v] = 0 for v = η(s). Then ∥η∥ is a plurisubharmonic bounded (and hence
constant) function, Dη = 0 and [ū, v] = 0.

The next step is to relate the Chern connection and the Gauss–Manin connection ∇ as
explained in [CMP17, Proposition 13.1.1]. It uses the Higgs bundle structure on the Hodge
bundle H =

⊕
p+q=k Hp,q. To explain this, note that the Hodge decomposition is only a C∞-

decomposition. However, Hp,q receives a complex structure through the isomorphism Hp,q ≃
Fp/Fp+1. There is a corresponding operator ∂̄ : H → H ⊗ E0,1

S with the property that local
sections v of Hp,q are holomorphic if and only if ∂̄v = 0. The Gauss–Manin connection ∇ can be
decomposed as follows:

∇ = σ + ∂̄ + ∂︸ ︷︷ ︸
D

+σ∗ . (2.5)

Here ∂ : H → H⊗ E1,0
S is a differential operator which preserves Hodge type. The operator

σ : H → H⊗ E1,0
S ,

an endomorphism of H of Hodge type (−1, 1) with values in the (1, 0)-forms, is called the Higgs
field. Its adjoint with respect to the Hodge metric is the linear operator σ∗ ∈ g(H)1,−1 ⊗ E0,1

S .
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By functoriality, a similar decomposition holds for the bundle g(H). Since the tangent bundle
comes from the adjoint representation of G on the endomorphism bundle, it follows from [CMP17,
Proposition 11.4.3] that for any horizontal tangent vector u of type (1, 0) at F ∈ D, we have

∇u = ∂u + ad(u) ,

∇ū = ∂̄u + ad(ū) .

Assuming, as before, that ad(u)v = [u, v] = 0, by Lemma 2.2, we have ∂uv = ∂̄uv = 0 and
[ū, v] = 0. Invoking Lemma 2.2, we may summarize the above discussion as follows.

Proposition 2.3. Let η be a holomorphic section of g(H) of type (−1, 1). At a point F in the
image of the period map, set v = η(F ), and assume that [u, v] = 0 for all vectors u ∈ TFD
tangent to the period map. Then η is parallel with respect to the Gauss–Manin connection.
Moreover, one has [ū, v] = 0.

2.3 Deformations of period maps

The kind of deformations we are interested in are deformations of holomorphic maps φ : X → Y
between complex spaces X and Y that keep X and Y fixed. By definition, these are given by
complex-analytic maps Φ: X × T → Y × T with (T, 0) a germ of an analytic space centred at 0
such that

– Φ(x, t) = (φt(x), t),

– Φ(x, 0) = φ(x).

Such deformations are in one-to-one correspondence to deformations of the graph of φ, and as in
[Ser06, § 3.4.1], the tangent space at φ of such deformations is given by the space H0(X,φ∗T (Y )),
the space of infinitesimal deformations of φ keeping X and Y fixed. Here T (Y ) is the tangent
sheaf of Y , that is, the dual of the cotangent sheaf of Y .

We apply this to period maps F : S → Γ\D. In geometric situations we are interested in
deformations of families of varieties and the corresponding deformations S×T → Γ\D of period
maps F that stay locally liftable and horizontal. We pass to the smallest unramified cover of S
over which there is no monodromy and lift the period map accordingly, say to F̃ : S̃ → D,
and then the space of infinitesimal deformations in which we are interested is the subspace of
H0

(
F̃ ∗T hor(D)

)
consisting of the sections commuting with the monodromy action. In view of

the isomorphism (2.3), such a deformation lifts to a holomorphic section of g(H) which at any
given point F ∈ D in the image of the period map projects to g−1,1. In this situation we can
apply Proposition 2.3 since the condition [u, v] = 0 follows from horizontality (see [CMP17,
Proposition 5.5.1]), and we conclude as follows.

Theorem 2.4. Let S be smooth and quasi-projective and F : S → Γ\D be a period map. The
space of infinitesimal deformations of F remaining horizontal is isomorphic to the space of flat
sections of type (−1, 1) of the bundle g(H). Moreover, at a point F in the image of the period
map, setting v = η(F ), one has [ū, v] = 0 for all tangent vectors u at F tangent to the period
map.

Complementing this result, we remark that according to an argument generalizing the one
given by G. Faltings [Fal83] for weight 1, the corresponding deformation space is smooth at F
(see also the proof of Theorem 6.3(2)).

Proposition 2.5. The space of deformations of a period map F which keep source and target
fixed, and stay locally liftable and horizontal, is smooth at F .
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It follows that F is locally rigid precisely when EndΓ(HC, Q)−1,1 = 0. This gives criteria for
rigidity. From the last property, [ū, v] = 0, we see that the concept of a regularly tangent period
map as introduced in [Pet90] comes up naturally.

Definition 2.6. The period map F is called regularly tangent at s ∈ S if the only vector
v ∈ g−1,1

F (s) with [ū, v] = 0 for all u ∈ F∗TsS is the zero vector. If this is the case for all s, we speak
of a period map which is regularly tangent along S.

Corollary 2.7. A period map F : S → Γ\D is rigid (as a period map) if one of the following
two conditions holds:

– The only flat endomorphism of the underlying local system which is of Hodge type (−1, 1)
is the zero endomorphism.

– The map F is everywhere regularly tangent.

2.4 Examples of rigid period maps

We first recall the following concept.

Definition 2.8. (1) A polarized real variation of weight k has Higgs field of Hodge–Lefschetz
type a if

– the Hodge depth is a; that is, the only non-zero Hodge numbers are in the range (a, k − a),
. . . , (k − a, a);

– the Higgs field in some, or equivalently in a generic direction, has components uj : Hk−j,j
s

→ Hk−j−1,j+1
s for j = a, . . . , k − a which are all isomorphisms.

This implies that the Hodge depth is exactly a and all non-zero Hodge numbers are equal.

(2) A polarized pure variation has (strictly) maximal Higgs field if it is a direct sum of variations
with Higgs field of Hodge–Lefschetz type, the strands of the field.1

Proposition 2.9. A pure variation which has a maximal Higgs field is regularly tangent and
hence rigid.

Proof. Let ξ ∈ TsS be generic so that the components of u = F∗ξ are isomorphisms on each
Hodge–Lefschetz strand of the variation. Assume [ū, v] = 0, which at an extremal Hodge compo-
nent means either ū◦v = 0 or v◦ū = 0. But since the Hodge components of u and its adjoints are
isomorphisms on each strand, this implies that the extremal components of v vanish and hence,
by induction, all components vanish.

The preceding result confirms the result [VZ03, Lemma 4.3] for strictly maximal Higgs fields
over curves. In loc. cit. several examples are given of families {Xs}s∈S of d-dimensional Calabi–
Yau manifolds over a curve for which the middle-dimensional cohomology gives variation with
strictly maximal Higgs field.

We can now enumerate some examples.

(1) Maximal Higgs fields, weight 1. Let (HR, Q) be a weight 1 polarized Hodge structure,
and set V = H1,0. Consider the hermitian inner product h(x, y) = iQ(x, ȳ) on V . The anti-
complex linear map x̄ 7→ h(−, x) induces an identification V = V ∗. The Higgs field becomes
a Q-symmetric endomorphism u ∈ Hom(V, V ∗) and hence can be identified with Pu ∈ S2V ∗,

1For complex variations of Hodge structure, the definition as given in [VZ03] is more complicated, but for real
variations it reduces to the one given here.
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a quadratic homogeneous polynomial function on V . Under this identification, u is an isomor-
phism precisely when Pu has maximal rank. Hence a polarized weight 1 variation has maximal
Higgs field if and only if the corresponding quadratic polynomial has generically maximal rank.

(2) Maximal Higgs fields, weight 2. We recall some general properties of weight 2 polarized
Hodge structures (HR, Q), say V = H2,0, W = H1,1. The hermitian product h(x, y) = Q(x, ȳ)
restricts non-degenerately on V , and under the anti-linear map x̄ 7→ h(−, x), there are iden-
tifications V = V ∗ and W = W ∗. If A : V → W is linear, the anti-linear dual is denoted by
Â : W → V . Suppose that u ∈ End(H,Q) is horizontal, that is, of type (−1, 1). Then we have
V

u1−−→ W =W
u2−−→ V with u2 = û1.

One easily sees that Z := Im(u1) = [Ker(u2)]
⊥ and that u∗ = (u∗1, u

∗
2) is such that u∗1 = 0 on

Z⊥ and u∗2 : V → Z ⊂W =W . Applying this to a weight 2 variation, we see that the subvariation
associated to

(
H2,0, Z,H0,2

)
is of Hodge–Lefschetz type if and only if u1 is an injection. Note

that the Higgs field is zero on Z⊥, and so it can only be of Hodge–Lefschetz type if it vanishes.
Concluding, we can only have a maximal Higgs field if Z⊥ = 0, and then h2,0 = h1,1 = h0,2.

(3) Irreducible modules. If (H,Q) is the typical stalk of a variation of pure polarized Hodge
structure on S and HC is irreducible as a π = π1(S)-module, then EndπC(H,Q) is 1-dimensional,
and since it has a pure Hodge structure, it has type (0, 0). Consequently, we have Endπ,hor(H,Q)=
0, and so, by Corollary 2.7, such a variation is rigid.

As a geometric example, we may consider a Lefschetz pencil of complete intersections in pro-
jective space. By S. Lefschetz’ theory of the variable cohomology (cf. for example [CMP17, § 4.2]),
that cohomology is always absolutely irreducible under the action of the monodromy group. The
period map for the family is an immersion except for a cubic surface or an even-dimensional
intersection of two quadrics (see for example [Fle86, Theorem 2.1]). Hence the Lefschetz pencil
itself is rigid as well.

(4) Abelian varieties (or polarizable weight 1 variations).M.-H. Saito [Sai93] gives a complete
classification of the non-rigid families {As}s∈S of g-dimensional abelian varieties As. From this it
follows that rigid families occur in abundance, as we now show. We can decompose the variation
into irreducible factors. Assume that none of these factors are isotrivial. Then the family is rigid
if one of the following situations occur:

– We have g ⩽ 7.
– The variation is irreducible, and g is prime.
– The variety S is non-compact, the variation is irreducible and some local monodromy operator

at the boundary has infinite order.

Observe that any weight 1 variation coming from curves is irreducible since the polarization
comes from the irreducible theta divisor. So non-isotrivial families of genus g curves have a rigid
period map if for example g is an odd prime number, or if the family has infinite-order local
monodromy at infinity.

(5) K3-type variations. A variation of Hodge structure on a local system is of K3-type if it
has weight 2 and h2,0 = 1. In general such a system splits as S ⊕ T , where S is locally constant.
If T ̸= 0, it is an irreducible variation, again of K3-type. Geometric examples come from the
primitive 2-cohomology of a projective algebraic K3 surface X which splits as

H2
prim(X) = S(X)⊕ T (X) ,

where S(X) is spanned by the classes of the algebraic cycles and T (X) = S(X)⊥. In a family
of K3 surfaces {Xs}s∈S , there is a maximal locally constant part S of the variation given by
algebraic cycles classes, and so the variation splits as S⊕ T . In [SZ91] the summand T is called
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the essential variation. The subset D(S) of the period domain corresponding to projective K3
surfaces for which the Picard lattice contains S has dimension 20 − ρ, where ρ = rank(S). The
generic K3 with period point in D(S) has Picard lattice isomorphic to S. The period map of an
essential variation has D(S) as its target. As a special case of the results of [SZ91], we mention
the following.

Proposition 2.10. An essential K3-type variation of rank k on a quasi-projective variety S with
immersive period map is rigid in each of the following cases:

(i) The rank k is not divisible by 4.
(ii) The variety S is not compact, and some local monodromy operator at infinity has maximal

order of unipotency 3.

(4–5 bis) In addition to the results mentioned under (4) and (5), the rigidity results from
[Pet92] in particular concern abelian varieties and K3-variations.

Proposition 2.11. Families of abelian varieties and K3-type variations having period maps of
rank at least 2 are rigid.

(6) Calabi–Yau manifolds. Proposition 2.10(2) generalizes to Calabi–Yau manifolds.

Theorem ([Pet10, Corollary 3.5]). Let f : X → S be a non-isotrivial family of k-dimensional
Calabi–Yau manifolds over a non-compact curve S, and suppose that there is a point at infinity
where the local monodromy operator for Hk has maximal order of unipotency k + 1. Then f is
rigid.

3. Mixed period domains and Hodge metrics

We recall some material from [Del71, Pea00, Pea01, Pea06, Usu84] on mixed Hodge structures
and related period domains.

3.1 Basics on mixed Hodge structure

Fix a finite-dimensional Q-vector space HQ endowed with a finite increasing weight filtration W
whose graded pieces GrWk are equipped with non-degenerate (−1)k-symmetric real-valued bilinear
forms Qk. These data are denoted by (H,W, {Qk})Q. Associated to these data, the following
groups are relevant: the real Lie group

GR =
{
g ∈ GL(HR) | g(Wk) ⊂Wk, GrW (g) ∈ Aut

(
GrW (HR, Q)

)}
and its complexification GC, as well as an intermediate group

G =
{
g ∈ GC | g induces a real transformation on GrW (H)

}
. (3.1)

A decreasing filtration F on HC together with the data (H,W, {Qk})R define a graded-polarized
mixed Hodge structure if F induces a pure weight k Hodge structure on GrWk polarized by Qk.
A basic tool is the Deligne splitting (or bigrading) [Del71] for the mixed Hodge structure, a unique
functorial bigrading,

H = HC =
⊕
p,q

Ip,q (3.2)

such that F p =
⊕

a⩾p I
a,b, Wk ⊗ C =

⊕
a+b⩽k I

a,b and

Ip,q = Iq,p mod
⊕

a<p,b<q

Ia,b .
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The graded-polarized mixed Hodge structures (H,W, {Qk})R with fixed Hodge numbers hp,q =
dim Ip,q are parametrized by a mixed period domain which we always denote by D.

Remark 3.1. A mixed Hodge structure is split over R if Ip,q = Iq,p. Examples occur if the weight
filtration has only two adjacent weights. Consider for instance mixed Hodge structures with
h0,0 = h−1,−1 = 1, an example of a Hodge–Tate structure. The corresponding mixed domain is C
(while the extension data are isomorphic to Ext(Z(0),Z(1)) = C∗).

In analogy with the pure case, D is a complex manifold. Moreover, D is a homogeneous
domain under the group G defined by (3.1), and so

D = G/GF , GF = stabilizer of F in G .

There are important differences with the pure case since the group GF is in general not compact,
in contrast to GF

R . The real Lie group GR = G ∩ GL(HR) acts only transitively on the locus of
split mixed Hodge structures which need not be a complex manifold. However, if D parametrizes
split mixed Hodge structures, then D = GR/G

F
R = G/GF , although in general we have G ̸= GR

and, while GF
R is compact, GF need not be compact. See [Usu84] for the case of adjacent weights.

As in the pure case, there is a “compact dual” of D,

Ď = GC/G
F
C . (3.3)

By functoriality, any point F ∈ D induces a mixed Hodge structure on End(H) with Deligne
splitting

End(H) =
⊕
p,q

Endp,q(H) ,

Endp,q(H) = {u ∈ End(H) | u(Ir,s) ⊂ Ir+p,s+q for all r, s}
(3.4)

and also on the space gC = Lie(GC) = End(H,W,Q)C of endomorphisms preserving Q:

gr,s = gC ∩ Endr,s(H) , r + s ⩽ 0 .

The restriction on the bigrading comes from the weight-preserving property of elements of GC.

There is also an analogue of (2.1). To see this, first observe that the exponential map u 7→
eu maps a neighbourhood U of 0 biholomorphically to an open neighbourhood of GC, and so
composing with the orbit map yields a biholomorphic map

φ : U ∩ qF
≃−→ Im(φ) ⊂ D , (3.5)

u 7→ eu .F .

Since the Lie algebra of GF
C equals F 0gC =

⊕
r⩾0 g

r,s, the subspace

qF =
⊕
r<0

gr,s (3.6)

is a vector-space complement to F 0gC in gC. Accordingly, dφ(0) induces a natural isomorphism
of complex vector spaces

TF (D) ≃ qF . (3.7)

3.2 Period maps for variations of mixed Hodge structure

Similarly to a pure variation, one can speak of a variation of graded-polarized mixed Hodge
structure on S. The only difference with the pure case is the presence of a weight filtration
with the property that on its k-graded quotients, the Hodge filtration induces a pure polarized
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variation of weight k. Such variations are in one-to-one correspondence with period maps to the
mixed period domain D for the graded-polarized mixed Hodge structure on a typical fibre. The
map sending s to the point F (s) ∈ D corresponding to the mixed Hodge structure on the fibre
over s of the local system is well defined locally, for instance if S is a polydisk or, more generally,
a simply connected manifold. We say that we have a local period map S → D, s 7→ F (s). As in
the pure case, there is a monodromy group Γ, and we get a well-defined (global) period map

F : S → Γ\D .

Again, as in the pure case, variations coming from geometry have an underlying integral structure.
In particular, this implies that Γ acts properly discontinuously on D, and so Γ\D is an analytic
space. For lack of a good reference, we provide a proof of this fact in Appendix B.

The period map is horizontal, meaning that the derivative at s ∈ S sends TsS to the subspace
of the tangent space TF (s)D given by

Gr−1
F g(H)s =

⊕
q⩽1

g−1,q
F (s) .

This is a consequence of Griffiths’ transversality. Since one only uses the Hodge filtration to
describe the tangent bundle as well as the horizontal tangent bundle, the description in the mixed
case parallels that in the pure case. For later reference, we make this more explicit. Using the
induced Hodge filtration on the endomorphism bundle, we have a surjective map of holomorphic
vector bundles on Ď

F−1g(H)
πhor

// T hor(Ď) = Gr−1
F g(H) . (3.8)

Mixed period maps of geometric origin have all of the above properties. See for example [SZ85,
Usu84].

To close this section, we observe that the same argument used in the pure case shows the
following.

Lemma 3.2. For a local period map F : S → D, the image of the tangent space at s is an abelian
subalgebra of gC contained in U−1gF (s) =

⊕
q⩽1 g

−1,q
F (s).

3.3 Mixed Hodge metrics

The mixed Hodge metric h(F,W ) onH is defined as follows. We first declare the splitting (3.2) to be

orthogonal and then define the metric on Ip,q making use of the graded-polarization on GrW H as
follows. The summand Ip,q maps isomorphically onto the subspaceHp,q of GrWp+q. So on classes [z]
of elements z ∈ Ip,q ⊂Wp+q modulo Wp+q−1, the metric hF,W can be defined by setting

h(F,W )(x, y) = (Grh)F ([x], [y]) , x, y ∈ Ip,q . (3.9)

Let ∗ denote the adjoint with respect to the metric hF . Then,

∗ : Endp,q(H) → End−p,−q(H) . (3.10)

The Hodge metric induces a metric on EndH given by

hF (α, β) = Tr(αβ∗) , (3.11)

where β∗ is the adjoint of β with respect to hF,W . The Deligne splitting (3.4) of EndH is then
orthogonal with respect to the associated metric. The induced Hodge metric on the holomorphic
tangent space TD,F of D at F comes from the natural identification (3.7).
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From here on, we make use of the following orthogonal splittings:

gC = n+ ⊕ g0,0F︸ ︷︷ ︸
Lie(GF

C )

⊕ n− ⊕ Λ−1,−1
F︸ ︷︷ ︸

qF

,

where

n+ =
⊕

a⩾0, b<0

ga,bF , n− =
⊕

a<0, b⩾0

ga,bF , Λ−1,−1
F =

⊕
a⩽−1, b⩽−1

ga,bF .

See Figure 1 below.

a

b

g0,0F

(1,−1)

(−1,−1)

(−1, 0)

(−1, 1)

(0,−1)

n+

n−

qF

{

Λ−1,−1
F = Λ̄−1,−1

F

Figure 1. Decomposition of gC

The orthogonal decomposition gC = n+ ⊕ g0,0 ⊕ n− ⊕ Λ−1,−1
F defines respective orthogonal

projectors

π± : gC → n± , π0 : gC → g0,0 , πΛ−1,−1 : gC → Λ−1,−1
F , πq : gC → qF . (3.12)

3.4 Higgs bundles in the mixed setting

As in the pure case, the Hodge filtration F• defines a Higgs bundle structure on a variation of
mixed Hodge structure over S. Using the Deligne splitting (3.2) on the fibre F , the role of Hp,q

is played by

Up
F :=

⊕
q

Ip,qF ≃ F p/F p+1 ,

which cuts out Hp,q on GrWp+qH. These form the fibres of the C∞ bundles

Up =
⊕
q

Ip,q ≃ Fp/Fp+1 . (3.13)

The Higgs structure is slightly more involved than in the pure case: by [Pea00], the Gauss–Manin
connection of H decomposes as

∇ = τ0 + ∂̄ + ∂ + θ . (3.14)
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Here ∂̄ and ∂ are differential operators of type (0, 1) and (1, 0) which preserve Up. The first, ∂̄,
gives the holomorphic structure induced by the C∞-isomorphism Up ≃ Fp/Fp+1 which defines
the Higgs bundle UHiggs. The Higgs field in this setting is the operator θ, an endomorphism
of H sending Up to Up−1 with values in the (1, 0)-forms, and τ0 is an endomorphism sending Up

to Up+1 with values in the (0, 1)-forms. The Higgs field has a geometric interpretation which
directly follows from its construction.

Lemma 3.3. Let F : S → D be a local period map. Under the correspondence (3.7), the Higgs field
in a tangent direction ξ ∈ TsS can be identified with F∗ξ viewed as a degree −1 endomorphism
of UHiggs:

θ1,0ξ = F∗ξ : UHiggs,s → UHiggs,s , F∗ξ ∈ qhorF (s) .

In particular, the period map is injective if and only if for all non-zero directions ξ, the map θ1,0ξ

is not the zero-map.

By functoriality, all this applies to the endomorphism bundle g(H) with induced variation of
mixed Hodge structure. In the latter set-up, we have the following.

Lemma 3.4. Let η be a local holomorphic section of U−1g(H) at s ∈ S and ξ ∈ Ts(S) a tangent
vector of type (1, 0) at s. Set v = η(s) and u = F∗ξ ∈ ghorF (s). Then

∇ξv = ∂ξv + ad(u)v , (3.15)

∇ξ̄v = π(0) ad(π+ū)v . (3.16)

Here the bundle map π(0) stands for the orthogonal projection onto U0.

Proof. First consider the general case of a mixed variation H and u ∈ Up. The operator ∂̄
in (3.14) breaks up in a component of bi-degree (0, 0) and a component τ− of bi-degrees (0,−1)+
(0,−2) + · · ·. Comparing with [Pea00, Lemma 5.11], letting π(p) stands for the orthogonal pro-
jection onto Up, we see that

π(p)π+(ū) = τ− , π(p+1)π+(ū) = τ0 .

Since the action of gF (0) on End(HF (0)) is through the adjoint action, setting p = −1, we see

that τ0 gives rise to π(0) ad(π+(ū))v. Since η is holomorphic, ∂̄η = 0. As to θ, comparing with
[Pea00, equation (5.20)], we see that θ gives ad(u)v. This proves the result.

4. Differential geometry

4.1 The Chern connection on the endomorphism bundle

Let D be the Chern connection on the endomorphism bundle. In [PP19, § 5] we calculated it for
the bundles U (p) and found

D = ∂̄ + ∂ − τ∗− ,

where τ∗− is the adjoint of the operator τ− with respect to the mixed Hodge metric. We al-
ready calculated τ− = π(p)π+(ū), and so τ∗− = π(p)(π+(ū))

∗. By functoriality, this also holds for
the endomorphism bundle using the adjoint action, where we apply it for U (−1). Since in this
situation π(−1) is the same as projection onto q, we get

Dξη = ∂ξv − πq[(π+ū)
∗, v] , u = F∗ξ , v = η(s) . (4.1)
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4.2 Curvature and plurisubharmonicity of Hodge norms

In contrast to the pure case, the biholomorphic bisectional curvature of the horizontal tangent
bundle is not always semi-negative, as expressed by the following theorem.

Proposition 4.1. The bisectional curvature of the Hodge metric in unit directions u, v ∈ U−1gF
equals

K(u, v) = ∥[u−1,1, v]∥2 + ∥πq[(π+ū)∗, v]∥2 − ∥[π+ū, v]∥2 − Reh(πq[π+[u, ū], v]) .

Proof. We use the curvature tensor for the Hodge metric h as given in [PP19, Theorem 3.4]:

Rh(u, ū) = R1 +R2 +R3 ,

R1 = −[πq ad((π+ū)
∗), πq ad(π+ū)] ,

R2 = − ad(π0[u, ū]) ,

R3 = πq(ad(π+[ū
∗, u])) + πq(ad(π+[ū, u])).

To calculate K(u, v) from this, we follow the proof of [PP19, Theorem 4.1] and calculate the
terms h(Rjv, v) for j = 1, 2, 3 of the biholomorphic sectional curvature. With ∥− ∥ = ∥− ∥F the
Hodge norm on EndH, we have

h(R1v, v) = −∥πq[π+(ū), v]∥2︸ ︷︷ ︸
A1

+ ∥πq[(π+ū)∗, v]∥2︸ ︷︷ ︸
A2

,

h(R2v, v) = −h([π0[u, ū], v], v) = A3 ,

h(R3v, v) = −Reh(πq[π+[u, ū], v], v) .

To calculate A3, observe that πq(ad(π0[u, ū])) = ad
([
u−1,1, (u−1,1)∗

])
, and so

A3 = h(R2v, v) =
∥∥[u−1,1, v

]∥∥2 − ∥∥[(u−1,1
)∗
, v
]∥∥2 .

Next, observe that [(u−1,1)∗, v] ∈ U0
F and πq[π+ū, v] ∈ U−1

F have different bi-degrees and hence
are mutually orthogonal with sum equal to [π+ū, v]. Consequently,

−
∥∥[(u−1,1

)∗
, v
]∥∥2−∥πq[π+ū, v]∥2︸ ︷︷ ︸

A1

= −∥[π+ū, v]∥2 .

The result follows.

We now consider equation (2.4) in the present situation. As a consequence of equation (4.1)
and Proposition 4.1, we have

∂u∂ū∥v∥2 = ∥Duη∥2 −K(u, v)

= ∥∂uv(s) + πq[π+ū
∗, v]∥2 − ∥πq[π+ū∗, v]|2 + ∥[π+ū, v]∥2

−
∥∥[u−1,1, v

]∥∥2 +Reh(πq[π+[u, ū], v], v) .

If πq[π+ū
∗, v] and v are orthogonal, this simplifies to give

∂u∂ū∥v∥2 = ∥∂ξv(s)∥2 + ∥[π+ū, v]∥2 −
(∥∥[u−1,1, v

]∥∥2 +Reh(πq[π+[u, ū], v]), v
)
. (4.2)

A direct consequence of (4.2) and Lemma 3.4 is the following variant of Proposition 2.3 in
the mixed case.

Proposition 4.2. Let there be given a graded-polarized mixed variation of Hodge structure
(H, Q,F) over a quasi-projective complex manifold S. Let η be a holomorphic section of
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U−1(g(H)). For s ∈ S, let v = η(s), viewed as a horizontal tangent vector at F = F (s) ∈ D.
Suppose that for all u ∈ T hor

F D tangent to the image of the period map at all images F ∈ D of
the period map, one has [

u−1,1, v
]
= 0 , (4.3)

h(πq[π+ū
∗, v], v) = 0 , (4.4)

Reh(πq[π+[u, ū], v], v) = 0 . (4.5)

Then the function ∥v∥2 is plurisubharmonic, and if it is bounded (and hence constant), we have

∂ξv = [π+ū, v] = 0 . (4.6)

If, moreover, [u, v] = 0, then η is a flat section. Conversely, if η is flat, ∥v(s)∥ is constant
and (4.6) holds.

Remark 4.3. (1) In the cases of interest to us, flat sections are bounded in the mixed Hodge
norm. See Section 5, although this is not the case in general, as shown in Section 5.11.

(2) In the pure case the conditions [u, v] = 0 and
[
u1,1, v

]
= 0 are equivalent, and the two

remaining conditions hold for type reasons.

For easy reference, a section η with the property that for all tangent vectors u along S,
conditions (4.3)–(4.5) hold is called a pluri-subharmonic endomorphism.

To give geometric examples where this phenomenon occurs, we first prove the following.

Proposition 4.4. In the situation of Proposition 4.2, if [u, v] = 0, then the endomorphism η is
plurisubharmonic in the following cases:

(1) the pure case,

(2) R-split variations (for example two adjacent weights) in directions v = v−1,0,

(3) in the setting of unipotent variations (that is, u−1,1 = 0) provided that either Λ−1,−1 = 0
and v = v−1,0, or u ∈ Λ−1,−1 and v−1,1 = 0,

(4) variations with u = u−1,1 + u−1,−1 in directions v = v−1,−1,

(5) two non-adjacent weights, say 0, k with |k| ⩾ 2 with h0,0 = 1 and hp,−p = 0 for p ̸= 0, in
directions v = v−1,−k+1,

(6) a variation of type

I0,0

u−1,−1

��
u0,−2

$$
I−2,0

u0,−2 $$

I−1,−1oo u
−1,1
oo u

−1,1
oo

u−1,−1

��

I0,−2u−1,1
oo

I−2,−2

in directions v = v−1,−1.

In cases (1), (4) and (5), one has K(u, v) ⩽ 0.

In all cases, if ∥η∥ is bounded, then η is parallel for the Gauss–Manin connection.

Proof. The pure case is Lemma 2.2. In the remaining cases, we consider the conditions for v to
be pseudo-plurisubharmonic separately. Condition (4.3) either follows trivially since u−1,1 = 0 ,
or it follows from [u, v] = 0 since u has two Hodge types while v−1,1 = 0.
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For conditions (4.4) and (4.5), we write

u = α+ β + λ , α = u−1,1 , β = u−1,0 , λ = π−1,−1
Λ u .

Observe that

ū = α∗ + ϵ+ δ , ϵ = π(0)(ū) ∈
⊕
q⩾2

g0,−q , δ = π+
(
ū−1,0

)
∈ g0,−1 ,

and so

πq[π+[u, ū], v] = [[β, α∗], v] + [[λ, α∗], v] , [β, α∗] ∈ g0,−1 , [λ, α∗] ∈
⊕
k⩾2

g0,−k .

First consider condition (4.5). In case (3) one has π+[u, ū] = 0. In case (2) the bi-degree of
π+[u, ū] = [β, α∗] is (0,−1), so π+[u, ū] sends v = v−1,0 to 0. In cases (4) and (6) the bi-degree
of π+[u, ū] = [λ, α∗] is (0,−2), so π+[u, ū] sends v = v−1,−1 to zero. In case (5) the bi-degree of
π+[u, ū] is (0,−k), so π+[u, ū] sends v = v−1,1−|k| to zero.

Next, consider (4.4) and note that

(π+ū)
∗ = α+ ϵ∗ + δ∗ , ϵ∗ ∈

⊕
q⩾2

End0,q , δ∗ ∈ End0,1 .

(2) In the R-split case, ϵ = 0. In πq[(π+ū)
∗, v] the terms of bi-degree (−1, 1) come from[

δ∗, v−1,0
]
+ [ϵ∗, πΛ−1,−1v]. This proves (4.4) since then πq[(π+ū)

∗, v] = [u−1,1, v−1,0] + [δ∗, v−1,0]
has bi-degree (−2, 1) + (−1, 1) and hence is orthogonal to ∂ξv since it has bi-degree (−1, 0).

(3) In the unipotent situation we also have ϵ = 0, and now π+ū
∗ = δ∗, which vanishes if

u ∈ Λ−1,−1 and else has pure type (0, 1). But then πq
[
(π+ū)

∗, v−1,0
]
has bi-degree (−1, 1) and

so is orthogonal to v = v−1,0 + vΛ−1,−1 .

(4) In this case ϵ = 0 and δ = 0. We find that (π+ū)
∗ = α, so that πq[(π+ū)

∗, v] =
[
u−1,1, v

]
=

0, which is condition (4.3) and we just proved it.

(5) Here we show that πq[(π+ū)
∗, v] = 0 using the following:

Ik,0I1,k−1I0,k

Ik−1,1−k = 0 .I0,0

a b b = 0

Lemma 4.5. Let a ∈ End0,k and b ∈ g−1,1−k, and let c = πq(a◦b) ∈ g−1,1. Suppose hp,q = 0 unless
p+ q = k ⩾ 1 or p = q = 0. Then c = 0.

Proof. Let x ∈ I1,k−1. Then c(x) ∈ I0,k. To show that c(x) = 0, it suffices to show that c(x) is or-
thogonal to I0,k. Observe that every element y ∈ I0,k is of the form y = z̄ for some z ∈ Ik,0 because
of the assumption on the Hodge numbers. But ±ikh(c(x), y) = Q(c(x), z) = −Q(x, c(z)) = 0 since
b(z) = 0.

We apply this lemma with a = π+ū
∗ = ϵ∗ ∈ End0,k and b = v ∈ g−1,1−k.

(6) The last case is clear from type considerations.

For the assertion about the curvature, observe that the only term in the expression forK(u, v)
given in Proposition 4.1 that causes trouble is πq[(π+ū)

∗, v], which, as we showed above, vanishes
in cases (4) and (5).

638



Deformations and rigidity for mixed period maps

4.3 Horizontal plurisubharmonic endomorphisms: Geometric examples

We indicate how some of the geometric examples mentioned in the introduction fit in with the
cases exhibited in Proposition 4.4.

(1) Normal functions. We explain how to interpret a classical normal function as a variation of
Z-mixed Hodge structure. Suppose that X = Xo is a smooth projective variety. A homologically
trivial algebraic p-cycle Z in X canonically determines an extension

νZ ∈ Ext1MHS(Z(0), H2p+1(X,Z(−p)))

in the category of Z-mixed Hodge structures by pulling back the exact sequence

0 → H2p+1(X,Z(−p)) → H2p+1(X,Z,Z(−p)) → H2p(Z,Z(−p)) → · · ·

along the inclusion Z(0) ↪→H2p(Z,Z(−p)) sending 1 to the class of Z. It is well known (cf. [Car87])
that

Ext1MHS(Z(0), H2p+1(X,Z(−p))) ≃ Jp(X) ,

the intermediate Jacobian of X. The point in JH2p+1(X,Z(p)) corresponding to the cycle Z
under this isomorphism is

∫
Γ, where Γ is a real 2p+ 1 chain that satisfies ∂Γ = Z.

If X = Xo varies in a smooth family Xs with smooth base S, say π : X → S, the groups
H2p+1(Xs,Z(−p)) form a local system H2p+1(−p) defining a variation of Hodge structure. The
intermediate Jacobians vary holomorphically and glue together to give the relative intermediate
Jacobian Jp(X/S).

Suppose that Z is an algebraic cycle in X which is proper over S of relative dimension p
and such that the fibre Zs over s ∈ S is homologous to zero. Then Zs defines a point νZs in the
intermediate Jacobian Jp(Xs). These give a holomorphic section νZ of Jp(X/S), and this is the
classical normal function. It can be viewed as an extension

Ext1VMHS(Z(0), H2p+1(−p))

in the category of variations of mixed Hodge structures. Such a variation has two adjacent
weights 0,−1, and by case (2) of Proposition 4.4, the function given by ∥v−1,0∥ is plurisubhar-
monic. For this example, the term πq[(π+ū)

∗, v] need not vanish, and so we cannot conclude from
Proposition 4.1 that K(u, v) ⩽ 0. However, a more sophisticated argument as in [PP19, proof of
Proposition 6.2] reveals that K

(
u−1,0, v−1,0

)
⩽ 0.

(2) Hodge–Tate variations. Only extension data can be deformed. These are deformations with
v = v−1,−1. Case (3) of Proposition 4.4 shows that

∥∥v−1,−1
∥∥ is harmonic. Of course, the biholo-

morphic curvature is 0 since D is flat. As a simple example of a 1-parameter variation, suppose
h−1,−1 = 2, h0,0 = 1, and let {e1, e2, e3} be a basis of the lattice HZ. Let Fo denote the reference
filtration

I0,0(Fo,W ) = Ce1 , I−1,−1
(Fo,W ) = Ce2 ⊕ Ce3 .

Then the period domain D = G/GFo is isomorphic to the unipotent group UC consisting of the
matrices

ga,b =

1 0 0
a 1 0
b 0 1

 , a, b ∈ C

via the action of UC on Fo. Consider the period map C∗ → Γ\C2 given by u 7→ glog u,0.Fo and
with monodromy group Γ the unipotent group consisting of the elements ga,0 ∈ G for a ∈ Z.

639



G. Pearlstein and C. Peters

This variation clearly has a deformation leading to a variation over C∗ × C given by the map
(u, v) 7→ g log u,v.Fo.

Contrast this with the following example of a biextension of Hodge–Tate type with Hodge
numbers h0,0 = h−1,−1 = h−2,−2 = 1. Let {e1, e2, e3} be a basis of HZ. Let Fo denote the reference
filtration such that

I−2,−2
(Fo,W ) = Ce3 , I−1,−1

(Fo,W ) = Ce2 , I0,0(Fo,W ) = Ce1 .

The period domain D = G/GF is isomorphic to the unipotent group UC consisting of matrices
of the form

ga,b,c =

1 0 0
a 1 0
c b 1

 , a, b, c ∈ C

by the action of UC on Fo. Let Eij denote the 3× 3 matrix whose only non-zero entry is 1 in row
i and column j. Then, the Lie algebra of UC is equal to g−1,−1⊕ g−2,−2, where g−1,−1 is spanned
by u0 = E21 and u1 = E32, while g−2,−2 is spanned by u2 = E31 = [u1, u0]. Now a period map
can be given locally as z 7→ exp(Γ(z)).Fo, where

Γ(z) = f0u0 + f1u1 + f2u2 =⇒ exp(Γ(z)) =

 1 0 0
f0 1 0

f2 +
1
2f0f1 f1 1

 .

If it is injective, we may assume f0 = z. The commutativity condition for horizontal directions
gives df0 ∧ df1 = 0 and so f1 = φ(z) for some function φ with φ(0) = 0. The horizontality
condition gives df2 +

1
2(f1df0 + f0df1) = 0 and so f2 = ψ(z) for some function ψ with ψ(0) = 0.

This implies that a non-trivial injective period map has a curve as its image and hence must be
rigid.

As a concrete example, we take the Hodge–Tate variation associated to the dilogarithm. Here
S = P1 − {0, 1,∞} with global coordinate s. The period map

P1 − {0, 1,∞} → UZ\D

is then given by the functions f0(s) = −(log 2+log(1−s)) and f1(s) = log 2+log s, which vanish
at s = 1

2 . The horizontality condition gives

f2(s) = −1

2

∫ s

1/2

(
log t

1− t
+

log(1− t)

t

)
dt = −1

2
Li2s+

1

2
Li2(1− s) .

(3) Variations of mixed Hodge structures attached to fundamental groups. Let us briefly explain
which variations we are considering. Let X be a smooth algebraic variety, and let Jx be the
kernel of the ring homomorphism Zπ1(X,x) → Z given by

∑
nγγ 7→

∑
nγ for γ ∈ π1(X,x).

There are mixed Hodge structures on Jx/J
n
x which depend on the base point x ∈ X. For n = 3,

these can be explicitly described, following [Hai87, § 6]: the mixed Hodge structure on the dual
HomZ(Jx/J

3
x ,C) is an extension

0 → H1(X) → HomZ
(
Jx/J

3
x ,C

) p
−→ Ker

(
H1(X)⊗H1(X) → H2(X)

)
→ 0

provided that H1(X) is torsion-free. Here we want pure Hodge structures, and this forces H1

to be of pure weight ℓ = 1 or 2 and weight H2 = 2ℓ. Geometric examples include X smooth
projective or X = P1 − Σ for Σ a finite set of points. The extension depends on x, but the two
pure Hodge structures remain fixed, so that u−1,1 = 0, and we are in the unipotent situation
with v = v−1,−ℓ+1 and u = u−1,−ℓ+1. If ℓ = 1, we have Λ−1,−1 = 0 and v = v−1,0, and if ℓ = 2,
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then u, v ∈ Λ−1,−1, and so case (3) of Proposition 4.4 shows that ∥v−1,−ℓ+1∥ is plurisubharmonic.
One can directly verify that we also have K(u−1,−ℓ+1, v−1,−ℓ+1) ⩽ 0.

(4) Nilpotent orbits associated to Kähler classes. As explained in the introduction, these varia-
tions have Hodge types (−1, 1) and (−1,−1). However, v can a priori have any type (−1, k) with
k ⩽ 1. By case (4) of Proposition 4.4, endomorphisms for which v = v−1,−1 are plurisubharmonic,
and then K(u, v) ⩽ 0. Note that for a family of projective manifolds over a quasi-compact base S,
we can assume that we have a variation of integral Hodge structures polarized by a family of
independent flat integral Kähler classes (corresponding to ample divisors).

(5) Higher normal functions. Let π : X → S be a smooth projective family. Recall (see the
introduction) that a higher normal function is an extension in

Ext1VMHS

(
Q(0), Rp−1π∗Q(q)

)
, w = p− 2q − 1 < 0 .

Case (5) of Proposition 4.4 tells us that
∥∥v−1,w+1

∥∥ is plurisubharmonic and K
(
u, v−1,w+1

)
⩽ 0.

(6) Biextensions of bi-degrees (0, 0), (−2,−2), (−2, 0), (−1,−1), (0,−2). Case (6) of Proposi-
tion 4.4 shows that

∥∥v−1,−1
∥∥ is plurisubharmonic. Geometric examples arise as a special case of a

more general construction given by J. Burgos Gill, S. Goswami and the first author in [BGP22],
Two higher Chow cycles in Zp(X, 1) and Zq(X, 1) on a d-dimensional variety X with p+q = d+2
determine in a canonical way a special type of mixed Hodge structure. For a family of surfaces
(d = 2), the resulting variation is of biextension type with bi-degrees (0, 0), (−2,−2), (−2, 0),
(−1,−1), (0,−2). For more details on this example, see Section 5.10.

5. Norm estimates for admissible variations

Let H → ∆∗ be an admissible variation of graded-polarized mixed Hodge structure over the
punctured disk ∆∗ with unipotent monodromy T = eN . Recall that g(H) ⊂ H ⊗ H∗ is the
subvariation of mixed Hodge structure generated by local sections which preserve W and induce
infinitesimal isometries on GrW . In this section we show that in the cases enumerated below, the
mixed Hodge norm of a monodromy-invariant section of g(H) is bounded. In Section 5.11, we
show that ∥N∥ can be unbounded on ∆∗ for higher normal functions.

In [KNU08, § 12], the authors K. Kato, C. Nakayama and S. Usui prove mixed Hodge norm
estimates using their SL2-orbit theorem. However, the metric used in [KNU08] involves an artifi-
cial twisting of the Hodge metric on each GrW and hence is different from the metric used in this
paper. In [HP15] the first author and T. Hayama construct an intrinsic “twisted metric” on D
which gives the same norm estimates as [KNU08] for admissible variations for which the limit
mixed Hodge structure is not split over R. The twisted metric considered in [HP15] is only in-
variant under GR; that is, g ∈ exp

(
Λ−1,−1
(F,W )

)
need not induce an isometry Lg∗ : TF (D) → Tg.F (D)

by left translation. For this reason, the curvature computations of [PP19] do not apply to this
metric on D.

The material in this section assumes familiarity with the definition and basic theory of ad-
missible variations of mixed Hodge structure as outlined in Appendix A.

Before continuing, we emphasize that if (F,W ) is a graded-polarized mixed Hodge structure
with underlying vector space V and

g ∈ GR ∪ exp
(
Λ−1,−1
(F,W )

)
, α ∈ gl(V ) , (5.1)

then

∥α∥(g.F,W ) =
∥∥g−1.α

∥∥
(F,W )

, (5.2)
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where g.α = Ad(g)α. Indeed, if {vj} is a unitary frame with respect to the mixed Hodge met-
ric h(F,W ), then {gvj} is a unitary frame for h(g.F,W ). Therefore,

∥α∥2(g.F,W ) =
∑
j

h(g.F,W )(α(gvj), α(gvj)) =
∑
j

h(F,W )

(
g−1α(gvj), g

−1α(gvj)
)

=
∑
j

h(F,W )

((
g−1.α

)
(vj),

(
g−1.α

)
(vj)

)
=

∥∥(g−1.α
)∥∥

(F,W )
.

In particular, if H is a variation of type (I) or (II) as defined in Section 5.8, it will not be the
case that g(H) is type (I) or type (II). Nonetheless, all of the calculations in Section 5.8 depend
only on (5.2) and a version of the SL2-orbit theorem for nilpotent orbits of type (I) or (II).

By way of notation, z = x + iy throughout this section. In the several variables case, zj =
xj + iyj .

5.1 Variations of pure Hodge structure

Let H → ∆∗ be a variation of pure Hodge structure over the punctured disk with unipotent local
monodromy. By [Sch73, Corollary 6.7], the Hodge norm of an invariant class is bounded. This
result is a consequence of Schmid’s SL2-orbit theorem [Sch73]. If H is a variation of pure Hodge
structure, then so is H ⊗ H∗, and hence if α ∈ H ⊗ H∗ is monodromy invariant, then ∥α∥ has
bounded Hodge norm.

For future use, we recall that by the monodromy theorem (see [Sch73, Theorem 6.1]), if
H → ∆∗ is a variation of pure Hodge structure with unipotent monodromy T = eN , then
N ℓ = 0, where ℓ is the maximum number of successive non-zero Hodge summands of H (for
example, for a family of curves of positive genus, ℓ = 2 since H = H1,0 ⊕H0,1).

Applied to a variation of graded-polarized mixed Hodge structure H → ∆∗ with unipotent
monodromy T = eN , it implies that if GrW2p(H) is pure of type (p, p), then N acts trivially

on GrW2p .

5.2 Local normal form

In connection with deformations of mixed period maps and the derivation of the norm estimates
below, we recall the following [CK89, equation (2.5)] and [Pea00, equation (6.8)].

Let (s1, . . . , sa+b) be holomorphic coordinates on the polydisk ∆a+b and ∆∗a×∆b denote the
complement of the divisor s1 · · · sa = 0. Let Ua denote the a-fold product of the upper half-plane
with Cartesian coordinates (z1, . . . , za) and covering map Ua×∆b → ∆∗a×∆b ⊂ ∆a×∆b given
by the formula

(z1, . . . , za; sa+1, . . . , sb) 7→
(
e2πiz1 , . . . , e2πiza , sa+1, . . . , sb

)
.

Let H be an admissible variation of graded-polarized mixed Hodge structure over ∆∗a×∆b with
unipotent monodromy Tj = eNj about sj = 0. Then (cf. (A.2)), admissibility implies that the
period map of H can be lifted to a holomorphic, horizontal map of the form

F (z1, . . . , za; sa+1, . . . , sb) = e
∑

j zjNj .ψ(s) , (5.3)

where ψ(s) is a holomorphic map ∆a+b → Ď with ψ(0) = F∞.

To continue, define

C =

{∑
j

λjNj | λ1, . . . , λa > 0

}
. (5.4)
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Then, by admissibility, there exists an increasing filtration M(C,W ) such that if N ∈ C, then
M(N,W ) equals M(C,W ). The results of M. Kashiwara show that if H is admissible, then
(F∞,M) is a mixed Hodge structure relative to which each Nj is a (−1,−1)-morphism. Moreover,
if gC is the Lie algebra attached to the period map (5.3) of H, then (F∞,M) induces a graded-
polarizable mixed Hodge structure on gC.

In particular, if gC =
⊕

p,q g
p,q is the Deligne bigrading induced by (F∞,M), then

q =
⊕
p<0

gp,q (5.5)

is a vector space complement to the stabilizer gF∞
C in gC. Therefore, after shrinking ∆a+b as

needed, it follows that there exists a unique q-valued holomorphic function Γ(s) which vanishes
at zero such that

ψ(s) = eΓ(s).F∞ . (5.6)

Let Γ−1 =
∑

q Γ−1,q(s). By [Pea00, equation (6.14) and Theorem 6.16], the function Γ−1(s)
satisfies the integrability condition[

Nj + 2πisj
∂Γ−1

∂sj
, Nk + 2πisk

∂Γ−1

∂sk

]
= 0 (5.7)

for all j and k (with Nℓ = 0 for ℓ > a).

Conversely, given an admissible nilpotent orbit

θ(z1, . . . , za) = e
∑

j zjNj .F∞

and a holomorphic function Γ−1 : ∆
a+b →

⊕
q g

−1,q
C which vanishes at zero and satisfies the

integrability condition (5.7), there exists a unique holomorphic function Γ: ∆a+b → q which
vanishes at 0 such that

F (z1, . . . , za; sa+1, . . . , sb) = e
∑

j zjNjeΓ(s).F∞ (5.8)

arises from the period map of a variation of graded-polarized mixed Hodge structure defined for
Im(z1), . . . , Im(za) ≫ 0 and sa+1, . . . , sb ∼ 0 with Γ−1 =

∑
q Γ

−1,q. We call (5.8) the local normal
form of the period map.

Remark 5.1. A published version of (5.7) and (5.8) for variations of pure Hodge structures
appears in [CF01]. The key point is that the reconstruction of Γ from Γ−1 is really a statement
about the horizontal distribution and hence applies equally well to the mixed case. The full mixed
case appears in [Pea00].

5.3 Hodge–Tate variations

In Section 5.5 it will be shown that if H → ∆∗ is a unipotent variation of mixed Hodge structure
in the sense of R. Hain and S. Zucker, then any flat section of H has bounded mixed Hodge
norm. In this section we prove the following several-variable result.

Theorem 5.2. Let H → ∆∗a × ∆b be an admissible Hodge–Tate variation with unipotent
monodromy Tj = eNj about sj = 0. Let v be a flat section of H. Then, v has bounded Hodge
norm ∥v∥ with respect to the mixed Hodge metric of H. Likewise, if α is a flat section of H⊗H∗,
then it has bounded mixed Hodge norm ∥α∥.

Proof. By [SZ85, Proposition 2.14], if N acts trivially on GrW , thenM =M(N,W ) exists if and
only if N(Wℓ) ⊆Wℓ−2 for all ℓ, wherefrom M =W .
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To continue, recall that H being Hodge–Tate means Hp,q = 0 if p ̸= q. Therefore, by the
monodromy theorem discussed at the end of Section 5.1, it follows that N acts trivially on GrW .

In particular, it follows from the previous paragraph that each Nj = log(Tj) acts trivially
on GrW . By admissibility, it follows that there exists a fixed increasing filtration M =M(C,W )
such that M = M(N,W ) for each N ∈ C. As each N ∈ C acts trivially on GrW , it follows that
M =W and N(Wℓ) ⊂Wℓ−2 for each ℓ. Accordingly, since C consists of arbitrary positive linear
combinations of N1, . . . , Na, it follows that Na(Wℓ) ⊂Wℓ−2 for each index ℓ.

Since M = W , it follows that F∞ ∈ D, and hence ψ(s) also takes values in D. Moreover,
since D classifies Hodge–Tate structures, it follows that for any F ∈ D,

W−2gC =
⊕
p<0

gp,p(F,W ) = Λ−1,−1
(F,W ) , (5.9)

and hence N1, . . . , Na ∈ Λ−1,−1
(F,W ).

Relative to the fixed reference fibre H of H used to define the period map into D, a flat section
of H corresponds to an element of H which is contained in

⋂
j Ker(Nj). Thus, by equation (5.9),

∥v∥(F (z;s),W ) = ∥v∥
(e

∑
j zjNj eΓ(s).F∞,W )

=
∥∥e−∑

j zjNjv
∥∥
(eΓ(s).F∞,W )

= ∥v∥(eΓ(s).F∞,W ) ,

where the middle step is justified by the fact that
∑

j zjNj belongs to W−2gC and by equa-

tion (5.9). As eΓ(s).F takes values in a compact subset of D, it follows from the last line of the
equation that ∥v∥(F (z;s),W ) is bounded. The proof for the case of H⊗H∗ is identical, except that

α ∈
⋂

j Ker(ad(N)j) and e
−

∑
j zjNjv is replaced by e−

∑
j zj ad(N)jα.

5.4 Gradings and splittings of mixed Hodge structures

Let V be a finite-dimensional vector space over a field of characteristic zero. Then, a grading
of V is a semisimple endomorphism Y of V with integral eigenvalues. In particular, a grading
of V determines an increasing filtration

Wk(Y ) =
⊕

ℓ∈λ(Y ),ℓ⩽k

Eℓ(Y ) , (5.10)

where λ(Y ) is the set of eigenvalues of Y and Eℓ(Y ) is the ℓ-eigenspace of Y . IfW is an increasing
filtration of V , we say that Y grades W if W (Y ) = W . In particular, a mixed Hodge structure
(F,W ) determines a grading Y(F,W ) which acts as multiplication by p + q on each non-zero
summand Ip,q of the Deligne bigrading of (F,W ).

As discussed in Remark 3.1, the mixed Hodge structure (F,W ) is split over R if Ip,q = Iq,p.
Equivalently, (F,W ) is split over R if Y(F,W ) = Y(F,W ). In general, we say that a grading Y is

defined over R if Y = Y .

By [CKS86, Proposition 2.20], given a mixed Hodge structure (F,W ), there exists a unique,
real element

δ ∈ Λ−1,−1
(F,W ) (5.11)

such that
(
F̂ ,W

)
=

(
e−iδ.F,W

)
is an R-split mixed Hodge structure. Moreover, δ commutes
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with all morphisms of (F,W ).2 We henceforth call
(
F̂ ,W

)
the Deligne δ-splitting of (F,W ).

Now suppose that θ(z) = ezN .F is a nilpotent orbit of pure Hodge structure of weight k
polarized by Q. Let W = W (N)[−k] and

(
F̂ ,W

)
=

(
e−iδ.F,W

)
be the Deligne δ-splitting of

(F,W ). Then, by [CKS86, equation (3.11)], the linear map δ is an infinitesimal isometry of Q.
Likewise, if θ(z) = ezN .F is an admissible nilpotent orbit of mixed Hodge structure, then the
Deligne δ-splitting of the limit mixed Hodge structure (F,M) is given by an element δ ∈ gR. The
proof of this last statement boils down to showing the compatibility of P. Deligne’s construction
with passage to GrW .

If Y is a grading of W , y > 0 and α ∈ R, we define

yαY = exp(α log(y)Y ) ,

wherefrom yαY acts on GrWk as multiplication by yαk. Accordingly, if γ belongs to the Lie
algebra gC attached to a classifying space D with weight filtration W , then

yαY .γ = Ad
(
yαY

)
γ = yαY γy−αY

induces the same action on GrW as γ. Therefore, yαY .γ ∈ gC. If Y is defined over R, then the
adjoint action of yαY preserves gR.

5.5 Unipotent variations of mixed Hodge structure

Let H be a variation of graded-polarizable mixed Hodge structure over a smooth, complex alge-
braic variety S. Then, H is said to be unipotent [HZ87] if the global monodromy representation
of H is unipotent. Equivalently, the variations of Hodge structure induced by H on GrW are con-
stant [HZ87, equation (1.4)]. The global structure of admissible unipotent variations of mixed
Hodge structure on S is governed by mixed Hodge-theoretic representations of the fundamental
group of S; see [HZ87, Theorem 1.6].

For the remainder of this section, we assume that H → ∆∗ is admissible and unipotent in
the sense of R. Hain and S. Zucker. We prove that the mixed Hodge norm of a flat section of H
is bounded.

To begin, we note that in this case, we again have that M =M(N,W ) equals W (see [SZ85,
Proposition 2.14] or [HZ87, equation (1.5)]). Thus, as in (5.6) and (A.2), we can write the lift of
the period map of H to the upper half-plane in the form

F (z) = ezNeΓ(s).F∞ , (5.12)

where Γ(s) is a q-valued function which vanishes at s = 0.

Remark 5.3. In the unipotent case, the function Γ(s) takes values in the subalgebra W−1q of q
consisting of the elements which act trivially on GrW .

To continue, let
(
F̂∞,M

)
=

(
e−iδ.F∞,M

)
be the Deligne δ-splitting (5.11) of (F∞,M),

keeping in mind that M =W . Let

Y = Y(F̂∞,M) , (5.13)

and note that Y = Y since
(
F̂∞,M

)
is split over R. Note that since [Y,N ] = −2N , we have

y−Y/2eiNyY/2 = eiyN . (5.14)

2This means (−k,−k)-morphisms for any integer k.
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Define

eΓ(s,y) = Ad
(
eiN

)
Ad

(
yY/2

)
eΓ(s) ,

eiδ(y) = Ad
(
yY/2

)
eiδ . (5.15)

Lemma 5.4. If H → ∆∗ is unipotent in the sense of R. Hain and S. Zucker, then (we are using
the linear action and not the adjoint action here)

F (z) = exNy−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞ . (5.16)

Proof. Starting from (5.12), we have

F (z) = exNeiyNeΓ(s).F∞ = exNeiyNeΓ(s)eiδ.F̂∞

= exNy−Y/2eiNyY/2eΓ(s)eiδ.F̂∞ . (5.17)

To further refine (5.17), we note that [N, δ] = 0 as N is a (−1,−1)-morphism of
(
F̂∞,M

)
and

Y
(
F̂ p
∞
)
⊆ F̂ p

∞ since Y = Y(F̂∞,M). Therefore,

eiδ.F̂∞ = y−Y/2yY/2e−iyNeiyNeiδ.F̂∞

= y−Y/2e−iNyY/2eiyNeiδ.F̂∞

= y−Y/2e−iNyY/2eiδeiyN .F̂∞

= y−Y/2e−iNeiδ(y)yY/2eiyN .F̂∞

= y−Y/2e−iNeiδ(y)eiNyY/2.F̂∞

= y−Y/2e−iNeiδ(y)eiN .F̂∞ . (5.18)

Inserting (5.18) into (5.17) and simplifying gives (5.16).

Fix a norm | ∗ | on gC. Observe that since Γ(0) = 0, it follows that |Γ(s, y)| can be bounded
by a constant multiple of |s|(− log |s|)b. Likewise, since

δ ∈ Λ−1,−1
(F∞,M) = Λ−1,−1

(F̂∞,M)
,

it follows that δ decomposes as δ = δ−2 + δ−3 + · · · relative to ad(Y ) since Y = Y(F̂∞,M).

Accordingly, by equation (5.15), it follows that |δ(y)| can be bounded by a multiple of 1/y.

To continue, let F ∈ D and qF =
⊕

p<0 g
p,q
(F,W ). Then, since qF is a vector space complement

to gFC in gC, it follows from the inverse function theorem that there exist a neighbourhood N
of 0 in gC and unique holomorphic functions v : N → qF , ϕ

† : N → gFC such that

u ∈ N =⇒ eu = ev(u)eϕ
†(u) . (5.19)

In particular, by uniqueness, v(0) = ϕ†(0) = 0.

On the other hand, by [Pea00], there exist a neighbourhood Q of 0 in qF and distinguished
real analytic functions γ̃ : Q → gR, λ̃ : Q → Λ−1,−1

(F,W ) and ϕ̃ : Q → gFC such that

v ∈ Q =⇒ ev = eγ̃(v)eλ̃(v)eϕ̃(v) . (5.20)

Combining (5.19) and (5.20), it follows that after shrinking N , we have a real-analytic decom-
position

eu = eγ(u)eλ(u)eϕ(u) (5.21)

upon setting γ(u) = γ̃(v(u)), λ(u) = λ̃(v(u)) and ϕ(u) = ϕ̃(v(u))ϕ†(u).
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Denote the dependence of the functions appearing in (5.21) on F by γF , λF and ϕF . Then,
since the decomposition

V =
⊕
p,q

Ip,q(F,W )

is C∞ with respect to F ∈ D, it follows that γF , λF and ϕF also have a C∞ dependence on F .
Accordingly, a soft analysis argument shows that given Fo ∈ D, there exist a compact set K ⊂ D
containing Fo and constants ρ and C such that

F ∈ K , |u| < ρ =⇒ |γF (u)| , |λF (u)| , |ϕF (u)| < C|u| . (5.22)

For the remainder of this section, we will drop the subscript F from γ, λ and ϕ.

Let Fo = eiN .F̂∞ ∈ D with corresponding compact set K and constants ρ and C as in (5.22).
Let F (y) = eiδ(y).Fo. Then, by our previous estimates of δ(y) and Γ(s, y), it follows that there
exists a constant a > 0 such that |s| = e−2πy < e−2πa implies F (y) ∈ K and |Γ(s, y)| < ρ.
Therefore, by (5.22), we have

eΓ(s,y) = eγ(s,y)eλ(s,y)eϕ(s,y) (5.23)

relative to F (y).

Remark 5.5. Since Γ(s) takes values in W−1gC, so does Γ(s, y). Hence γ(s, y), λ(s, y) and ϕ(s, y)
take values in the subalgebra W−1gC ⊆ gC consisting of elements which act trivially on GrW .

Theorem 5.6. Let H → ∆∗ be a unipotent variation of mixed Hodge structure and v be a flat
section of H. Then, the mixed Hodge norm ∥v∥ is bounded.

Proof. To reduce notation, we write the mixed Hodge norm with respect to (F,W ) as ∥ ∗ ∥F
since W is fixed throughout the proof. Returning to equation (5.16), we have

∥v∥F (z) = ∥v∥exNy−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞
= ∥e−xNv∥y−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥v∥y−Y/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥v∥y−Y/2eΓ(s,y).F (y) (5.24)

because exN ∈ GR, v ∈ Ker(N) and F (y) = eiδ(y)eiN .F̂∞. Inserting (5.23) into (5.24) and noting
that eϕ(s,y) preserves F (y), we deduced that

∥v∥F (z) = ∥v∥y−Y/2eγ(s,y)eλ(s,y).F (y) = ∥v∥y−Y/2eγ(s,y)yY/2y−Y/2eλ(s,y).F (y)

=
∥∥y−Y/2e−γ(s,y)y+Y/2v

∥∥
y−Y/2eλ(s,y).F (y)

=
∥∥exp(−Ad

(
y−Y/2

)
γ(s, y))v

∥∥
y−Y/2eλ(s,y).F (y)

(5.25)

since Ad
(
y−Y/2

)
preserves gR and γ(s, y) takes values in gR. As noted after Lemma 5.4, the norm

|Γ(s, y)| can be bounded by a constant multiple of |s|(− log |s|)b. By (5.22), at the price of adjust-
ing the constant multiplier, the same is true of |γ(s, y)| and |λ(s, y)|. Likewise, as Y is semisimple
with a finite number of eigenvalues,

∣∣Ad(y−Y/2
)
γ(s, y)

∣∣ can be bounded by c.|s|(− log |s|)m with

c ∈ C. Since Ad
(
y−Y/2

)
γ(s, y) takes values in a nilpotent Lie algebra W−1gC, it follows that

exp
(
−Ad

(
y−Y/2

)
γ(s, y)

)
= 1+ ϵ(s, y) ,

where |ϵ(s, y)| can be bounded by a constant multiple of |s|(− log |s|)m for |s| sufficiently small.

To continue, we note that since λ(s, y) takes values in Λ−1,−1
(F (y),W ), Y = Ȳ and Ad

(
y−Y/2

)
acts

on gC, it follows that

Ad
(
y−Y/2

)
λ(s, y) ∈ Λ−1,−1

(y−Y/2.F (y),W )
.
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By construction,

y−Y/2.F (y) = y−Y/2eiδ(y)eiN .F̂∞ = y−Y/2yY/2eiδy−Y/2eiN .F̂∞

= eiδy−Y/2eiNyY/2y−Y/2.F̂∞ = eiδeiyN .F̂∞

since Y preserves F̂∞. Accordingly, since δ commutes with N , we have

y−Y/2.F (y) = eiyN .F∞ .

Putting the last three equations together, we have

y−Y/2eλ(s,y).F (y) = exp
(
Ad

(
y−Y/2

)
λ(s, y)

)
eiyN .F∞ ,

where Ad
(
y−Y/2

)
λ(s, y) ∈ Λ−1,−1

(eiyN .F∞,W )
.

Returning to (5.25), we have

∥|v∥F (z) = ∥(1 + ϵ(s, y))v∥y−Y/2eλ(s,y).F (y) = ∥(1 + ϵ(s, y))v∥exp(Ad(y−Y/2)λ(s,y))eiyN .F∞

=
∥∥exp(−Ad

(
y−Y/2

)
λ(s, y))(1 + ϵ(s, y))v

∥∥
eiyN .F∞

since Ad
(
y−Y/2

)
λ(s, y) ∈ Λ−1,−1

(eiyN .F∞,W )
.

As above,
∣∣Ad(y−Y/2

)
λ(s, y)

∣∣ is bounded by a constant multiple of |s|(− log |s|)m′
. Therefore,

exp
(
−Ad

(
y−Y/2

)
λ(s, y)

)
= 1+ µ(s, y) ,

where |µ(s, y)| can be bounded by a multiple of |s|(− log |s|)m′
for |s| sufficiently small. Thus,

∥v∥F (z) = ∥(1 + µ(s, y))(1 + ϵ(s, y))v∥eiyN .F∞ .

Finally, since N ∈ Λ−1,−1
(F,W ) and v ∈ Ker(N), we have

∥v∥F (z) =
∥∥e−iyN (1 + µ(s, y))(1 + ϵ(s, y))v

∥∥
F∞

=
∥∥e−iyN (1 + µ(s, y))(1 + ϵ(s, y))eiyNv

∥∥
F∞

Therefore, since |y| = (−1/2π) log |s|, it follows that

e−iyN (1 + µ(s, y))(1 + ϵ(s, y))eiyN → 1

as y → ∞. Thus, ∥v∥F (z) is bounded.

Remark 5.7. If A and B are unipotent variations of mixed Hodge structure, then so is A⊗B. In
particular, we can apply the previous theorem to flat sections of H⊗H∗.

5.6 Hodge theory of sl2-pairs

By [CKS86, equation (3.11)], if θ(z) = ezN .F is a nilpotent orbit of pure Hodge structure of
weight k polarized by Q and if W = W (N)[−k] and Y = Y(F,W ), then H = Y − k1 belongs

to the complex Lie algebra of infinitesimal isometries of Q. Likewise, if (F̂ ,W ) is the Deligne
δ-splitting of (F,W ), then Ĥ = Y(F̂ ,W ) − k1 belongs to the Lie algebra of real infinitesimal
isometries of Q.

As discussed in [CKS86, § 2], given a nilpotent element N ∈ gl(V ), there is a bijective
correspondence between gradings H of W (N) such that [H,N ] = −2N and representations
ρ : sl2 → gl(V ) such that

ρ

(
0 0
1 0

)
= N , ρ

(
1 0
0 −1

)
= H . (5.26)
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We call such a pair (N,H) an sl2-pair and (N,H,N+) the associated sl2-triple, where

N+ = ρ

(
0 1
0 0

)
.

If N and H are infinitesimal isometries of Q, then so is N+. Thus, by the previous paragraph,
a nilpotent orbit θ of pure, polarized Hodge structure of weight k determines a representation
of sl2(C) into the complex Lie algebra of infinitesimal isometries of the polarization via the
sl2-pair

(N,Y(F,W ) − k1) . (5.27)

Likewise, the sl2-pair (N,Y(F̂ ,W ) − k1) defines a representation of sl2(R) into the Lie algebra of
real, infinitesimal isometries of the polarization.

5.7 Two theorems of P. Deligne

Let W be an increasing filtration of a finite-dimensional vector space V over a field of char-
acteristic zero. Let EndW (V ) denote the subspace of End(V ) consisting of the elements which
preserve W .

Let GrW =
⊕

k GrWk and Y be the grading of GrW which acts on GrWk as multiplication
by k. For clarity, given an element A ∈ EndW (V ), we let GrW (A) denote the induced action
of A on GrW . Then, an element α ∈ End

(
GrW

)
commutes with Y if and only if there exists an

element A ∈ EndW (V ) such that GrW (A) = α.

More precisely, given a grading Y ′ ofW and element A ∈ EndW (V ), we have a decomposition

A =
∑
k⩾0

A−k , [Y ′, A−k] = −kA−k (5.28)

of A into eigencomponents with respect to ad(Y ′). Moreover, GrW (A0) = GrW (A). Therefore,
given an α ∈ End(GrW ) which commutes with Y and a grading Y ′ of W , there exists a unique
element α0 ∈ EndW (V ) which commutes with Y ′ such that GrW (α0) = α. We call α0 the lift
of α with respect to Y ′.

Now suppose that
(
ezN .F,W

)
is an admissible nilpotent orbit, and letM =M(N,W ). Then,

YM = Y(F,M) is a grading of M which preserves W and satisfies [YM , N ] = −2N . In [Del93],
P. Deligne constructs a grading Y = Y (N,YM ) of W and an associated sl2-pair (N0, YM − Y )
which generalizes the construction (5.27) as follows: Let N be a nilpotent element of EndW (V )
such that M = M(N,W ) exists. Let YM be a grading of M which preserves W and satisfies
[YM , N ] = −2N . Then, it follows from the definition of the relative weight filtration that(

GrW (N),GrW (YM )−Y
)

is an sl2-pair which commutes with Y. Let Ñ+ be the third element of the associated sl2-triple.
By construction, Ñ+ commutes with Y. Given a choice of grading Y ′ ofW , let N0 and N

+
0 be the

corresponding lifts of GrW (N) and Ñ+. Note that the lift of GrW (YM )−Y is just H = YM −Y ′.

Theorem 5.8 (P. Deligne, [Del93]). Let YM be a grading of M which preserves W , that is,
YM (Wk) ⊆ Wk for all k, such that [YM , N ] = −2N . Then, there exists a unique grading Y =
Y (N,YM ) of W such that [Y, YM ] = 0 and[

N −N0, N
+
0

]
= 0 .

Another way of stating this result is that there exists a unique choice of grading Y of W
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which commutes with YM such that (N0, YM − Y ) is an sl2-pair with the following property: If

N =
∑
k⩾0

N−k , [Y,N−k] = −kN−k

is the decomposition of N with respect to ad(Y ), then for each positive integer k, the linear map
N−k is either zero or a vector of highest weight k − 2 for the associated adjoint representation
of sl2. In particular, N−1 is either zero or a vector of highest weight −1 with respect to the
sl2-triple

(
N0, YM −Y,N+

0

)
. Therefore, N−1 = 0. Likewise, N−2 commutes with N0, YM −Y and

N+
0 since it is a vector of highest weight zero for the adjoint representation.

Lemma 5.9. If
(
ezN .F,W

)
is an admissible nilpotent orbit,M =M(N,W ) and Y = Y (F, Y(F,M))

is the grading of Theorem 5.8, then Y preserves F .

Proof. See [Pea01, Theorem 4.15].

Corollary 5.10. Let
(
ezN .F,W

)
be an admissible nilpotent orbit with limit mixed Hodge

structure (F,M) split over R. Let Y = Y (N,Y(F,M)) andN = N0+N−2+· · · be the corresponding
decomposition of N with respect to ad(Y ). Then, Y = Y and

Y(ezN0 .F,W ) = Y

for Im(z) > 0.

Proof. By definition N = N , whereas Y(F,M) = Y(F,M) since (F,M) is split over R. Therefore,
by virtue of the linear algebraic nature of P. Deligne’s construction, Y = Y . By Lemma 5.9, the
grading Y preserves ezN0 .F , and hence Y = Y(ezN0 .F,W ) since Y = Y .

One important consequence of W. Schmid’s SL2-orbit theorem [Sch73] is the construction
of another splitting operation (F,W ) 7→

(
e−ξ.F,W

)
, which we call the sl2-splitting, on the

category of mixed Hodge structures. If (F,W ) 7→
(
e−iδ.F,W

)
is the Deligne δ-splitting, then ξ

(respectively, δ) can be expressed as universal Lie polynomials in the Hodge components of δ
(respectively, ξ) relative to (F,W ).

Theorem 5.11 (P. Deligne, [Del93]). Let
(
ezN .F,W

)
be an admissible nilpotent orbit with limit

mixed Hodge structure (F,M) split over R. Let Y = Y (N,Y(F,M) and N = N0 +N−2 + · · · be

the decomposition of N into eigencomponents with respect to ad(Y ). Then,
(
ezN0 .F,W

)
is the

sl2-splitting of
(
ezN .F,W

)
and eξ = ezNe−zN0 .

Proof. See [BP13]. For the simpler statement that

eiyNe−iyN0 ∈ exp
(
Λ−1,−1

(eiyN0 .F,W )

)
, (5.29)

see the last section of [KP03].

Remark. For proofs and an extensive discussion of these results and their history, see [BP13,
BPR17] and references therein.

5.8 Normal functions and biextensions

Recall (cf. [Pea06]) that a variation is of type (I) if there exists an integer k such that its Hodge
numbers hp,q are zero unless p+q = k, k−1 (that is, GrW has exactly two non-zero weight-graded
quotients which are adjacent). We say that a variation is of type (II) if there is an integer k such
that hp,q = 0 unless (p, q) = (k, k), (k−1, k−1) or p+q = 2k−1 and hk,k, hk−1,k−1 are non-zero.
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To continue, given a classifying space D for period maps of type (I) or (II), with ambient
vector space V (contrasting previous usage of H), we let H be the subgroup of G consisting of
elements which induce real automorphisms on Wk/Wk−2 for each index k. In the case where D
is a classifying space of type (I), H = GR. When D is of type (II), H will also contain the
complex subgroup exp(W−2(gC)). Moreover, by the form of the Hodge diamond of a type (II)
mixed Hodge structure, it follows that

Λ−1,−1
(F,W ) =W−2(gC) (5.30)

for any element F ∈ D. For this reason (see [Pea06, Theorem 2.19]), it follows that H acts by
isometries on D. Set h = Lie(H).

Theorem 5.12 (see [Pea06, Theorem 4.2]). Let ezN .F be an admissible nilpotent orbit of type (I)
or (II), with relative weight filtration M = M(N,W ) and δ-splitting (F,M) =

(
eiδ.F̂ ,M

)
. Let(

N0, H,N
+
0

)
denote the sl2-triple attached to the nilpotent orbit ezN .F̂ by Theorem 5.11 and

N = N0 + N−2 denote the corresponding decomposition of N with respect to adY , where
H = Y(F̂∞,M) − Y . (Of course, N−2 = 0 for variations of type (I).) Then, there exist an element

ζ ∈ h ∩Ker(N) ∩ Λ−1,−1

(F̂ ,M)

and a distinguished real analytic function g : (a,∞) → H such that

(a) eiyN .F = g(y)eiyN .F̂ ;

(b) g(y) and g−1(y) have convergent series expansions about ∞ of the form

g(y) = eζ
(
1 + g1y

−1 + g2y
−2 + · · ·

)
,

g−1(y) =
(
1 + f1y

−1 + f2y
−2 + · · ·

)
e−ζ

with gk, fk ∈ Ker
(
(adN0)

k+1
)
∩Ker(adN−2).

Corollary 5.13 (see [Pea06, Corollary 4.3]). Let H → ∆∗ be an admissible variation of type (I)
or (II), with period map F (z) : U → D and nilpotent orbit ezN .F . Then, adopting the notation
of Theorem 5.12, there exists a distinguished, real analytic function γ(z) with values in h such
that, for Im(z) sufficiently large,

(i) F (z) = exNg(y)eiyN−2y−H/2eγ(z).Fo;

(ii) |γ(z)| = O
(
Im(z)βe−2π Im(z)

)
as y → ∞ with x restricted to a finite subinterval of R, for

some constant β ∈ R,

where Fo = eiN0 .F̂ .

Lemma 5.14. If H is a variation of type (II), then α ∈ gC ∩ Ker(adN) if and only if α ∈
gC ∩Ker(adN0) ∩Ker(adN−2).

Proof. Since N = N0+N−2, clearly Ker(adN0)∩Ker(adN−2) ⊆ Ker(adN). Conversely, suppose
α ∈ gC ∩Ker(adN). The non-zero weight-graded quotients of gl(V )W are

GrWℓ (V ⊗ V ∗) ∼=
⊕

j+k=ℓ

GrWj (V )⊗GrWk (V ∗) , ℓ ⩽ 0 ,

from which it follows that the only non-zero weight-graded quotients of gl(V )W occur in weights
0, −1 and −2. Using ad(Y ), we can write α = α0 + α−1 + α−2. Then,

0 = [N,α] = [N0 +N−2, α0 + α−1 + α−2]
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and hence [N0, α0] = 0, [N0, α−1] = 0, [N−2, α−1] = 0, [N−2, α−2] = 0 and

[N0, α−2] + [N−2, α0] = 0 .

By the monodromy theorem discussed at the end of Section 5.1, it follows that N acts trivially on
GrW0 and GrW−2. Therefore, N0(V ) ⊆W−1 and hence α−2(N0(V )) = 0. Likewise, α−2(V ) ⊆W−2

and GrW−2 = W−2/{0}. As such, N0(α−2(V )) = 0. This shows that [N0, α−2] = 0 and hence
[N−2, α0] = 0 as well by the previous equation.

Corollary 5.15 (cf. [Pea06, Theorem 4.7]). Let H → ∆∗ be an admissible variation of type (I)
or (II) with unipotent monodromy T = eN . Let α ∈ g(V ) be a flat, global section which acts by
infinitesimal isometries of the graded-polarizations. Then, α has bounded mixed Hodge norm.

Proof. In the notation of Corollary 5.13, the statement boils down to computing the asymptotic
behaviour of

∥α∥F (z) = ∥α∥exNg(y)eiyN−2y−H/2eγ(z).Fo

for α ∈ Ker(ad N) in some vertical strip of width 1 in the upper half-plane. By part (b) of
Theorem 5.12, it follows that g(y) and eiyN−2 commute. Accordingly, by (5.30) and (5.2) and the
fact that g(y) takes values in GR, it follows that

∥α∥F (z) =
∥∥e−xN .α

∥∥
g(y)eiyN−2y−H/2eγ(z).Fo

= ∥α∥g(y)eiyN−2y−H/2eγ(z).Fo

=
∥∥e−iyN−2g−1(y).α

∥∥
y−H/2eγ(z).Fo

=
∥∥g−1(y)e−iyN−2 .α

∥∥
y−H/2eγ(z).Fo

.

Again, for emphasis, here GC acts linearly on filtrations while it acts by the adjoint action on GC
and gC. By the previous lemma, α ∈ Ker(ad(N0))∩Ker(ad(N−2)), and so the preceding equation
simplifies to

∥α∥F (z) =
∥∥g−1(y).α

∥∥
y−H/2eγ(z).Fo

.

Returning to part (b) of Theorem 5.12, it follows upon decomposing fk into isotypical components
with respect to

(
N0, H,N

+
0

)
that fk occurs in components of highest weight at most k since

fk ∈ Ker
(
(ad(N0))

k+1
)
. Therefore, since ζ ∈ Ker(ad(N)) and fk is the coefficient of y−k in the

expansion of f(y) = g−1(y), it follows that

g̃−1(∞) = lim
y→∞

Ad
(
yH/2

)
g−1(y) (5.31)

exists as an element of the Lie group H.3 Thus,

∥α∥F (z) =
∥∥g̃−1(y)yH/2.α

∥∥
eγ(z).Fo

,

where g̃−1(y) = Ad
(
yH/2

)
g−1(y). Finally, since α ∈ Ker(adN0), it follows that y

H/2α converges
as y → ∞. As γ(z) → 0 as y → ∞ with x constrained to a finite interval, the proof is now
complete.

5.9 Ext1(R(0),weight −2)

LetA and B be variations of pure Hodge structure of respective weights a and b. Assume a = b+2.
Then,

Ext1AVMHS(A,B) ∼= Ext1AVMHS(R,A∗ ⊗B) ,

3There is a typo at the end of the proof of [Pea06, Theorem 4.7]; the polynomial Ad
(
Y H/2

)
fky

−k has no constant

term in y−1/2.
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where R = Z, Q or R and AVMHS is the category of admissible variations of graded-polarizable
mixed Hodge structure. Accordingly, for the remainder of this section, we will consider a variation
of Hodge structure H → ∆∗ of weight −2 and an admissible variation H ∈ Ext1AVMHS(R(0),H),
with unipotent monodromy T = eN .

Theorem 5.16. If v is a flat section of H, then ∥v∥ is bounded.

Proof. Let (F,M) denote the δ-splitting of the limit mixed Hodge structure of H. Let Y =
Y (N,Y(F,M)) be the grading of W constructed in Theorem 5.8. Then, by virtue of the short
length of the weight filtration W of H, we have N = N0 +N−2 with respect to ad(Y ).

If N = N−2, the variation is unipotent in the sense of R. Hain and S. Zucker, and the result
follows from Section 5.5. If N = N0, the result follows from Section 5.12 below. It remains to
consider the case where N = N0+N−2 with both N0 and N−2 non-zero. In this case, we will show
that v is a section of W−2(H) = H, and hence the result follows from W. Schmid’s SL2-orbit
theorem.

To complete the proof, we recall that [N0, N−2] = 0, Ȳ = Y and Y preserves F by Lemma 5.9.
For the remainder of this section, we assume that both N0 and N−2 are non-zero. From this, we
will derive a contradiction unless v ∈W−2.

By the monodromy theorem, N acts trivially on GrW0 , and hence N0 acts trivially on E0(Y ) ∼=
GrW0 . By Corollary 5.10, we have Y = Y(eiN0 .F,W ), and hence if e0 is a generator of I0,0

(eiN0 .F,W )
,

then N0(e0) = 0 and

e0 = e−iN0(e0) ∈ F 0 .

Since [Y, Y(F̂ ,M)] = 0, it follows that (N0, Y(F,M) − Y ) restricts to a trivial sl2-pair on E0(Y ).
Therefore, e0 ∈M0. As such,

e0 ∈ F 0 ∩ F 0 ∩M0 = I0,0(F,M) .

Accordingly, N−2(e0) ∈ I−1,−1
(F,M) . Moreover, since [N0, N−2] = 0 and N0(e0) = 0, it follows that

N0N−2(e0) = N0N−2(e0)−N−2N0(e0) = [N0, N−2](e0) = 0 .

Thus, N−2(e0) ∈ Ker(N0) ∩ I−1,−1
(F,M) ∩W−2. Moreover, if N−2(e0) = 0, then N = N0 due to the

short length. By assumption, N−2 ̸= 0, and hence N−2(e0) ̸= 0.

Now suppose v ∈ Ker(N) and v = v0 + v−2 with vj ∈ Ej(Y ). If v0 = 0, we are done.
Otherwise, after rescaling, we can assume v0 = e0. To continue, observe that N−2(v−2) = 0 by
the short length of W . Therefore, since N0(e0) = 0,

N(v) = N−2(e0) +N0(v−2) = 0 ,

and hence

N−2(e0) ∈ Ker(N0) ∩ Im(N0) ∩ I−1,−1
(F,M) ∩W−2 . (5.32)

As we must also have N−2(e0) ̸= 0, the following lemma completes the proof.

Lemma 5.17. For (F,M) as above, Ker(N0) ∩ Im(N0) ∩ I−1,−1
(F,M) ∩W−2 = 0.

Proof. This is a statement about the SL2-orbits of pure Hodge structure induced by
(
ezN .F,W

)
on W−2. By [Sch73], these are classified as follows:
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(a) We have C2 = span(e, f) with e = ē type (1, 1) and f = f̄ type (0, 0) with respect to the
limit mixed Hodge structure, and

N =

(
0 0
1 0

)
with respect to the basis {e, f}. The resulting nilpotent orbit is pure of weight 1.

(b) We have E(p, q) = span(e, f) with p > q, N acting trivially, e = ē, f = f̄ and e+ if of type
(p, q) with respect to the limit mixed Hodge structure.

(c) We have R(p) of rank 1 of pure type (−p,−p) and N acting trivially.

Then, every SL2-orbit of pure Hodge structures is a direct sum of factors which are tensor
products of the form Symm

(
C2

)
⊗ R(p) and Symn

(
C2

)
⊗ E(p, q), where m and n ⩾ 0 and

Sym0
(
C2

)
= R(0).

To continue, we observe that in the language of the orbit types (a)–(c), the lemma asserts
that

Ker(N) ∩ Im(N) ∩ I−1,−1 = 0 (5.33)

(relative to the limit mixed Hodge structure) as N0 becomes just N for the induced orbit onW−2.

Next, we note that the factor Symn
(
C2

)
⊗ E(p, q) never contributes any Tate classes to the

limit mixed Hodge structure, so we need only consider factors of the form Symm
(
C2

)
⊗ R(p).

Moreover, since Symm
(
C2

)
underlies a nilpotent orbit of weight m, we must have p = m+ 1 in

order to obtain a nilpotent orbit of pure Hodge structure of weight −2.

To finish the proof of the lemma, observe that on the factor Symm
(
C2

)
,

Ker(N) ∩ Im(N) = Cfm ,

where m must be greater than 0 (in order to have a non-trivial N action). Moreover, fm be-
longs to the component I0,0 of the limit mixed Hodge structure of Symm

(
C2

)
. Accordingly,

Ker(N)∩ Im(N) is contained in the component I−m−1,−m−1 of the limit mixed Hodge structure
of Symm

(
C2

)
⊗ R(m+ 1). As m > 0, equation (5.33) holds.

We now consider the variation g(H), whereH ∈ Ext1AVMHS(R(0),H) withH pure of weight−2.
Since H only has weights 0 and −2, whereas H∗ has weights 0 and 2, it follows that H⊗H∗ has
weights −2, 0 and 2. Therefore, g(H) only has weights 0 and −2 since g(H) is the subvariation
consisting of elements which preserve the weight filtration and induce infinitesimal isometries
of the graded polarizations. Therefore, Theorem 5.16 applies to g(H) upon viewing it as an
extension of R(0) by a variation of pure Hodge structure of weight −2.

5.10 Biextensions arising from higher height pairings

LetX be a smooth, complex projective variety of dimension d. Following the notation of [BGP22],
let Z ∈ Zp(X, 1)00 and W ∈ Zq(X, 1)00 be higher cycles representing elements of CHp(X, 1) and
CHq(X, 1), respectively.

Theorem 5.18 ([BGP22, Theorem A]). Assume that

(i) p+ q = d+ 2,

(ii) δZ = δW = 0,

(iii) the intersection of Z and W satisfies some extra technical conditions.

654



Deformations and rigidity for mixed period maps

Then, there is a canonical mixed Hodge structure BZ,W attached to Z and W from which one
can extract a Hodge-theoretical height pairing ⟨Z,W ⟩Hodge. Moreover, if Z and W both have real
regulator zero, then

⟨Z,W ⟩Hodge = ⟨Z,W ⟩Arch ,

where ⟨Z,W ⟩Arch is the Archimedean part of an intersection pairing on arithmetic Chow groups.

The mixed Hodge structure BZ,W has weight-graded quotients GrW0
∼= Z(0), GrW−2 and

GrW−4
∼= Z(2). Let X → S be a family of smooth complex projective varieties and Z, W be

a flat family of higher cycles over S such that ⟨Zs,Ws⟩ is defined over a Zariski dense open
subset of S. In this way, the construction of Theorem 5.18 produces an admissible variation
of mixed Hodge structure H over a Zariski dense open set of S with weight-graded quotients
GrW0 (H) ∼= Z(0), GrW−2(H) and GrW−4(H) ∼= Z(2).

Lemma 5.19. Let (F,W ) be a mixed Hodge structure with underlying vector space V and
weight-graded quotients GrW0

∼= Z(0), GrW−2 and GrW−4
∼= Z(2). Let gC(U) denote the Lie algebra

of elements of gl(U) which preserve W (U) and induce infinitesimal isometries of GrW (U), where
U =W−2(V ), V or V/W−4. Then, since elements of gC(V ) preserve W , we have an induced map

q : gC(V ) → gC(V/W−4)

and a restriction map

r : gC(V ) → gC(W−2) .

By abuse of notation, let q(F ) and r(F ) denote the mixed Hodge structure induced by (F,W )
on gC(V/W−4) and gC(W−2). Let β ∈ gC be horizontal with respect to F . Then,

∥β∥F ⩽ ∥q(β)∥q(F ) + ∥r(β)∥r(F ) . (5.34)

Proof. The key point is that W−4g(V ) is pure of type (−2,−2) and W−3g(V ) = W−4g(V ).
Therefore, if β =

∑
p,q β

p,q denotes the decomposition of β into Hodge components with respect
to (F,W ), then βp,q = 0 unless p ⩾ −1. As such, βp,q = 0 unless p+ q = 0 or p+ q = −2. Thus,
(5.34) captures the mixed Hodge norm of

∑
p+q=−2 β

p,q accurately and double counts the mixed
Hodge norm of

∑
p+q=0 β

p,q.

Now suppose that α is a horizontal section of g(H), then pointwise application of Lemma 5.19
shows that

∥α∥H ⩽ ∥q(α)∥g(H/W−4H) + ∥r(α)∥g(W−2H) . (5.35)

Corollary 5.20. Let H → ∆∗ be an admissible variation of graded-polarized mixed Hodge
structure over the punctured disk with unipotent monodromy. Assume that H has weight-graded
quotients GrW0

∼= Z(0), GrW−2 and GrW−4
∼= Z(0). Let α be a flat, horizontal section of g(H). Then,

α has bounded mixed Hodge norm.

Proof. By (5.35), the norm ∥α∥H is bounded by ∥q(α)∥ and ∥r(α)∥. Moreover, q(α) and r(α)
are flat since α is flat and W is flat. Therefore, the result follows from Theorem 5.16 and the last
paragraph of Section 5.9.

5.11 A case where norm estimates fail

In this section we show via admissible nilpotent orbits that in the case of a higher normal function
with weight-graded quotients GrW0 = Z and GrW−k for k > 2, the norm estimates required to obtain
rigidity need not hold.
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Lemma 5.21. Let
(
ezN .F,W

)
be an admissible nilpotent orbit with limit mixed Hodge structure

(F,M) split over R. Let Y = Y (N,Y(F,M)) and N = N0 + · · · + N−k relative to ad(Y ) with
N−k ̸= 0. Then, ∥N∥(ezN .F,W ) = ∥N∥(eiyN .F,W ), and there a non-zero constant K such that

lim
y→∞

y(2−k)/2∥N∥(eiyN .F,W ) = K .

In particular, ∥N∥(ezN .F,W ) is bounded for k = 2 and unbounded for k > 2.

Proof. Note that N and H = Y(F,M) − Y are elements of gR. Since Y = Y , it follows that

N0 = N0. As GrW (N0) = GrW (N), it follows that N0 ∈ gR. Thus, omitting W from the mixed
Hodge norm as in (5.24), we have

∥N∥ezN .F = ∥N∥exNeiyN .F =
∥∥e−xN .N

∥∥
eiyN .F

= ∥N∥eiyN .F = ∥N∥eiyNe−iyN0eiyN0 .F

=
∥∥eiyN0e−iyN .N

∥∥
eiyN0 .F

,

where the last step is justified by equation (5.29). To continue, we note that since [H,N0] = −2N0,
we have

eiyN0 = y−H/2eiN0yH/2 = y−H/2.eiN0 , (5.36)

wherefrom

eiyN0 .F = y−H/2eiN0yH/2.F = y−H/2eiN0 .F

since H preserve F . Moreover, as a consequence of the SL2-orbit theorem in the pure case,
Fo = eiN0 .F ∈ D. Therefore,

∥N∥ezN .F =
∥∥eiyN0e−iyN .N

∥∥
eiyN0 .F

=
∥∥eiyN0 .N

∥∥
eiyN0 .F

=
∥∥eiyN0 .N

∥∥
y−H/2.Fo

=
∥∥yH/2eiyN0 .N

∥∥
Fo

=
∥∥eiN0yH/2.(N0 + · · ·+N−k)

∥∥
Fo
,

where the last step is justified by (5.36). Accordingly, as [H,N−j ] = (j − 2)N−j for j = 0, . . . , k,
it follows that ∥N∥ezN .F is asymptotic to a constant multiple of y(k−2)/2 for large y.

5.12 The case N = N0

Let H → ∆∗ be an admissible nilpotent orbit with unipotent monodromy T = eN . Let (F∞,M)
be the limit mixed Hodge structure of H with δ-splitting(

F̂∞,M
)
=

(
e−iδ.F∞,M

)
. (5.37)

Let YM = Y(F̂∞,M) and Y = Y (N,YM ). Let

N = N0 +N−2 + · · · (5.38)

denote the decomposition of N into eigencomponents for adY . Let(
N0, H,N

+
0

)
, H = YM − Y (5.39)

be the associated representation of sl2(R) of Theorem 5.8.

In this section we prove the following result, by essentially modifying the unipotent case
accordingly.

Theorem 5.22. If N = N0 and v is a flat, global section of H, then v has bounded mixed Hodge
norm.
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As the first step towards the proof of Theorem 5.22, we note that since N = N0, (N0, H) is
an sl2-pair and [N, δ] = 0, it follows that δ is a sum of lowest-weight vectors for

(
N0, H,N

+
0

)
.

Therefore,

δ = δ0 + δ−1 + · · · , [H, δ−j ] = −jδ−j (5.40)

relative to the eigenvalues of adH. Let

δ(y) = Ad
(
yH/2

)
δ = yH/2.δ =

∑
k⩾0

δ−ky
−k/2 . (5.41)

Lemma 5.23. In the notation of (5.37)–(5.41), if N = N0, then

δ(∞) := lim
y→∞

δ(y) = δ0 (5.42)

and eiδ(∞)eiN .F̂∞ ∈ D.

Proof. Equation (5.42) follows directly from (5.41). To prove that the point eiδ(∞)eiN .F̂∞ belongs
toD, observe that it is sufficient to consider only the pure case since the property of being a mixed
Hodge structure is only about the induced filtrations on GrW . Accordingly, for the remainder
of this proof only, we assume that ezN .F∞ is a nilpotent orbit of pure Hodge structure. By
W. Schmid’s SL2-orbit theorem, we have

yH/2eiδeiyN .F̂∞ = yH/2g(y)eiyN .F̂∞ ,

which we can rewrite as

eiδ(y)eiN .F̂∞ = yH/2g(y)y−H/2eiN .F̂∞ (5.43)

using eiyN .F̂∞ = y−H/2eiN .F̂∞. Mutatis mutandis, the argument of equation (5.31) shows that

g̃(∞) = lim
y→∞

yH/2g(y)y−H/2

exists and is an element of GR (since we are in the pure case). By W. Schmid’s SL2-orbit theorem,
eiN .F̂∞ ∈ D. Taking the limit of (5.43) as y → ∞, it follows that

eiδ(∞)eiN .F̂∞ = g̃(∞)eiN .F̂∞ ∈ D ,

as required.

To continue, let F (z) = ezNeΓ(s).F∞ be the local normal form of the period map of H. Then,
in analogy with equation (5.17), we have

F (z) = exNeiyNeΓ(s).F∞

= exNeiyNeΓ(s)eiδ.F̂∞

= exNy−H/2eiNyH/2eΓ(s)eiδ.F̂∞ . (5.44)

In analogy with the derivation of (5.18), since [H,N ] = −2N and H preserves F̂∞, we have

eiδ.F̂∞ = y−H/2yH/2e−iyNeiyNeiδ.F̂∞

= y−H/2e−iNyH/2eiyNeiδ.F̂∞

= y−H/2e−iNyH/2eiδeiyN .F̂∞

= y−H/2e−iNeiδ(y)yH/2eiyN .F̂∞

= y−H/2e−iNeiδ(y)eiNyH/2.F̂∞

= y−H/2e−iNeiδ(y)eiN .F̂∞ . (5.45)
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Inserting (5.45) into (5.44) yields

F (z) = exNy−H/2eiNyH/2eΓ(s)y−H/2e−iNeiδ(y)eiN .F̂∞

= exNy−H/2eΓ(s,y)eiδ(y)eiN .F̂∞ , (5.46)

where

eΓ(s,y) = eiNyH/2eΓ(s)y−H/2e−iN = exp
(
eiNyH/2.Γ(s)

)
. (5.47)

In particular, since Γ(0) = 0 and |s| = e−2πy, there exist positive constants C, k and a such that

|s| < a =⇒ |Γ(s, y)| < C|s|(− log |s|)k (5.48)

with respect to a choice of fixed norm | ∗ | on gC.

Proof of Theorem 5.22. Since v ∈ Ker(N), it follows from (5.46) that

∥v∥F (z) = ∥v∥exNy−H/2eΓ(s,y)eiδ(y)eiN .F̂∞

=
∥∥e−xN .v

∥∥
y−H/2eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥v∥y−H/2eΓ(s,y)eiδ(y)eiN .F̂∞
(5.49)

since N ∈ gR. To continue, observe that v ∈ Ker(N) implies that v =
∑

k⩾0 v−k and H.v−k =
−kv−k, where the number of non-zero terms is finite since H has finite rank. Therefore,

v(y) := yH/2.v =
∑
k⩾0

v−ky
−k/2 (5.50)

is a vector-valued polynomial in y−1/2, and hence

∥v∥F (z) =
∥∥yH/2.v

∥∥
eΓ(s,y)eiδ(y)eiN .F̂∞

= ∥v(y)∥eΓ(s,y)eiδ(y)eiN .F̂∞
.

To finish the proof, recall that D is an open subset of Ď in the complex-analytic topology, and GC
acts transitively on Ď by biholomorphisms. In particular, since eiδ(∞)eiN0 .F̂ ∈ D by Lemma 5.23,
it follows from equation (5.41) and the estimate (5.48) that there exists a constant b > 0 such
that

K =
{
eΓ(s,y)eiδ(y)eiN .F̂ | y ⩾ b, |s| ⩽ e−2πy

}
is a compact subset of D. Therefore, since limy→∞ v(y) = v(0), it follows from equation (5.49)
that ∥v∥F (z) is bounded as y → ∞ and x is constrained to a finite interval.

Remark. (1) If N = N0 for H, then N = N0 for H⊗H∗.

(2) The results in this section cover the case of variations of pure Hodge structure and variations
of type (I).

6. Deformations of admissible mixed period maps

6.1 General set-up

The set-up is similar to that in the pure case. More precisely, we only consider deformations of
a period map F : S → Γ\D such that

– S, D and Γ remain fixed;

– the deformation remains locally liftable and horizontal.

However, there is an additional requirement “at infinity”: we want the variation to be admis-
sible. This concept is recalled in Appendix A. Note that our convention of admissibility includes
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as a requirement that the monodromy operators around the boundary are quasi-unipotent. This
is for instance the case if the variation has an underlying Z-structure such as the ones com-
ing from geometry. Pure variations are automatically admissible, and this is also the case for
mixed variations of geometric origin (cf. [PS08, Definition 14.49]). Mixed period maps of ad-
missible variations will be called admissible period maps. Admissibility is preserved under small
deformations.

Lemma 6.1. If F is an admissible period map, sufficiently small deformations of F that stay
horizontal also stay admissible.

Proof. We can test admissibility on curves, and so we may replace S with a curve. We employ
the test given in [Pea00].

For a neighbourhood of p ∈ S̄ − ∂S, we take a small disk ∆ centred at p with coordinate s
and monodromy T around the origin. We may assume that T is unipotent. Set N = − log T . If
s ∈ ∆ − {0}, we may put s = e2πiz. Then the untwisted period map e−zN .F (z) extends over
the origin as a holomorphic map ∆ → Ď, where its value at s = 0 is traditionally denoted
F (∞) ∈ Ď (since it corresponds to a limit for s → ∞). The canonical extension to ∆ of the
local system (with weight filtration and rational structure) over ∆∗ puts a weight filtration and
rational structure on the “central” fibre H over 0. Admissibility implies that there is a relative
weight filtration M on the central fibre H and (H,M,F (∞)) is a mixed Hodge structure, the
“limit mixed Hodge structure”. Hence we have a Deligne decomposition, and we can speak of
horizontal endomorphisms with respect to the limit mixed Hodge structure. We shall call these
“limit-horizontal” and denote these as qhorF (∞). In this case the local normal form (5.8) reads

F (s) = exp

(
log(s)

2πi
N

)
exp(Γ(s)).F (∞) , Γ(0) = 0 ,

where

Γ(s) = 1 + Γ−1(s) + Γ−2(s) + · · · , Γ−k(s) ∈ U−k
F (∞)

is uniquely determinable from Γ−1 ∈ qhorF (∞). Let

F (s, t) = exp

(
log(s)

2πi
N

)
exp(Γ(s, t)).F (∞) , Γ(s, t) ∈ qF (∞)

be a deformation of F (s) as a period map. This is nothing but a 2-parameter period map
∆∗ ×∆ → Γ\D with trivial monodromy in the second factor. Now if

exp(Γ(s, t)) = 1 + Γ̃−1(s, t) + Γ̃−2(s, t) + · · · , Γ̃−k(s, t) ∈ U−k
F (∞) ,

then the initial value constraint reads Γ̃−1(0, 0) = Γ1(0) = 0, and the “Higgs bundle constraint”
holds since F (s, t) is assumed to be horizontal. Indeed, the Higgs bundle constraint is equivalent
to the image at any point of the tangent space under the period map being an abelian subspace of
gC, which is the case; cf. Lemma 3.2. But then, by loc. cit., F (s, t) is an admissible nilpotent orbit
with the same relative weight filtration M and limit mixed Hodge structure F (∞) as before.

In view of the above, we call deformations of admissible period maps that stay locally liftable
and horizontal (and hence admissible) simply admissible deformations.

Remark 6.2. Recall equation (3.8) which provides a surjection

F−1g(H)
πhor

−−−→ F ∗T hor(Γ\D) .
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Choosing a lift for this map at some point s ∈ S determines a unique global lift. This is a con-
sequence of the rigidity theorem for variations of admissible mixed Hodge structures (cf. [SZ85,
Theorem 4.20] for S a curve and the remarks in [BZ90, § 9] for the general case). But at a given
point s, there is a natural identification of T hor

F (s)D with the subspace U−1gF (s) of gF (s), and so
we have a unique global lift. This lift can be used to identify infinitesimal deformations of an
admissible variation with a subspace of the space of sections of U−1g(H) ⊂ F−1g(H).

6.2 Main results

Theorem 6.3 (Main Theorem I). Let S be quasi-projective and F : S → Γ\D a horizontal
holomorphic map to a mixed domain D parametrizing mixed Hodge structures on (H,W,Q)R,
and assume that the variation of mixed Hodge structure H corresponding to F is admissible.

(1) Let η be a global holomorphic section of g(H) corresponding to an admissible infinitesimal
deformation of F with bounded Hodge norm. If the section η is plurisubharmonic along S,
then η is a flat section of g(H) which is moreover horizontal, that is, a section of U−1g(H) =⊕

k⩽1 g
−1,k(H).

Equivalently, at any point s ∈ S, the endomorphism η(s) is a horizontal endomorphism of
g(Hs) which commutes with the action of the fundamental group π1(S, s).

(2) Conversely, let η(s) be a flat horizontal section of U−1g(H) such that η(s) commutes with
every element in F∗TS,s ⊂ U−1gF (s). If the (constant) Hodge norm ∥η(s)∥ is small enough,
then η defines a deformation of F which keeps the source and target fixed and which remains
a period map.

Proof. (1) This is a direct application of Proposition 4.2. The condition [u, v] = 0 follows as
in the pure case since we are considering deformations which stay horizontal (see for example
[CMP17, Proposition 5.5.1]).

(2) We use an argument due to G. Faltings (for weight 1) [Fal83]. Let η be a parallel horizontal
section of g(H), and define the filtration Fη(s) by setting

Fη(s) = eη(s) F (s) , s ∈ S .

On the weight-graded parts, Q(f(s), f(s)) = 0 and f(s) ∈ Fη(s). The map s 7→ Fη(s) is holo-
morphic but might land in the compact dual Ď (cf. formula (3.3)).

We claim that

– the second Riemann condition holds if ∥η(s)∥ is small enough so that this filtration gives a
point inside the period domain D;

– the commuting property guarantees horizontality.

To prove these claims, first note that since η is parallel, its Hodge norm is constant and hence
the auxiliary operators

wk,k = (η∗)k◦ηk , wk,ℓ = (η∗)ℓ◦ηk + (η∗)k◦ηℓ , k ̸= ℓ

also have constant Hodge norm. These operators, being self-adjoint, have real eigenvalues (which
might be negative). Let the smallest of these be mk,ℓ. Suppose that the nilpotent operator η has
index of nilpotency M , and set

µ =
∑

1⩽k⩽ℓ⩽M

mk,ℓ

k!ℓ!
.
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Then for all f(s) ∈ Fs, we have

∥ eη(s) f(s)∥2F (s) = hF (s)

([
id +

∑
1⩽k⩽ℓ⩽M

1

k!ℓ!
wk,ℓ

]
f(s), f(s)

)
⩾ (1− |µ|)∥f(s)∥2 ,

and so if |µ| < 1 (which is the case if η is close to zero), we have

∥ eη(s) f(s)∥2F (s) ⩾ (1− |µ|)∥f(s)∥2F (s) > 0 .

Hence, as we claimed, Q polarizes the induced Hodge structures on weight-graded parts so that
the deformed period map Fη = eη F gives a holomorphic map S → Γ\D. If, moreover, for all
s ∈ S and all tangents ξ ∈ TsS, one has [η(s), F∗ξ] = 0, then the deformation Fη satisfies
Griffiths’ transversality condition since this commutativity implies

∇ξF
p
η (s) =

(
F∗ξ. e

η(s)
)
.F p(s) =

(
eη(s) .F∗ξ

)
.F p(s)

= eη(s)∇ξF
p(s) ⊂ eη(s) F (s)p−1 = F p−1

η (s) .

Here we use (cf. (3.15)) that ∇ξ acts as ∂ξ + ad(F∗ξ) on gF (s) and that ∂ξη = 0 because η is
locally constant.

Remark 6.4 (Smoothness). The second part of the theorem is equivalent to the relevant defor-
mation space being smooth at F since it shows that the space is isomorphic to a small ball in
the vector space of flat horizontal sections of the bundle g(H). In particular, F is rigid if and
only if this component is a non-reduced point.

Examples 6.5 (Non-rigid examples). (1) Hodge–Tate variations. As we have observed in Sec-
tion 4.3(2), one can easily construct variations that can be deformed in suitable (−1,−1)-
directions.

(2) Nilpotent orbit associated to Kähler classes. We come back to Example (4) in Section 4.3.
The variation we started with is the R-split variation defined by the total cohomology of a family
of Kähler manifolds. The nilpotent orbit construction gives a deformation of the associated period
map as in the second part of Theorem 6.3. The role of η(s) is played by

∑k
j=1 ujNj(s), where

the Nj are coming from independent ample classes, which gives a multi-parameter deformation.
Suppose that the dimension of the Kähler cone in H1,1(X) ∩H2(X,R) equals κ. Then k ⩽ κ. If
this inequality is strict, the variation is not rigid in at least one (−1,−1)-direction.

(3) Biextensions coming from higher Chow cycles on surfaces. We studied these examples in
Section 4.3(6). Observe that as in the previous example, a flat infinitesimal deformation v in
a (−1,−1)-direction gives rise to a nilpotent orbit of deformations, and so these deformations
are never rigid in such directions.

In order to formulate the second main result, we recall that Proposition 4.2 states that for
a plurisubharmonic horizontal endomorphism η and for all tangents u to the period map, one
has πq[π+ū, v] = 0 and v = η(s). Moreover, this property is equivalent to v being parallel.

In analogy with the pure case (cf. Definition 2.6), we introduce the following concept.

Definition 6.6. Fix a subspace a ⊂ ghorC . The period map F is called regularly tangent at s ∈ S,
respectively regularly tangent in the a-directions, if the only vector v ∈ ghorF (s), respectively v ∈ a,

with πq[π+ū, v] = 0 for all u ∈ F∗TsS is the zero vector.

Remark 6.7. Because of type reasons, a period map can only be regularly tangent if there are
non-zero (−1, 1)+(−1, 0)-directions. Moreover, if F is regularly tangent in the (−1, 1)-directions
as well as in the (−1, 0)-directions, then F is regularly tangent in all directions.
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Theorem 6.8 (Main Theorem II). Fix a subspace a ⊂ ghorC . Suppose that we are in one of the
following situations:

(1) We are in the pure case with a = g−1,1.

(2) We have two adjacent weights, and a = g−1,0.

(3) We are in the setting of unipotent variations; that is, u−1,1 = 0 provided either Λ−1,−1 = 0
and a = g−1,0, or u ∈ Λ−1,−1 and a =

⊕
k⩽0 g

−1,k.

(4) We have u = u−1,1 + u−1,−1, and a = g−1,−1.

(5) We have two non-adjacent weights, say 0 and k with |k| ⩾ 2 with h0,0 = 1 and hp,−p = 0
for p ̸= 0, and a = g−1,−k+1. Moreover, we assume that ∥v∥ is bounded near infinity. (This
is always the case for |k| = 2 by Section 5.)

(6) We have a variation of type

I0,0

u−1,−1

��
u0,−2

$$
I−2,0

u0,−2 $$

I−1,−1oo u
−1,1
oo u

−1,1
oo

u−1,−1

��

I0,−2u−1,1
oo

I−2,−2 ,

and a = g−1,−1.

Then deformations of F in the a-directions are in one-to-one correspondence with those endo-
morphisms of (H,Q) that belong to a and which intertwine the action of the monodromy.

In particular, the following properties are equivalent:

– The period map F has no horizontal deformations in a-directions.

– The pair (H,Q) has no endomorphisms in a-directions intertwining the action of the mon-
odromy.

These properties hold, in particular, if F is regularly tangent in the a-directions at o ∈ S (and
hence along S).

Proof. In each of the above cases, by Proposition 4.4, a holomorphic horizontal endomorphism is
plurisubharmonic, and so its Hodge norm is plurisubharmonic. By the results of Section 5, this
function is bounded. Now apply Theorem 6.3.

6.3 Conditions implying rigidity

Suppose that we have a variation with two weights 0 and 1 and of Hodge width a, respectively b.
Suppose that a > b and the weight 0 variation is a direct sum of two variations, one having
maximal Higgs field and a piece Z ′ of pure type (0, 0) with trivial Higgs field. We claim that this
implies that the mixed variation is then regularly tangent in the (−1, 0)-directions. To illustrate
the set-up, we take a = 2 and b = 1:

H1,−1 H0,0

(u−1,1)∗
oo H−1,1

(u−1,1)∗
oo

H1,0

v

OO

H0,1 .
(u−1,1)∗
oo

v

OO
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Indeed, by assumption, the upper row splits into two strands at most; that is, H0,0 = Z⊕Z ′ such
that the upper-right component of

(
u−1,1

)∗
maps isomorphically to Z, which in turn is mapped

isomorphically to H−1,1 by the relevant component of
(
u−1,1

)∗
.

To test regularity, suppose
[(
u−1,1

)∗
, v
]
= 0. The commutative diagram implies that the

image of v : H1,0 → H0,0 lands in Z, and so if
(
u−1,1

)∗
◦v = 0 on H1,0, we must have v|H1,0 = 0.

Since then
(
u−1,1

)∗
◦v = 0 on H0,1, a similar argument shows that v = 0 on H0,1 as well.

Now observe that if h1,−1 = 1, the Higgs field in the u−1,1-direction is maximal precisely if it
is non-zero. By Lemma 3.3, this is the case if and only if the tangent map to the weight 0 period
map in that direction is non-zero. We have shown the following.

Proposition 6.9. Suppose that we have a mixed period map F for a variation with adjacent
weights 0 and 1. For the pure weight 0 variation, we assume that

– the only non-zero Hodge numbers are h−1,1 = h1,−1 = 1 and h0,0 ⩾ 1,

– its period map is non-constant.

Then, F is regularly tangent in the (−1, 0)-directions and hence admits no deformation in
these directions.

We finish this section by giving a criterion for rigidity using the monodromy action. It uses
the following general result.

Lemma 6.10. Let π be a group, k a field and V , V1, V2 finite-dimensional k-vector spaces, let

0 → V1
i−→ V

p
−→ V2 → 0

be an exact sequence of π-modules and φ ∈ Endπ V , that is, an endomorphism of V intertwining
the π-action. Suppose that

– φ induces the zero map on V1 and V2,

– V1 is an irreducible π-module,

– dimV1 > dimV2.

Then φ = 0.

Proof. We claim that the assumptions imply that the map φ induces a π-equivariant morphism
φ̄ : V2 → V1 and if it is the zero-map, then φ = 0. Let us prove this claim. First we define φ̄. Lift
x̄ ∈ V2 to an element x ∈ V . Then φ(x) ∈ i(V1) since φ is π-equivariant and induces the zero
map on V2. So φ(x) = i(y). Then set φ̄(x̄) = y. This is independent of the lift since φ induces
the zero map on V1. By construction, φ̄ = 0 if and only φ = 0.

Since V1 is irreducible as a π-module, by Schur’s lemma, either φ̄ = 0 or φ̄(V2) = V1. In the
latter case we would have dimV2 ⩾ dimV1, contrary to the third assumption; hence φ = 0.

Corollary 6.11. Consider a period map F : S → Γ\D associated to a two-step weight filtration
0 ⊂W1 ⊂W2 = H. If the weight-graded quotients have distinct dimensions and the one of largest
dimension is an irreducible Γ-module, then F is rigid in the (−1, 0)-directions. So, if in addition
the induced period maps for the weight-graded pure variations of Hodge structure on S are rigid,
then F is rigid as a period map.

Proof. By duality, we may assume dimW1 > dimGrW2 . We apply Lemma 6.10 with v ∈ g−1,0

playing the role of φ. So v = 0, and hence, by Theorem 6.8, the map F is rigid.
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7. Examples of rigid mixed period maps

7.1 Complements of smooth divisors

Let X be a smooth compact variety of dimension d + 1 and Y ⊂ X a smooth divisor. We let
i : Y ↪→ X be the inclusion and j : U = X − Y ↪→ X the inclusion of the complement. Then we
have an exact sequence (in rational cohomology)

0 → Coker(Hk−2(Y (−1))
i∗−→ Hk(X))

j∗

−−→ Hk(U)
r−−→ Ker(Hk−1(Y )(−1)

i∗−→ Hk+1(X)) → 0 ,

an extension of a weight k+1 Hodge structure by a weight k Hodge structure. Since the category
of pure polarized Hodge structures is abelian, there are splittings Hr(X) = Im(i∗)⊕ P r(X) and
Hr(Y )(−1) = Ker(i∗)⊕ V r+2(Y ) so that the sequence reduces to

0 → P k(X)
j∗

−−→ Hk(U)
r−→ V k+1(Y ) → 0 .

If Y is an ample divisor, this sequence is only interesting in the middle dimensions d, d+ 1 and
simplifies to

0 → Hd+1
prim(X)

j∗

−−→ Hd+1(U)
r−→ Hd

var(Y )(−1) → 0 . (7.1)

Suppose that we have a family of such pairs (Xs, Ys) for s ∈ S, with S quasi-projective and
smooth. We give some applications of equation (7.1).

First we invoke Corollary 6.11 and deduce the following.

Proposition 7.1. The period map for Hd+1(U) is rigid in the (−1, 0)-directions if the following
two conditions hold simultaneously:

– The monodromy representation on Hd+1
prim(X) is irreducible.

– We have dimHd+1
prim(X) > dimHd

var(Y ).

If, in addition, the period maps associated to Hd+1
prim(X) and Hd

var(Y ) are rigid, then the period
map is rigid in all horizontal directions.

Example 7.2. The obvious example is a family {Cs − Σs} of quasi-projective smooth curves. If
the monodromy acts irreducibly on H1(Cs)C and if also #Σ < 2g, then the mixed period map
is rigid in the (−1, 0)-directions.

More generally, we can consider the Hodge structure on H1(X) for X of any dimension (and
for H0(Y )). For instance, take any rigid family of abelian varieties (see Section 2.4, Example (6)),
and leave out a smooth, possibly reducible divisor. If the monodromy action is irreducible and Y
does not have too many components, the mixed period map will again be rigid.

Next, we use equation (7.1) in conjunction with Proposition 6.9. So we start from a K3-type
Hodge structure, that is, we recall, a weight 2 Hodge structure with h2,0 = h0,2 = 1 and hp,q = 0
for p < 0 or q < 0. As a consequence of Proposition 6.9, we have the following.

Proposition 7.3. Suppose that H2
prim(Xs) is a non-constant variation of K3-type Hodge struc-

ture. Then the mixed period map for H2(Xs − Ys) is rigid in the directions of type (−1, 0). The
above holds in particular for Xs a K3 surface.

Remark 7.4. To obtain examples with rigidity in all horizontal directions, one can consult the
examples in Section 2.4, in particular, Proposition 2.10.
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One can handle many more geometric examples based on the remark that surfaces with
h2,0 = 1 have K3-type Hodge structure on H2 and H2

prim. Let us especially consider the case of
regular surfaces, that is, surfaces with b1 = 0, that are moreover minimal and of general type.
By [BHP+04, Theorem VII.2.1], one then has K2 = 1, . . . , 8, and one finds h1,1 = 20 − K2 so
that the period domain for the primitive cohomology has dimension

d
(
H2

prim

)
= 19−K2 .

Since pg = 1, there is a unique canonical curve K of arithmetic genus K2 + 1.

For the purpose of this article, we say that X is a Catanese–Kynev–Todorov surface or
CKT surface if X is a simply connected Galois (Z/2Z × Z/2Z)-cover of the plane with Hodge
numbers h2,0(X) = 1 and h1,1(X) = 19 (and so K2

X = 1). These were first constructed by
V. Kynev [Kyn77] and investigated in detail by F. Catanese [Cat80] and A. Todorov [Tod80].
Let us recall (op. cit.) some of their properties. The quotient by one of the involutions is a double
cover of P2 which is branched in the union of two cubics meeting transversely. This is a K3 surface
Z with nine ordinary double points. The family of such Z depends on 10 effective parameters,
and the period domain is a linear section D2 ∩ L of codimension 9 of the period domain D2

for K3 surfaces with a degree 2 polarization. In other words, the K3 family has a period map
which is generically one-to-one onto a suitable quotient of D2 ∩ L . Over a general line lies a
smooth genus 2 curve C in Y . Branching in C and the nine ordinary double points produces
the desired surface of general type. Since there are an ample divisor and nine smooth rational
curves of self-intersection −2 on the K3 surface, this shows that the Picard number of the general
member is at least 1 + 9 = 10. Equality follows from the surjectivity of the period map for Z.
In constructing the second double cover, the choice of the line gives two extra parameters which
do not vary with the Hodge structure, and so for those surfaces the period map has fibres of
dimension 2. The resulting surfaces of general type depend on 10 + 2 = 12 moduli.

A. Todorov [Tod81] has generalized the above construction to give surfaces of general type
with b1 = 0, h2,0 = 1 and K2 = 2, . . . , 8. We call these Todorov surfaces. These are birational
to double covers of a classical Kummer surface, branched in a quadratic section passing through
8−K2 double points plus the remaining 8+K2 double points. These last double points resolve to
(−2)-curves on the K3 surface, and the resulting family has 19−

(
8+K2

)
= 11−K2 moduli. The

choice of the quadric section adds K2+1 parameters which do not vary with the Hodge structure,
and so, as before, we get in total 12 parameters, and the period map has fibres of dimension
K2+1. To calculate the generic Picard number, note that the 8−K2 double points through which
the curve passes give just as many (−2)-curves and there are three more independent divisors
on the Kummer surface we started with. The results have been summarized in Table 1. In the
table d

(
H2

prim

)
stands for the dimension of the period domain for the weight 2 K3-variation with

period map F2, “moduli” stands for the number of moduli of the CKT and Todorov surfaces,4 ρ
is the generic Picard number of the K3 surface, dimW2 is the dimension of the essential part of
the variation and dim(W3/W2) = 2g(Ks) = dimH1(Ks).

The main result about these surfaces is as follows.

Proposition 7.5. Let {Xs}s∈S be a family of CKT surfaces or of Todorov surfaces, and let
Ks ⊂ Xs be the canonical curve. The family {Xs −Ks} is rigid if all of the following conditions
hold:

4The full moduli space for surfaces with these invariants is expected to be (much) larger. See for example [Cat80,
CD89] for K2 = 1, 2.
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Table 1. Invariants for open CKT and Todorov modular families

K2 d(H2
prim) Moduli ρ Fibre dim. of F2 (dimW2,dimW3/W2)

1 18 12 10 2 (11, 4)

2 17 12 9 3 (11, 6)

3 16 12 8 4 (11, 8)

4 15 12 7 5 (11, 10)

5 14 12 6 6 (11, 12)

6 13 12 5 7 (11, 14)

7 12 12 4 8 ( 11, 16)

8 11 12 3 9 (11, 18)

(1) The family {Ks}s∈S of curves is rigid.

(2) The essential part of the K3 variation is non-constant and rigid.

(3) The mixed period map is an immersion.

These conditions are all satisfied for a family for which rank of the essential variation is not
divisible by 4 or whose period map has rank at least 2. This holds in particular for a modular
family, that is, a family with 12 effective parameters, as well as subfamilies of a modular family
having at least 2 effective parameters.

Proof. First of all, since by condition (2), the K3 variation is non-constant, Proposition 7.3
implies that the variation is rigid in the (−1, 0)-directions. It is rigid in the (−1, 1)-directions if
this is the case for the pure variations coming from the curves as well as for the K3 variation.
Condition (1) covers the curve case (since we are interested in the variations coming from the
geometry of the open surfaces), and condition (2) covers the K3 variation. Condition (3) then
implies that the family of open surfaces is itself rigid whenever the mixed variation is rigid.

Condition (1) holds as soon as the period map for the curves is an immersion. This is a con-
sequence of Arakelov’s theorem, recalled in Section 1.1. For a modular family, this is the case.
Indeed, for a modular family, the period for the fibres of F2 is injective. By Proposition 2.10,
the second condition is satisfied if the rank of the essential variation is not divisible by 4, and
Proposition 2.11 shows rigidity for period maps of rank at least 2. From the table we see that
this is the case for a modular family.

The third condition is a bit more involved since the pure K3 variation does not determine
the family because of the failure of the infinitesimal Torelli theorem. Indeed, this is exactly the
reason they were constructed! The failure of the infinitesimal Torelli theorem is caused by the
non-trivial kernel of the tangent map to the K3 period map. Since TX ≃ Ω1

X ⊗K−1
X , the tangent

to the period map is the map

u
(2)
S : TS → H1(TX) → Hom

(
H0(KX) → H1

(
Ω1
X

)
≃ H1

(
Ω1
X

))
,

where the resulting morphism on the right,

µX : H1(TX) = H1(Ω1
X(−K)) → H1(Ω1

X) ,

is induced by multiplication by a non-zero section of KX vanishing along the canonical curve K.
From the exact sequence

0 = H0
(
Ω1
X

)
→ H0

(
Ω1
X |K

)
→ H1

(
Ω1
X(−K)

)
→ H1

(
Ω1
X

)
,
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one sees that the kernel of µX is isomorphic to H0(Ω1
X |K). To interpret this space, recall

that, as observed by A. Todorov [Tod80, proof of Proposition 4.1] and F. Catanese [Cat84,
§ 2, p. 150], the involution τ on X that produces the K3-quotient induces a splitting of the exact
sequence

0 → OK(−K) → Ω1
X |K → Ω1

K → 0 .

Indeed, local coordinates (x, y) centred at a point P of K can be chosen in such a way that
x = 0 gives the canonical curve K and τ∗x = −x, τ∗y = y. Then, the eigenspace decomposition
of Ω1

X,P is just C(dx)P ⊕ C(dy)P , and this gives a global splitting along K with the first factor

giving OK(K) and the second Ω1
K . For a modular family, TsS ≃ H1(TX), and then the split

sequence shows that the kernel of the Higgs field u
(2)
S is isomorphic to H0

(
Ω1
K

)
. Its dimension,

K2 + 1, is the genus of the canonical curve K, as indicated in Table 1. This kernel is captured
by the cup product

µK : H1(TK) → Hom
(
H1,0(K), H0,1(K)

)
,

which is injective (infinitesimal Torelli) since by [Tod81, Lemma 5.2], the canonical curve is non-

hyperelliptic for the Todorov surfaces. The Higgs field u
(1)
S for the pure weight 1 variation is the

composition of the map TsS → H1(TK) and µK , and it is generically injective for a modular
family. Combining the two calculations, we have shown that the kernel of the partial mixed Higgs

field u
(2)
S + u

(1)
S is trivial and so the mixed period map is an immersion. Hence Xs −Ks can be

locally reconstructed from the period map. For a subfamily, this is also the case.

7.2 Projective varieties singular along a smooth divisor

Let X be a compact variety of dimension d+ 1 whose singular locus Y is a smooth divisor. We
let σ : X̃ → X be the desingularization of X and let Ỹ = σ−1Y , i : Y ↪→ X, ı̃ : Ỹ ↪→ X̃ be the
inclusions. Then by [PS08, § 5.3.2], we have an exact sequence of rational cohomology groups

0 → Coker
(
Hk−1

(
X̃
)
⊕Hk−1(Y )

ı̃∗−σ∗
−−−−→ Hk−1

(
Ỹ
))

−→ Hk(X)

−→ Ker
(
Hk

(
X̃
)
⊕Hk(Y )

ı̃∗−σ∗
−−−−→ Hk

(
Ỹ
))

→ 0 .

In this case σ : Ỹ → Y is an unramified double cover, Cokerσ∗ is the anti-invariant part of
the cohomology and σ∗ is an embedding. Assuming that Ỹ is a hyperplane section (or, more
generally, very ample), in the middle dimension, the kernel of ı̃∗ is then the variable cohomology.
Hence the sequence reduces to

0 → Hd
prim

(
Ỹ
)− → Hd+1(X) → Hd+1

var

(
X̃
)
→ 0 .

As a consequence of Corollary 6.11, we have the following.

Proposition 7.6. Suppose that the monodromy representation on Hd
prim

(
Ỹs
)−

is irreducible
and that

rank
(
Hd

prim

(
Ỹs
)−)

> rank
(
Hd+1

var

(
X̃s

))
.

Then, the mixed period map for Hd(Xs) is rigid in the (−1, 0)-directions.

Remark. For Kynev–Todorov surfaces, one can also use M. Letizia’s argument [Let84] showing
that the mixed Hodge structure generically determines the pair consisting of the surface and its
canonical curve.

Example 7.7 (Projective curves with δ-ordinary double points). Here d = 0, and we get

0 → ⊕δZ → H1(X) → H1
(
X̃
)
→ 0 .
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The mixed period map is rigid in the (−1, 0)-directions if the monodromy of the family of curves
acts irreducibly on the set of double points, of which there are many (δ > 2g). This result is dual
to the case of an open curve treated in Example 7.2.

By Proposition 2.9, rigidity for the pure variation follows if the Higgs field is maximal, and
for weight 1, this is the case for “most” period maps.

7.3 Normal functions and higher normal functions

Recall that these are associated to a variation of the form H2p+1(Xs)(−p), where {Xs}s∈S is
a family of smooth complex projective varieties equipped with a family Zs of p-dimensional
algebraic cycles homologous to zero, proving a variation of mixed Hodge structure

0 → H2p+1(Xs)(−p) → Hp(Z/S) → Z(0) → 0 .

As a consequence of Corollary 6.11, we have the following.

Proposition 7.8. If the monodromy acts irreducibly on H2p+1(Xs), then the normal function
Hp(Z/S) is rigid in the (−1, 0)-directions. If, moreover, the period map associated to H2p+1(Xs)
is rigid, then the normal function is rigid in all directions.

As an example, for p even, we have a normal function associated to cycles in a Lefschetz pencil
of complete intersections. Also, normal functions for certain K3-variations, abelian varieties and
Calabi–Yau manifolds give examples of normal functions, rigid in all directions. See the examples
in Section 2.10.

A similar result holds for higher normal functions

0 → Hp−1(Xs)(q) → Hp,q → Q(0) → 0

with p− 2q − 1 < 0. Here we have rigidity for Hp,q in the (−1, k)-directions with k = p− 2q − 1
provided that for these directions, boundedness for the Hodge norm at infinity holds.

7.4 Unipotent variations

We consider adjacent weights and rigidity in the (−1, 0)-directions only:

Hp,q
v−1,0
//
Hp+1,q .

(u−1,0)∗
oo

Such a v is regularly tangent if for some u, the relation u∗◦v = 0 implies v = 0, which is the case
if u is surjective (then v∗◦u = 0 is equivalent to v∗ = 0.) More generally, this is the case if for
given x ∈ Hp+1,q, we can find a u = ux with x in its image since then v∗(x) = v∗◦ux(x

′) = 0 by
assumption.

In [PP19, Theorem 3.6] we considered the differential-geometric aspects of unipotent varia-
tions of mixed Hodge structures associated to the based fundamental group of X when the base
point x ∈ X varies. The set-up is detailed in Section 4.3, Example (6). If we vary the base point
in a submanifold S ⊂ X, by [PP19, Lemma 6.8], the Higgs field comes from a map

u : Ker
[
H1(X)⊗H1(X) → H2(X)

]
⊗ T 1,0

s S → H1(X)

given by

α⊗ β ⊗ θ 7→ (θ ⌟ α)β − (θ ⌟ β)α .

This map is of Hodge type (−1, 0) since it sends I2,0 ⊂ H1,0⊗H1,0 to H1,0 and I1,1 ⊂ H1,0⊗H0,1

toH0,1. Moreover, the restriction to I2,0 determines the entire morphism. Also note that u factors
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through Ker
[
Λ2H1(X) → H2(X)

]
. Let V = H1,0(X), K = Ker

[
Λ2V → H2,0(X)

]
and T = TsS,

and consider the maps e : T → V ∗ given by eθ(ω) = θ ⌟ ω and

u : K ⊗ T → V ,
∑
i,j,k

(ωi ∧ ωj)⊗ θk =
∑
i,j,k

[eθk(ωi)ωj − eθk(ωj)ωi] . (7.2)

If the map u is surjective, then for every ω ∈ V , we can find θj ∈ T and Aj ∈ K such that∑
j u(A

j⊗θj) = ω, which suffices to show regular tangency. We formulate the conclusion explicitly
as follows.

Proposition 7.9. Let X be a smooth projective variety, and consider the variation of mixed
Hodge structure on HomZ

(
Jx/J

3
x ,C

)
, where x varies over a smooth subvariety S ⊂ X. If the

map u from (7.2) is surjective, the variation is rigid.

To see what this means geometrically, suppose for instance that there is a generic direction θ
such that uθ(A) = u(A ⊗ θ) = 0 imposes dimK − dimV independent conditions on K. Then,
the map uθ is surjective, which implies regular tangency. Since the condition uθ(A) = 0 amounts
to dimV equations on A, the latter condition can only hold if dimK ⩾ 2 dimV , and if so, for
generic θ, these equations are expected to be independent. Depending on the geometry of the
cotangent bundle, this then is the case or not.

Appendix A. Admissibility

In [SZ85], J. Steenbrink and S. Zucker defined a category of admissible variations of graded-
polarizable mixed Hodge structure over a punctured disk ∆∗ with unipotent monodromy. This
definition can be modified to handle the case of quasi-unipotent monodromy via a covering trick
(see [Kas86, § 1.8]). Given this local model, the category of admissible variations of graded-
polarized mixed Hodge structure over a smooth complex algebraic curve C is defined as follows:
the curve C has a smooth completion C̄ which is unique up to isomorphism. A graded-polarizable
variation H → C is admissible if and only if for each p ∈ C̄−C, the restriction of H to a deleted
neighbourhood of p is admissible.

In higher dimensions, let S be a smooth quasi-projective variety over C and j : S → S̄ be
a smooth partial compactification of S̄ such that S̄ − S is a normal crossing divisor. In [Kas86],
M. Kashiwara showed that one obtains a good category of admissible variations of graded-
polarizable mixed Hodge structure on S via a curve test. In particular, the admissibility of H
does not depend on the choice of j : S → S̄.

Implicit in the previous paragraph is the assumption that the local monodromy of H is quasi-
unipotent, which we shall assume throughout this appendix. This is automatic whenever H
carries an integral structure HZ (for example variations of geometric origin). To continue, we
recall that if f : A→ B is a holomorphic map between complex manifolds and H is a variation of
graded-polarizable mixed Hodge structure on B, then f∗(H) is a variation of graded-polarizable
mixed Hodge structure on A (see [Kas86, § 1.7]).

We now recall the definition of an admissible variation of mixed Hodge structure over the
punctured disk with unipotent monodromy following J. Steenbrink and S. Zucker: Let ∆ = {s ∈
C | |s| < 1} and ∆∗ = ∆− {0}. Let H → ∆∗ be a variation of graded-polarizable mixed Hodge
structure. Let U denote the upper half-plane {z = x + iy ∈ C | y > 0} and U → ∆∗ be the
covering map s = e2πiz.
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After we select a choice of graded-polarization (in order to define the classifying space D),
the period map of H fits into a commutative diagram

U
F−−−−→ D

s

y y =⇒ F (z + 1) = T.F (z) ,

∆∗ φ−−−−→ ⟨T ⟩\D

(A.1)

where T = eN . Accordingly, the map

ψ̃ : U → Ď , ψ̃(z) = e−zN .F (z)

satisfies ψ̃(z + 1) = ψ̃(z) and hence descends to a map ψ : ∆∗ → Ď.

By W. Schmid’s nilpotent orbit theorem [Sch73, Theorem 4.12], if H is pure, then

lim
s→0

ψ(s) = F∞ ∈ Ď (A.2)

exists. Moreover, N(F p
∞) ⊆ F p−1

∞ and there exists a constant a such that Im(z) > a ⇒
ezN .F∞ ∈ D. Finally, given a GR-invariant metric on D, there exist constants K and b such
that

Im(z) > a =⇒ dD
(
F (z), ezN .F∞

)
< K Im(z)be−2π Im(z) .

Remark. W. Schmid’s result also covers the case of pure variations of Hodge structure with
quasi-unipotent monodromy by passage to a finite cover. If t is another choice of holomorphic
coordinate on ∆ which vanishes at 0 ∈ ∆, then tracing through the above construction shows that
the resulting limit filtration is related to (A.2) by the action of eλN , where λ depends on (ds/dt)0.

In contrast, the mixed period domain D′ with Hodge numbers h1,1 = h0,0 = 1 is isomorphic
to C and has trivial infinitesimal period relation. Accordingly, the period map φ : C∗ → D′ given
by φ(s) = e1/s arises from a Hodge–Tate variation with trivial monodromy which does not have
limit Hodge filtration.

Let V be a finite-dimensional vector space and W be an increasing filtration of V . Then,
W [j] is the filtration W [j]k =Wj+k. Given a nilpotent endomorphism N of a finite-dimensional
vector space V , it follows from writing N in Jordan canonical form that there exists a unique,
increasing monodromy weight filtration W (N) of V such that

– N(Wk) ⊆Wk−2,

– Nk : GrWk → GrW−k is an isomorphism

for each k.

Suppose instead that V is equipped with an increasing filtration W such that N(Wk) ⊆ Wk

for each index k. Then, there exists at most one increasing filtration M = M(N,W ) of V such
that

– N(Mk) ⊂Mk−2,

– M induces on GrWk the filtration W
(
N : GrWk → GrWk

)
[−k].

IfM exists, it is called the relative weight filtration ofW with respect to N . In general,M(N,W )
does not exist. For example, if W has only two non-trivial weight-graded quotients which are
adjacent (for example GrW0 and GrW−1), thenM(N,W ) exists if and only ifW has an N -invariant
splitting.
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Definition A.1. Let H → ∆∗ be a variation of graded-polarized mixed Hodge structure with
unipotent monodromy T = eN and weight filtration W . Let φ : ∆∗ → ⟨T ⟩\D be the period map
of H. Then, H is admissible if

(a) the limit Hodge filtration (A.2) exists;

(b) the relative weight filtration M =W (N,W ) exists.

A variation of graded-polarized mixed Hodge structure H → ∆∗ with quasi-unipotent mon-
odromy is admissible if the pullback f∗(H) to a finite covering of ∆∗ with unipotent monodromy
is admissible.

Remark. See [SZ85, § 3] and [Kas86, §§ 1.8–1.9] for the definition of admissibility in terms of the
canonical extension of H to a system of holomorphic vector bundles over ∆.

An increasing filtration W of a vector space V is pure of weight k if Grwℓ = 0 for ℓ ̸= k and
GrWk

∼= V . Reviewing the definition of M = M(N,W ), it follows that if W is pure of weight k,
then M =W (N)[−k]; see [SZ85, Proposition 2.11].

Corollary A.2. If H → ∆∗ is a variation of pure, polarized Hodge structure, then H is
admissible.

Proof. The limit Hodge filtration exists by W. Schmid’s nilpotent orbit theorem, and the relative
weight filtration exists by the previous paragraph.

In the pure case, it follows from W. Schmid’s SL2-orbit theorem [Sch73, Theorem 5.13] that
if φ is a the period map of a variation of polarizable Hodge structure H → ∆∗ of weight k with
unipotent monodromy T = eN , then

(F∞,W (N)[−k]) (A.3)

is a mixed Hodge structure relative to which N is a (−1,−1)-morphism, where F∞ is the limit
Hodge filtration (A.2). Moreover, it follows from the SL2-orbit theorem [Sch73, Theorem 6.6 and
Corollary 6.7] that the Hodge norm of a flat section of H is bounded.

One of the main results of [SZ85] is that if H → ∆∗ is an admissible variation of graded-
polarized mixed Hodge structure, then (F∞,M) is a mixed Hodge structure relative to which N
is a (−1,−1)-morphism. In particular, N(F p

∞) ⊆ F p−1
∞ . Moreover, if

θ(z) = ezN .F∞ , (A.4)

then there exists a constant a > 0 such that Im(z) > a ⇒ θ(z) ∈ D. Finally, by [Pea01], it
follows that there exists constants K and b such that

Im(z) > a =⇒ dD(F (z), θ(z)) ⩽ K Im(z)be−2π Im(z) .

Definition A.3. Let D be a classifying space of graded-polarized mixed Hodge structure with
underlying filtration W and associated real Lie algebra gR. Then, the pair (N,F ) consisting of
an element N ∈ gR and F ∈ Ď defines an admissible nilpotent orbit θ(z) = ezN .F if

(a) N(F p) ⊆ F p−1,

(b) the relative weight filtration M =M(N,W ) exists,

(c) there exists an a such that Im(z) > a⇒ θ(z) ∈ D.

The foundations of the theory of admissible nilpotent orbits of graded-polarized mixed Hodge
structure are given by M. Kashiwara in [Kas86], where they are called infinitesimal mixed Hodge
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modules. In the pure case, a strengthened form of W. Schmid’s several-variable nilpotent orbit
theorem as well as the several-variable SL2-orbit theorem appear in [CKS86].

Appendix B. Properly discontinuous actions on mixed period domains

Let H → S be a variation of graded-polarized mixed Hodge structure on a complex manifold S.
Let ρ : π1(S, b) → GR be the monodromy representation of H on the reference fibre V = Hb and
D = G/GF be the classifying space of graded-polarized mixed Hodge structure defined by Hb.
Let W denote the weight filtration of V .

Proposition B.1. If Γ is discrete and closed in GR, then Γ acts properly discontinuously on D,
and hence the quotient Γ\D is a complex-analytic space.

Proof. In the case where H is a variation of pure Hodge structure, this result is well known from
the work of P. Griffiths and boils down to the fact that, in the pure case, the stabilizer GF

R of
a point F ∈ D is compact.

Turning to the mixed case, let K and K ′ be compact subsets of D. The map from D to
the graded classifying spaces Dj is continuous, and hence the respective images Kj and K ′

j

of K and K ′ in Dj are compact for all j. If Γ does not act properly discontinuously, there exist
an infinite set of distinct elements gn ∈ Γ such that gn(K) ∩ K ′ is non-empty for all n. Then((
GrWgn

)
Kj

)
∩K ′

j is non-empty for all j and n. Since, by P. Griffiths’ results, the action of GrW Γ

on each Dj is properly discontinuous, it follows that the set
{
GrWgn

}
contains only finitely many

elements. Thus, after partitioning {gn} into a finite collection of subsets, we may assume that
there exists an h ∈ Γ such that for all n, we have GrW gn = GrWh for an infinite collection {gn}.
From this, we shall derive a contradiction.

To this end, we introduce the complex, unipotent Lie group

UC = {g ∈ GL(VC)) | (g − id)Wk ⊂Wk−1}

and let UR = UC ∩ GL(VR). Observe that un := gnh
−1 ∈ UR for each index n since gn and h

induce the same action on GrW .

To continue, let Y denote the set of all (complex) gradings of W (see Section 5.4). Then,
the group GC acts continuously on Y via the adjoint action. Moreover, by [CKS86, § 2.2], the
subgroup UC acts simply transitively on Y. Furthermore, the map

Y : D → Y , F 7→ Y (F ) , the Deligne grading of (F,W )

is continuous, and hence both Y (K) and Y (K ′) are compact subsets of Y. By construction,
Y
(
g.F̃

)
= g.Y

(
F̃
)
for any F̃ ∈ D and g ∈ GR. Applying this to gn, h ∈ GR, we find

Y (gn(K)) = gn.Y (K) = (unh).Y (K) = un(h.Y (K)) ,

with h.Y (K) compact. So our question is: for how many un ∈ UR can unh.Y (K) intersect Y (K ′)?

Fix Yo ∈ Y. Since UC acts simply transitively upon Y, it follows that there are compact
subsets C ′ and C ′′ of UC such that

Y (K ′) = C ′.Yo , h.Y (K) = C ′′.Yo .

So, if unh.Y (K) intersects Y (K ′), then there exist elements c′ ∈ C ′ and c′′ ∈ C ′′ such that
unc

′′.Yo = c′.Yo. By simple transitivity, unc
′′ = c′, and hence un belongs to the compact set

C = C ′(C ′′)−1. Equivalently, gn = unh belongs to the compact subset C.h ⊂ GC.
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By hypothesis, the image of Γ in GR (and hence GC) is discrete and closed. As C.h is compact,
it can contain only finitely many elements gn from Γ, which contradicts the supposition that
there are infinitely many elements gn ∈ Γ such that GrW (gn) = GrW (h). Hence Γ acts properly
discontinuously on D.
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