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Standard stable Horikawa surfaces

Julie Rana and Sönke Rollenske

Abstract

We consider the stable compactification H̄ of the moduli space of Horikawa surfaces
with K2

X = 2pg(X) − 4. When K2
X = 8ℓ we show that the closures of the two com-

ponents HI and HII of the Gieseker moduli space intersect, for ℓ > 2, in a divisor
parametrising explicitly described semi-smooth surfaces. With growing K2

X we find
an increasing number of generically non-reduced irreducible components in the same
connected component of the moduli space of stable surfaces.

1. Introduction

For complex minimal surfaces of general type, we have the classical Noether inequality K2
X ⩾

2pg−4; see [BHP+04, Chapter VII]. In 1976 Horikawa classified surfaces satisfying equality in the
first of a series of seminal papers [Hor76]; in his honour, these surfaces are now called Horikawa
surfaces.

Let us denote by H2k the Gieseker moduli space of Horikawa surfaces with K2
X = 2k. Then

Horikawa showed that H2k is irreducible unless 2k ≡ 0 mod 8, in which case H2k = HI
2k ⊔ HII

2k

has two connected components of the same dimension. For 2k ≡ 8 mod 16 he showed that the
two components parametrise non-diffeomorphic surfaces, but ever since it has remained open
whether HI

16ℓ and HII
16ℓ parametrise diffeomorphic surfaces [Aur06, FS97, LP11].

Nowadays, the Gieseker moduli space H2k embeds into a natural compactification H̄2k, the
moduli space of stable Horikawa surfaces, which parametrises stable surfaces with the same
Hilbert polynomial (see [Kol13a, Kol23]). The starting point of the present work was the question
of whether the closures H̄I

16ℓ and H̄II
16ℓ intersect inside H̄16ℓ.

Theorem A. The intersection of H̄I
8ℓ and H̄II

8ℓ for ℓ > 1 contains a divisor D parametrising ex-
plicitly described non-normal (but semi-smooth) surfaces. The intersection is not normal crossing
at the general point of D.

We will prove this result in Theorem 3.4 and Corollary 5.12. Horikawa surfaces with K2
X = 8

are a bit of an exception because not all such surfaces are double covers of Hirzebruch surfaces.
We show in Section 3.3 that H̄I

8 and H̄II
8 intersect but do not have as good a control over the

intersection locus.
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While Theorem A gives us an explicit description of how to move from one component to the
other, the standard tools in 4-manifold topology do not seem to be able to control the resulting
surgery, so that the answer to the diffeomorphism question posed above remains elusive for now.

The ingredients in the proof of Theorem A are some abstract deformation theory and explicit
toric constructions. The latter is a lower-dimensional version of the scrollar deformations used by
Coughlan and Pignatelli to study canonical threefolds of general type on the (three-dimensional)
Noether line [CP23]. It is remarkable that also in the case of threefolds, every eighth instance of
the moduli space has two irreducible components. In contrast to Theorem A, these components
intersect in a locus parametrising threefolds with canonical singularities.

The methods used to prove Theorem A lead us to consider more general stable Horikawa
surfaces. Surprisingly, we find with growing K2

X a tail of trailing irreducible components in the
moduli space.

Theorem B. Let k ⩾ 5. The connected component of H̄2k containing classical Horikawa surfaces
satisfies

H̄2k ⊃ H2k ∪
⋃

k>m> 1
2
(k+4)

m≡k mod 2

H̄
(m)
2k ,

where the H̄
(m)
2k are generically non-reduced, irreducible components of dimension 5k+4m+19 >

dimH2k.

We illustrate the phenomenon schematically in Figures 1 and 2. The proof of Theorem B can
be found in Section 5.3.
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Figure 1. Standard components in H̄26
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Figure 2. Standard components in H̄32
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2. Standard stable Horikawa surfaces

We work over the complex numbers. General references for the notions related to stable surfaces
and their moduli are [Kol13a, Kol13b, Kol23]. All necessary information about double covers in
this context can be found in [AP12].

Let Fm be a Hirzebruch surface. We denote the negative curve by σ∞, so σ2
∞ = −m, and the

class of a fibre by Γ. We also fix a section disjoint from σ∞, namely σ0 ∈ |σ∞ +mΓ|; in the toric
model introduced later, σ0 can be chosen to be invariant.

Definition 2.1. A standard stable Horikawa surface of type (m) is a double cover

f : X → Fm

branched over B ∈ |6σ∞ + 2aΓ| such that X has semi-log-canonical singularities and KX is
ample. We call it a classical Horikawa surface if X has at most canonical singularities.

Lemma 2.2. A standard stable Horikawa surface of type (m) exists for a > 2m+ 2 and satisfies

K2
X = 4a− 6m− 8 and pg(X) = 2a− 3m− 2 ,

so K2
X = 2pg(X)− 4. In addition:

(i) If 2a ⩾ 6m, then the linear system has no base points and the general branch divisor is
smooth and connected.

(ii) If 6m > 2a ⩾ 5m, then B = σ∞ +B′ and B′ moves in a base-point free linear system with
σ∞ ·B′ = 2a− 5m.
In particular, the general branch divisor is smooth and disconnected for 2a = 5m.

(iii) If 5m > 2a > 4m + 4, then the general branch divisor is B = 2σ∞ + B′ with B′ in the
base-point free linear system |4σ0 + 2(a− 2m)Γ|. In this case, the general X is non-normal
with normal crossing singularities at the general point of f−1(σ∞) and 2(a − 2m) pinch
points.

In particular, a classical Horikawa surface of type (m) with K2
X = 2k exists if and only if

m ⩽ (k + 4)/2 and m and k have the same parity.

Remark 2.3. Note that for m = 0, 1, 2, 3 only the first case can occur, while for m = 4, 5, 6 only
the first two cases can occur. For m ⩾ 7 all three cases are possible.

Also note that K2
X is always even, and it is divisible by 4 if and only if the type (m) is even.

Proof. The canonical divisor of X is

KX = f∗ (KFm + 1
2B

)
= f∗(−2σ∞ − (m+ 2)Γ + 3σ∞ + aΓ)

= f∗(σ∞ + (a−m− 2)Γ) ,

and this divisor is ample if and only if it is positive on the pullback of σ∞, which holds if and
only if a > 2m+ 2. Then

K2
X = 2(σ∞ + (a−m− 2)Γ)2 = −2m+ 4(a−m− 2) = 4a− 6m− 8 ,

pg(X) = h0(σ∞ + (a−m− 2)Γ) = h0(OP1(a−m− 2)) + h0(OP1(a−m− 2)) = 2a− 3m− 2 .

The rest of the claims rely on a standard computation on Hirzebruch surfaces, determining how
often a particular linear system has to contain the negative section.
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We denote the subset of the moduli space of stable Horikawa surfaces parametrising standard

stable Horikawa surfaces with K2
X = 2k of type (m) by H̄

(m)
2k ⊂ H̄2k and the subset of classical

Horikawa surfaces of type (m) by H
(m)
2k = H̄

(m)
2k ∩ H2k.

The moduli space of stable surfaces also carries a natural scheme structure, and if H̄
(m)
2k forms

an open subset of an irreducible component of H̄2k, then we consider it with this scheme structure.
Otherwise, we just consider it as a reduced subscheme of H̄2k.

Proposition 2.4. The moduli spaces H̄
(m)
2k of standard stable Horikawa surfaces of type (m) are

irreducible, and

dim H̄
(m)
2k =


7k + 28 , m = 0 ,

7k + 29−m, 1
3(k + 4) ⩾ m > 0 ,

6k + 2m+ 24 , 1
2(k + 4) ⩾ m > 1

3(k + 4) ,

5k + 4m+ 19 , k > m > 1
2(k + 4) .

Proof. Since the Picard group of a Hirzebruch surface does not contain 2-torsion, the double cover
is determined by its branch divisor. The condition that a double cover has semi-log-canonical
singularities is open; cf. [Ant20, Lemma 3.2]. Therefore, a complete family of standard Horikawa
surfaces of type (m) is parametrised by an open subset of the linear system |6σ∞ + 2aΓ| on Fm,
where 2k = 4a− 6m− 8, so its image in the moduli space is irreducible as well.

Determining the dimension of the linear system is a straightforward cohomology computation:

h0(Fm, 6σ∞ + 2aΓ) =
6∑

i=0

h0
(
P1,OP1(−im+ 2a)

)
=

4∑
i=0

(−im+ 2a+ 1) +

6∑
i=5

h0
(
P1,OP1(−im+ 2a)

)
,

and since 2a > 4m+ 4 and 2a = k + 3m+ 4,

= (10a− 10m+ 5) + h0(OP1(2a− 5m)) + h0(OP1(2a− 6m))

=


14a− 21m+ 7 , 2a ⩾ 6m,

12a− 15m+ 6 , 6m > 2a ⩾ 5m,

10a− 10m+ 5 , 5m > 2a > 4m+ 4

=


7k + 35 , k ⩾ 3m− 4 ,

6k + 3m+ 30 , 3m− 4 > k ⩾ 2m− 4 ,

5k + 5m+ 25 2m− 4 > k > m .

Then, because h0(TFm) = m+5 for m ⩾ 1 and h0(TP1×P1) = 6, as computed in [Hor76] or [Ser06,
Appendix B], we have

dim H̄
(m)
2k = dim |B| − dimAutFm =


7k + 28 , m = 0 ,

7k + 29−m, 1
3(k + 4) ⩾ m > 0 ,

6k + 2m+ 24 , 1
2(k + 4) ⩾ m > 1

3(k + 4) ,

5k + 4m+ 19 , k > m > 1
2(k + 4)

as claimed.
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With the above notation, we can phrase some of Horikawa’s original results as follows, see
also [BHP+04, Section VII.9].

Theorem 2.5 (Horikawa [Hor76]). Let H2k be the moduli space of (classical) Horikawa surfaces
with K2

X = 2k = 2pg(X)− 4 for k ̸= 1, 4.

(i) If k is odd, then

H2k =

⌊ 1
4
(k+2)⌋⋃
d=0

H
(2d+1)
2k

is irreducible of dimension 7k + 28.

(ii) If k is even and 2k ̸≡ 0 mod 8, then

H2k =

⌊ 1
4
(k+4)⌋⋃
d=0

H
(2d)
2k

is irreducible of dimension 7k + 28.

(iii) If 2k ≡ 0 mod 8, then H2k = HI
2k⊔HII

2k has two connected and irreducible components, both
of dimension 7k + 28: the general component

HI
2k =

1
4
k⋃

d=0

H
(2d)
2k

and the special component

HII
2k = H

( 1
2
(k+4))

2k .

If 2k ≡ 8 mod 16, then smooth surfaces in the respective components are not diffeomorphic.

Horikawa surfaces with K2
X = 2 and pg(X) = 3 are double covers of the projective plane

branched over a sufficiently general octic; some information on their stable degenerations can be
found in [Ant20]. The case K2

X = 8 will be discussed briefly in Section 3.3.

In the following we want to investigate how the subsets H̄
(m)
2k interact inside H̄2k. We focus

particularly on the closures H̄I and H̄II of the special and general components in the cases
where K2

X is divisible by 8. As a byproduct, we will actually re-prove most of Theorem 2.5.

For later use we also note the following.

Corollary 2.6. Fix K2
X = 2k > 8. Then the dimensions of the non-classical subsets H̄

(m)
2k are

strictly increasing:

(i) If k is odd, then

dimH2k < dim H̄
(2⌊ 1

4
(k+2)⌋+3)

2k < · · · < dim H̄
(k−2)
2k .

(ii) If k is even, then

dimH2k < dim H̄
(2⌊ 1

4
(k+4)⌋+2)

2k < · · · < dim H̄
(k−2)
2k .

Proof. From Lemma 2.2 one can check that the listed spaces are exactly the ones containing
no classical Horikawa surfaces. The rest follows by comparing their dimensions, computed in

Proposition 2.4, with dimH2k = dim H̄
(0)
2k .
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3. Connecting HI and HII

Recall, for example from [CLS11, Section 5.2], that for any integer α, the Z2-graded ring, with
variables and weights t0 t1 x0 x1

1 1 α α−m
0 0 1 1


and irrelevant ideal (t0, t1)∩ (x0, x1), is the Cox ring of the Hirzebruch surface Fm. The negative
section σ∞ is given by {x1 = 0}, the positive section σ0 by {x0 = 0}, and the fibres by the
vanishing of linear polynomials {f1(t0, t1) = 0}.

3.1 Horikawa surfaces in weighted projective bundles

The fibration on Fm induces a pencil of genus two curves on any standard stable Horikawa
surface X of type (m). Since a genus two curve can be canonically embedded in P(1, 1, 3), we can
thus describe such a surface X with K2

X = 2k as a hypersurface in a toric variety Tm,k, which is
a P(1, 1, 3) bundle over P1 that varies depending on m and k.

In this section, we suppose that k is even (and therefore m as well by Lemma 2.2), and so
K2

X ≡ 0 mod 4. We will treat the case where k is odd in Section 4.2. To simplify exposition, we
let m = 2d and k = 2n. Then the surfaces we want to describe are hypersurfaces in the toric
threefold T2d,2n (defined for 0 ⩽ 2d ⩽ n+ 2) given byt0 t1 x0 x1 z

1 1 d− n− 2 −d− n− 2 −2(n+ 2)
0 0 1 1 3


with irrelevant ideal (t0, t1)∩(x0, x1, z). The surfaceX arises as a sufficiently general hypersurface
of bidegree

(−4(n+2)
6

)
, and as such is defined by a polynomial z2 + f(x0, x1, t0, t1), where we

eliminate the linear term in z by completing the square. Only the first entry of the degree vector
is relevant to determine which monomials appear in f(x0, x1, t0, t1); denoting it by deg1, we have
for example deg1(z

2) = −4(n+ 2).

Let us consider three examples corresponding to the lowest and highest possible values of d,
in terms of n.

Example 3.1. If d = 0, then the matrix of weights becomest0 t1 x0 x1 z
1 1 −n− 2 −n− 2 −2(n+ 2)
0 0 1 1 3

 .

In this case, the monomials appearing in f are of the form xr0x
6−r
1 g2(n+2)(t0, t1), which are

bihomogeneous when considered in the usual grading. We thus recognize X as a double cover of
F0 = P1 × P1.

The case of particular interest is the following, which for a choice of coefficients gives a key
example of a singular stable Horikawa surface in H̄II

2k.

Example 3.2. If n is even and d = (n+ 2)/2, then the weight matrix ist0 t1 x0 x1 z
1 1 −

(
1
2n+ 1

)
−3

2(n+ 2) −2(n+ 2)
0 0 1 1 3

 ,
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and we see that deg1 x
6
0 = −3n− 6 > deg1 z

2 = deg1 x
5
0x1. Since multiplying with a polynomial

in t0 and t1 can only increase the degree, a general polynomial in the linear system is of the form

z2 − x1
(
µx50 + · · ·

)
, (3.1)

where µ is a non-zero constant. The branch divisor then contains σ∞ = {x1 = 0} once, and the
rest is disjoint from σ∞ because the term

(
µx50 + · · ·

)
has x50 with non-vanishing coefficient.

If we eliminate the variable z, the remaining matrix describes the Hirzebruch surface Fn+2,
and so stable hypersurfaces given by such equations lie in the special component H̄II

4n.

Example 3.3. In the same ambient toric threefold and linear system as in Example 3.2, we now
consider the hyperplane of surfaces defined by an equation as in (3.1), where the coefficient µ
vanishes; that is, the polynomial is of the form

z2 − x21
(
x40gn+2(t0, t1) + · · ·

)
. (3.2)

The general such surface is stable: it is a double cover of Fn+2 branched over 2σ∞+B′, where B′

is smooth and intersects the negative section transversally. Thus X is smooth outside the non-
normal locus, which is the pullback of the negative section. Over the general point of the negative
section, X has normal crossing singularities, that is, locally x21− z2, and at the n+2 intersection
points of σ∞ and B′, the surface X has pinch points, that is, locally z2 − tx21.

The closure of the locus of these surfaces forms a divisor D in H̄
(n+2)
4n ⊂ H̄II

4n.

3.2 Connecting the general and the special component (K2
X > 8)

We assume in this section that K2
X = 2k = 4n ≡ 0 mod 8 and n ⩾ 3. Then by Theorem 2.5,

the Gieseker moduli space H4n = HI
4n ⊔ HII

4n is the union of the two irreducible and connected
components, each of dimension 14(n+ 2), which we call the general and the special component.
We show that the closures of these components intersect in the stable compactification H̄4n.

Theorem 3.4. If K2
X = 4n ≡ 0 mod 8 and n ⩾ 3, then the intersection H̄I

4n ∩ H̄II
4n contains the

divisor D containing the locus of semi-smooth double covers of Fn+2 described in Example 3.3.

The general surface in D can be smoothed to a surface in HII
4n using the parameter µ in

Example 3.2. So it remains to show that it can be smoothed to the other component as well.

We start by constructing an explicit family over A1
λ, depending on a choice of two polynomials

p0, p1 ∈ Rn/2+1), with special fibre a singular surface described in Example 3.3 and general fibre
a smooth surface of the type described in Example 3.1.

Consider the toric fourfold T given byt0 t1 y0 x0 x1 z
1 1 −(12n+ 1) −n− 2 −n− 2 −2(n+ 2)
0 0 1 1 1 3


with irrelevant ideal (t0, t1) ∩ (y0, x0, x1, z). Let R = C[t0, t1] with the usual grading.

Inside T let us first consider the family Tλ over A1
λ of threefolds given by

λy0 = p1x0 − p0x1 with pi ∈ R(n/2+1) and gcd(p0, p1) = 1 . (3.3)

If λ ̸= 0, then we eliminate the variable y0 and obtain T0,2n, the threefold considered in Exam-
ple 3.1.

575



J. Rana and S. Rollenske

If λ = 0, then we can introduce a new variable

y1 =
x0
p0

=
x1
p1

, deg y1 =

(
−3

2(n+ 2)
1

)
because the pi cannot vanish simultaneously. The resulting equations

x0 = p0y1 , x1 = p1y1 (3.4)

eliminate the variables x0 and x1, and we recover Tn+2,2n, the toric threefold from Example 3.2.

To define a family of hypersurfaces in Tλ that restricts in the desired fashion, we need to
analyse which elements in the relevant linear system on the central fibre are global on the family.
That is, we need to describe all polynomials in t0, t1, x0, x1, y0 of bidegree

(−4(n+2)
6

)
. These are

sums of elements of the subspaces

y6−i
0 · Symi⟨x0, x1⟩ ·R(i−2)( 1

2
n+1) (i ⩾ 2) (3.5)

because these have deg1 equal to −(6− i) · (n/2+1)− i ·2(n/2+1)+(i−2)(n/2+1) = −4(n+2).
Note that the cases i = 0, 1 do not occur because there are no polynomials of negative degree
in R.

Now we let λ go to zero to see which monomials we get on the central fibre. To describe this,
let V = ⟨p0, p1⟩. Then substituting (3.4) into (3.5), we obtain on the special fibre all equations
of the form z2 − f with f in the subspace generated by

y6−i
0 yi1 · Symi V ·R(i−2)( 1

2
n+1) ⊂ y6−i

0 yi1 ·R(2i−2)( 1
2
n+1) (i ⩾ 2).

Lemma 3.5. Let p0, p1 ∈ Rn/2+1 be without common divisor, and let i ⩾ 3. Then the multipli-
cation map

φp
i : Symi V ·R(i−2)( 1

2
n+1) → R(2i−2)( 1

2
n+1)

is surjective.

Proof. Let A = A′ = P1. We have maps

A′ π=(p0:p1)−−−−−−→ A
vi−→ Pi ,

where vi is the Veronese embedding of P1 into Pi as a rational normal curve. Note that the OA-
algebra π∗OA′ is a torsion-free coherent sheaf on P1, hence a vector bundle. The trace map splits
off a trivial summand, and by Grothendieck’s lemma (see for example [Huy05, Corollary 5.2.8]),
the whole bundle is a direct sum of line bundles. Since the cohomology of π∗OA′ gives the
cohomology of OA′ , we have

π∗OA′ = OA ⊕OA(−1)⊕
1
2
n .

We then have

Symi V = π∗H0(A,OA(i)) = π∗v∗iH
0(Pi,OPi(1)) and Rα( 1

2
n+1) = H0(A′, π∗OA(α)) .

Restricting the Euler sequence of Pi to the rational normal curve and pulling back to A′, we get

0 → π∗v∗i (ΩPi(1))⊗π∗OA(i− 2) → Symi V ⊗π∗OA(i− 2) → π∗OA(2i− 2) → 0

and find by taking global sections that the cokernel of the multiplication map is

cokerφp
i = H1(A′, π∗v∗i (ΩPi(1))⊗π∗OA(i− 2))

= H1(A, v∗i (ΩPi(1))⊗OA(i− 2)⊗π∗OA′)

= H1
(
A, v∗i (ΩPi)⊗OA(2i− 2)⊗

(
OA ⊕OA(−1)⊕

1
2
n
))

,

576



Standard stable Horikawa surfaces

which by [BE95, Proposition 5A.2] becomes

cokerφp
i = H1

(
A,

(
OA(−i− 1)⊕i

)
⊗OA(2i− 2)⊗

(
OA ⊕OA(−1)⊕

1
2
n
))

= H1
(
A,OA(i− 3)⊕i

)
⊕H1

(
A,OA(i− 4)⊕

1
2
in
)

= 0 (for i ⩾ 3) .

Note that for i = 2 it is quite obvious that the map is not onto.

Theorem 3.4 now follows immediately from the slightly more precise result.

Proposition 3.6. Let X0 be a hypersurface as in Example 3.3 such that in equation (3.2),
the polynomial g2(n/2+1) equals p0p1, where pi ∈ Rn/2+1 and gcd(p0, p1) = 1. Then X0 can be

smoothed to a Horikawa surface in HI
2n.

Proof. By assumption and Lemma 3.5, we can choose monomials such that the surface defined
in the toric fourfold T by the equations

λy0 = p1x0 − p0x1 and z2 + y40x0x1 +
(
terms not divisible by y40

)
= 0

degenerates over A1
λ to X0 in the family described above. After possibly adding λ times a general

polynomial, the general fibre will be smooth as claimed.

3.3 Connecting HI
8 and HII

8

Here we consider the last remaining case, Horikawa surfaces with K2
X = 8 and pg(X) = 6. There

are two new constructions here:

Type (∞). The surface X is a double cover of the projective plane branched over a smooth

curve of degree ten. A quick dimension count shows that this family H
(∞)
8 has dimension

dim |OP2(10)| − dimAut(P2) = 57.

Type (4′). The surface X is a double cover of the cone over a rational normal curve of degree
four branched over the vertex and a quintic section. Thus we can realise X as a (sufficiently
general) hypersurface of degree 20 in weighted projective space P(1, 1, 4, 10).

The main difference between this and the general case is that KF4 +
1
2 (6σ∞ + 20Γ) is

not ample on F4 but only big and nef and contracts the negative section. So the double
cover of F4 branched over a smooth B ∈ |6σ∞ + 20Γ| gives a smooth minimal Horikawa
surface, but the preimage of the negative section is a (−2)-curve, which we need to contract
to get the canonical model.

Arguing as in Proposition 2.4, we see that the family H
(4′)
8 is of dimension 56.

By [Hor76, Section 4] again the moduli space has two connected components, namely

HI
8 = H

(0)
8 ⊔ H

(2)
8 and HII

8 = H
(∞)
8 ⊔ H

(4′)
8 .

The main point is that every surface of type (4′) can be deformed to one of type (∞) by taking
a suitable double cover of the Q-Gorenstein smoothing of P(1, 1, 4) to P2.

Note that in this case, the dimensions of the two components are different, namely dimHI
8 =

56 and dimHII
8 = 57.

We will now prove the following.

Proposition 3.7. The closures H̄I
8 and H̄II

8 intersect in H̄8.
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Remark 3.8. Arguing more carefully as in Section 3.2, one can be a bit more precise: the inter-

section of the two 56-dimensional subsets H̄
(0)
8 and H̄

(4′)
8 contains a subset D of dimension 55,

which is therefore a divisor in H̄I
8, and a subset of codimension two in H̄II

8 . We illustrate this in
Figure 3.

H̄I
8

H̄
(0)
8

D

H̄
(∞)
8

H̄
(4′)
8

H̄II
8

Figure 3. Standard strata in H̄8

Proof. The aim is to construct a surface in the closure of both components. In contrast to the
previous section, this surface will be normal with one elliptic singularity.

Consider the toric fourfold T given byt0 t1 y0 x0 x1 z
1 1 4 2 2 10
0 0 1 1 1 3


with irrelevant ideal (t0, t1) ∩ (y0, x0, x1, z). Let R = C[t0, t1] with the usual grading.

Inside T let us consider the family of threefolds Tλ over A1
λ given by

λy0 = p1x0 − p0x1 with p0, p1 ∈ R2 and p0p1 without multiple zeros ,

which we intersect with a sufficiently general hypersurface of bidegree
(
20
6

)
given by

z2 + x0x1y
4
0 + lower-order terms in y0 + λg(x0, x1, t0, t1) = 0

to get a family of surfaces Xλ. If λ ̸= 0, then we eliminate the variable y0 and find, up to a change
of basis in the weight matrix, the threefold Tλ

∼= T0,4 defined at the beginning of Section 3.1.
Thus Xλ is a Horikawa surface of type (0) for λ ̸= 0.

Now let us consider the central fibre λ = 0. We introduce a new variable

y1 =
x0
p0

=
x1
p1

, deg y1 =

(
0
1

)
,

because the pi cannot vanish simultaneously. The resulting equations x0 = p0y1 and x1 = p1y1
eliminate the variables x0 and x1, and we get the toric threefold T0 with weightst0 t1 y0 y1 z

1 1 4 0 10
0 0 1 1 3

 ,

in which the equation for X0 becomes

z2 + p0p1y
4
0y

2
1 + (lower-order terms in y0) = 0 .

Translating back to geometry, that is, projecting to the first four coordinates, we find that
π : X0 → F4 is a double cover branched over 2σ∞ + B′, where B′ intersects σ∞ transversally in
four points because p0p1 has no multiple zeros.
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Note thatKX0 = π∗(σ∞+4Γ) is not ample because it is trivial on the non-normal locus, which
is the preimage of σ∞. To understand the (log)-canonical model, let us take the normalisation,

X̄0 X0

F4 .

ν

π̄

branched over B′ branched over 2σ∞ +B′
π

Then E = π̄−1(σ∞) is a smooth elliptic curve with E2 = −8 and ν∗KX0 = KX̄0
+ E. Since all

sections of m(KX̄0
+ E) are constant on E, we have π∗ : H0(mKX0)

∼= H0(m(KX̄0
+ E)), and

the log-canonical model of X0 is the log-canonical model of (X̄0, E). The result is the surface Y0,
where we contract the elliptic curve E to an elliptic singularity.

On the level of the ambient toric threefold T0, this corresponds to eliminating the variable
y1, that is, the rational projection

T0 99K P(1, 1, 4, 10) .

The resulting hypersurface Y0 can be deformed to a general such hypersurface, which is a Hori-
kawa surface of type (4′). Thus the surface Y0 is in the closure of both HI

8 and HII
8 .

4. Connecting adjacent (non-classical) components

In this section we use the toric construction described above to show that all standard stable
Horikawa surfaces are contained in the same connected component of H̄2k. The details of the
proof depend on the parity of k.

4.1 Connecting H̄
(2d)
4n and H̄

(2d+2)
4n

We begin by assuming that k is even and take k = 2n.

Proposition 4.1. The subsets H̄
(2d)
4n and H̄

(2d+2)
4n are in the same connected component of H̄4n.

Proof. Note that the closure of the Gieseker moduli space of classical Horikawa surfaces is con-

nected by Horikawa’s Theorem 2.5 and by Section 3, so we may assume that H̄
(2d+2)
4n is a com-

ponent containing only non-classical surfaces; that is, n ⩽ 2d < 2n− 2.

Since both subsets are connected, it suffices to exhibit a (Gorenstein, hence Q-Gorenstein)
family of standard stable Horikawa surfaces, where the general fibre is of type (2d) and a special
fibre is of type (2d+ 2).

Consider for n ⩽ 2d < 2n− 2 the toric fourfold T given byt0 t1 y0 x0 x1 z
1 1 d− n− 1 d− n− 2 −d− n− 2 −2(n+ 2)
0 0 1 1 1 3


with irrelevant ideal (t0, t1) ∩ (y0, x0, x1, z). Let R = C[t0, t1] with the usual grading.

Inside T let us first consider the family of threefolds Tλ over A1
λ given by

λy0 = p1x0 − p0x1 with p1 ∈ R1, p0 ∈ R2d+1 and gcd(p0, p1) = 1 .

If λ ̸= 0, then we eliminate the variable y0 and find the threefold T2d,2n defined at the beginning
of Section 3.1.

579



J. Rana and S. Rollenske

If λ = 0, then we can introduce a new variable

y1 =
x0
p0

=
x1
p1

, deg y1 =

(
−d− n− 3

1

)
,

because the pi cannot vanish simultaneously. The resulting equations

x0 = p0y1 , x1 = p1y1 (4.1)

eliminate the variables x0 and x1, and we get T2d+2,2n.

To prove that H̄2d
4n meets H̄2d+2

4n , we need an equation of bidegree
(−4(n+2)

6

)
on T of the form

z2 + f(t0, t1, y0, x0, x1) that defines a stable surface if we set λ = 0. Writing(
−4(n+ 2)

6

)
=

(
2n− 2d

0

)
+ 2

(
−d− n− 2

1

)
+ 4

(
d− n− 1

1

)
,

we can set

f(t0, t1, y0, x0, x1) = g2n−2d(t0, t1) · x21 ·
4∏

i=1

(y0 + aix0 + bix1))

for general ai ∈ R1 and bi ∈ R2d+1.

Upon intersection with Tλ for λ = 0, we obtain

f(t0, t1, y0, p0y1, p1y1) = g2n−2d(t0, t1)p
2
1y

2
1 ·

4∏
i=1

(y0 + (aip0 + bip1)y1)) .

For general choices (for example, choosing p0 = t2d+1
0 , p1 = t1, and generic ai, bi), this equation

defines a stable surface because the branch curve B is the union of 2n − 2d fibres, twice the
negative section, twice a fibre, and four sufficiently general sections in |σ0| that are disjoint
from σ∞; thus

(
F2d+2,

1
2B

)
is a log-canonical pair; cf., for example, [AP12].

More concretely, the double cover (generically) has 16(d + n + 2) A1 singularities, normal
crossing singularities over the general point of the double locus, 2n − 2d + 4 pinch points, and
a degenerate cusp with local equation z2+x2t2 over the point where 2σ∞ meets the double fibre.
This proves the claim.

4.2 Connecting H̄
(2d+1)
4n−2 and H̄

(2d−1)
4n−2

We suppose that k = K2
X/2 is odd and take k = 2n− 1. Then by Lemma 2.2 the type (m) has

to be odd as well.

To connect the components of standard stable Horikawa surfaces of odd type, we follow the
same strategy employed above: we realise the individual surfaces as hypersurfaces of a toric
threefold and then connect these constructions inside a toric fourfold.

Example 4.2. Consider for 0 < d < n the toric threefold T2d−1,2n−1 described viat0 t1 x0 x1 z
1 1 d− n− 1 −d− n −2n
0 0 1 1 3


with irrelevant ideal (t0, t1) ∩ (x0, x1, z). A general equation of bidegree

(−4n
6

)
without linear

term in z is of the form

z2 +

6∑
i=0

g2n+6d−i(2d−1)x
i
0x

6−i
1
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and thus defines a double cover of F2d−1 branched over a curve in |6σ∞ + (2n + 6d)Γ|. By
Lemma 2.2 we can describe all standard stable Horikawa surfaces of type (2d − 1) with K2

X =
2(2n− 1) in this way.

Proposition 4.3. The subsets H̄
(2d+1)
4n−2 and H̄

(2d−1)
4n−2 are in the same connected component

of H̄4n+2.

Proof. We exhibit a (Q-)Gorenstein family of standard stable Horikawa surfaces, where the
general fibre is of type (2d− 1) and a special fibre is of type (2d+ 1).

Consider for n+ 2 ⩽ 2d < 2n+ 2 the toric fourfold T given byt0 t1 y0 x0 x1 z
1 1 d− n d− n− 1 −d− n −2n
0 0 1 1 1 3


with irrelevant ideal (t0, t1) ∩ (y0, x0, x1, z). Let R = C[t0, t1] with the usual grading.

Inside T let us consider the family of threefolds Tλ over A1
λ given by

λy0 = p1x0 − p0x1 with p1 ∈ R1, p0 ∈ R2d and gcd(p0, p1) = 1 .

If λ ̸= 0, then we eliminate the variable y0 and find the toric threefold T2d−1,2n−1 from Exam-
ple 4.2.

If λ = 0, then we can introduce a new variable

y1 =
x0
p0

=
x1
p1

, deg y1 =

(
−d− n− 1

1

)
,

because the pi cannot vanish simultaneously. The resulting equations

x0 = p0y1 , x1 = p1y1

eliminate the variables x0 and x1, and we find the threefold T2d+1,2n−1 with weightst0 t1 y0 y1 z
1 1 d− n −d− n− 1 −2n
0 0 1 1 3

 .

To prove that H̄2d−1
4n−2 meets H̄2d+1

4n−2, we need an equation of bidegree
(−4n

6

)
on T of the form

z2 + f(t0, t1, y0, x0, x1) that defines a stable surface if we set λ = 0. Writing(
−4n
6

)
=

(
2n− 2d

0

)
+ 2

(
−d− n

1

)
+ 4

(
d− n
1

)
,

we can set

f(t0, t1, y0, x0, x1) = g2n−2d(t0, t1) · x21 ·
4∏

i=1

(y0 + aix0 + bix1))

for general ai ∈ R1 and bi ∈ R2d and g2n−2d ∈ R2n−2d, because n > d.

Upon intersection with Tλ for λ = 0, we obtain

f(t0, t1, y0, p0y1, p1y1) = g2n−2d(t0, t1)p
2
1y

2
1 ·

4∏
i=1

(y0 + (aip0 + bip1)y1)) ,

which defines a stable surface for sufficiently general choices, as in the proof of Proposition 4.1.
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5. Infinitesimal deformations of standard stable Horikawa surfaces

We start by considering some consequences of the general theory of deformations of maps (see for
example [GLS07, Appendix C]), which we will then apply to Horikawa surfaces. In full generality,
the information of DefA, deformations of an object A, is encoded in some cotangent complex L•

A

and the associated cohomology groups T i
A and sheaves T i

A. More concretely, for a finite morphism

f : X → W ,

we consider

DefX Deformations of X,
DefW Deformations of W ,
Deff Deformations of the map f possibly varying both X and W ,
Deff/W Deformations of the map f preserving W ,

DefX\f Deformations of the map f preserving X,

DefX\f/W Deformations of the map f preserving W and X.

The corresponding tangent cohomology groups (or sheaves) are intertwined in the cotangent
braid of Buchweitz (cf. [GLS07, Appendix C, p. 446]), shown in Figure 4.

T 0
X\f T 0

f/W

T 0
f

T 0
W T 0

X

T 1
X\f/W

T 1
f/W T 1

X\f

T 1
f

T 1
X T 1

W

T 2
X\f/W

T 2
X\f T 2

f/W

T 2
f

T 2
W T 2

X

. . .

. . . . . .

2

3 1

4
31

2

1

4

3
24

4

1

2

3

13

4

3

2

1α
42

2

3 1

4
31

2

1

4

3

(5.1)

Figure 4. The cotangent braid of Buchweitz

Remark 5.1. All spaces that we consider are either smooth or local complete intersections, so
that for deformation purposes it would be enough to work with the sheaf of Kähler differentials.
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But the deformations of f without fixing source or target need another calibre of theory, which
is the reason why we use the general machinery.

Very similar problems have been considered previously, for example in [CvS06, GGP10,
Man97], but we find it most transparent to start from scratch.

Lemma 5.2. Assume that W is smooth and that

(i) H0(W, TW ) → H0(W, f∗f
∗TW ) is an isomorphism,

(ii) H1(W, TW ) → H1(W, f∗f
∗TW ) is an isomorphism,

(iii) H2(W, TW ) = 0.

Then the natural forgetful maps T i
f → T i

X are isomorphisms for i ⩽ 2 and Deff ∼= DefX . In other
words, every deformation of X is induced by a deformation of the map f in a unique way.

Proof. From sequence 3 in (5.1), we see that it is enough to show that T i
X\f = 0 for i =

0, 1, 2. Using sequence 2 from (5.1) and the isomorphisms T i
W = H i(W, TW ) and T i

X\f/W =

H i−1(W, f∗f
∗TW ) from [Ser06, Proposition 3.4.2], the result follows.

Now we work out more specifically some groups and maps in the cotangent braid in the case
of a double cover f : X → W branched over a divisor B. We will always assume that W is smooth
and now recall the standard theory from [BHP+04, Section I.17]: we have f∗OX = OW ⊕ L−1

for some line bundle L such that L⊗ 2 ∼= OW (B). Consider the geometric line bundle π : |L| =
Spec

W

(
Sym• L−1

)
→ W , and denote the tautological section in π∗L by z. If σB is the section

defining the branch locus, then X is the divisor in |L| defined by the section σX = z2 − π∗σB of
π∗OW (B). In particular, as a hypersurface in a smooth variety, X is a local complete intersection.

On X the section σR = z is a square root of π∗σB and as such defines the ramification
divisor R.

Proposition 5.3. Let f : X → W be a double cover of a smooth variety. In the notation above
the following hold:

(i) We have T i
f/W = 0 for i ̸= 1 and T 1

f/W
∼= OX(f∗B)|R ∼= OB(B) (under the identification

f : R ∼= B).

(ii) If h1(OW ) = 0, then

T i
f/W = H i−1(X, T 1

f/W ) =


0 , i ̸= 1, 2 ,

H0(X,OX(B))/⟨σB⟩ , i = 1 ,

H1(B,OB(B)) , i = 2 .

In other words, infinitesimal deformations of the map with fixed target W are exactly given
by deformations of the branch divisor.

(iii) The map T 1
W → T 2

f/W in sequence 4 in the cotangent braid (5.1) is, under the identification

α : H1(TW ) = T 1
W → T 2

f/W = H1(B,OB(B)) , (5.2)

induced by the map of sheaves α : TW → OB(B) described in the following way: for a local
vector field ξ, the section α(ξ) is the restriction to B of the derivative of the equation of B
in direction ξ. That is,

α(ξ) = (ξ⌟dσB) |B = ξ(σB)|B .
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Proof. Note that the sheaf of relative differentials of the line bundle π : |L| → W is naturally
ω|L|/W = L−1. Thus we can consider the commutative diagram

0 0

f∗ΩW f∗ΩW

0 N ∗
X/|L| Ω|L||X ΩX 0

0 f∗OW (−B) f∗L−1 ΩX/W 0

0 0 ,

·dσX

·2z

(5.3)

where the second row is the usual conormal sequence for a divisor and the first map is given by
multiplication with the derivative of the section σX as indicated. In the third row we only look
at the differential in fibre direction; therefore, under the identification ω|L|/W = L−1, the first
map becomes multiplication with 2z = 2σR.

Note that because X is a local complete intersection and because LX\f/W = f∗ΩW as in the
proof of Lemma 5.2, applying Hom(−,OX) to the third column of (5.3) gives sequence 4 in the
cotangent braid (5.1).

Applying HomOX
(−,OX) to the last row, we get a short exact sequence

0 → f∗L ·σR−−→ OX(f∗B) → T 1
f/W → 0 , (5.4)

so

T i
f/W = 0 for i ̸= 1 and T 1

f/W
∼= OX(f∗B)|R ∼= OB(B)

(under the identification f : R ∼= B).

If we push forward to W and then take cohomology, then multiplication with the equation of
the ramification divisor on X exchanges the invariant and anti-invariant subspaces of cohomology
groups, so we can identify

H i(X, f∗L) H i(X, f∗OW (B))

H i(W,L)⊕H i(W,OW ) H i(W,OW (B))⊕H i
(
W,L−1(B)

)
.

σR

(
0 σB

1 0

)

Cancelling the components on which the map is an isomorphism and noting that H1(OW ) = 0
by assumption, we see that the long exact sequence associated with (5.4) and the local-to-global
Ext sequence give claim (ii).
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To identify the map α in sequence 1 in (5.1), we apply HomOX
(−OX) to (5.3) and obtain

0 T 1
X/W

0 f∗TW f∗TW

0 T 1
X f∗OW (B) T|L||X TX 0

0 T 1
X/W f∗OW (B) f∗L 0

f∗TW 0 .

α

−⌟dσX

α

Chasing through the diagram shows that the map α is defined as follows: Given a (local) vector
field ξ on W , we can choose any lift ξ̃ to a vector field on |L|. Then α(ξ) = ξ̃⌟dσX projected
to T 1

X/W , where σX is the equation defining X and ⌟ is the contraction of 1-forms with vector
fields. This gives the claimed map.

Remark 5.4. To summarize, sequence 1 in the cotangent braid in the situation of a double cover
is associated with the dual of the residue sequence 0 → ΩW → ΩW (logB) → OB → 0, which is
also explained in [CvS06].

5.1 Cohomology computations

We will now apply the results of the previous section to standard stable Horikawa surfaces.

Proposition 5.5. Let W = Fm be a Hirzebruch surface and f : X → W be a double cover
branched over any divisor B in |6σ∞+2aΓ| with a > 2m+2. Then the natural map Deff → DefX
is an isomorphism.

Proof. We need to check the conditions of Lemma 5.2. First note that H2(W, TW ) = 0 by, for
example, [Ser06, Appendix B] or the computations done below. For the other two conditions, we
follow the proof of [Hor76, Lemma 2.3].

First note that since f∗f
∗TW = TW ⊗ f∗OX = TW ⊕ TW (−3σ∞ − aΓ), it is enough to show

that H i(TW (−3σ∞ − aΓ)) = 0 for i = 0, 1.

In the relative tangent sequence for the fibration π : Fm → P1,

0 → TFm/P1 → TFm → π∗TP1 → 0 ,

we can identify π∗TP1 = OFm(2Γ) and TFm/P1 = OFm(2σ∞ +mΓ). Twisting with (−3σ∞ − aΓ),
we immediately get

h0(−σ∞ + (m− a)Γ) = 0 ,

h1(−σ∞ + (m− a)Γ) = 0 ,

h0(−3σ∞ + (2− a)Γ) = 0 .
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Furthermore,

h1(−3σ∞ + (2− a)Γ) = h1(KW − σ∞ + (4 +m− a)Γ)

= h1(σ∞ + (a− 4−m)Γ)

= h1(OP1(a− 4−m)) + h1(OP1(a− 4− 2m))

= 0

because by assumption a > 2m + 2, that is, a − 4 − 2m > −2. The required vanishing follows
from the long exact cohomology sequence.

In the situation of standard Horikawa surfaces, we want to compute the map (5.2) explicitly,
thereby taking control over sequence 1 in the cotangent braid (5.1).

Fix m ⩾ 0, and consider B ∈ |6σ∞ + 2aΓ| with a > 2m+ 2 on W = Fm.

Lemma 5.6. If B = kσ∞ + B′ with k ∈ {0, 1, 2}, then the inclusions kσ∞ ↪→ B ↪→ W induce
isomorphisms

H1(W,OW (B)) ∼= H1(B,OB(B)) ∼= H1(kσ∞,Okσ∞(B)) ,

and the dimension of this group is

h1(W,OW (6σ∞ + 2aΓ)) =


0 , 2a ⩾ 6m− 1 ,

6m− 2a− 1 , 6m− 1 > 2a ⩾ 5m− 1 ,

11m− 4a− 2 , 5m− 1 > 2a > 4m+ 4 .

Under the given conditions, the group vanishes if m ⩽ 4.

Proof. The first isomorphism follows from the restriction sequence and H1(OW ) = H2(OW ) = 0.
Using 2a > 4m+ 4, the dimensions are computed as

h1(W,OW (6σ∞ + 2aΓ)) =
6∑

i=0

h1
(
P1,OP1(2a− im)

)
= h1

(
P1,OP1(2a− 5m)

)
+ h1

(
P1,OP1(2a− 6m)

)
=


0 , 2a ⩾ 6m− 1 ,

6m− 2a− 1 , 6m− 1 > 2a ⩾ 5m− 1 ,

11m− 4a− 2 , 5m− 1 > 2a > 4m+ 4 .

Now assume B = kσ∞ +B′ with k = 1 or k = 2. Then there is an exact sequence

0 → OB′(B′) → OB(B) → Okσ∞(B) → 0 .

The corresponding long exact cohomology sequence gives an isomorphism betweenH1(B,OB(B))
and H1(kσ∞,Okσ∞(B)).

Note that Lemma 2.2 ensures that B contains σ∞ or even 2σ∞ when the cohomology group
H1(W,OW (B)) is non-zero.

To compute the map (5.2) explicitly, we want explicit Čech cohomology descriptions of the
relevant groups. We will assume m > 0 since otherwise the cohomology groups we are interested
in vanish anyway. We closely follow [Ser06, Appendix B]. Let us set up our notation starting
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from the toric model of the Hirzebruch surface given byt0 t1 x0 x1
1 1 0 −m
0 0 1 1


with projection π : Fm → P1. Let

τ =
t0
t1

, ξ =
x1t

m
1

x0
,

τ ′ = τ−1 , ξ′ =
x1t

m
0

x0
= ξτm

(5.5)

and R = Spec[τ, τ−1], considered as a Z-graded ring. Then with U = {t1 ̸= 0} and U ′ = {t0 ̸= 0},
we have P1 = U ∪ U ′. Consider

V = π−1(U) ⊃ V0 := SpecC[τ, ξ] ,
V ′ = π−1(U ′) ⊃ V ′

0 := SpecC[τ ′, ξ′] .

We will compute Čech cohomology with respect to the covering W = V ∪ V ′ but represent
sections by their restrictions to the affine subsets V0, respectively V ′

0 . On V0 the curve B is defined
by an equation

σ0
B = g0 + g1ξ + g2ξ

2 + · · ·+ g6ξ
6

for certain gi ∈ C[τ ]. We may assume for simplicity that we see all zeros of the coefficients of σB
in V ∩ V ′; that is, deg gi = 2a− 6(m− i) and gi has a non-zero constant term unless it vanishes
identically. Note that deg g0 = 2a− 6m = B · σ∞.

Lemma 5.7. For any B ∈ |6σ∞ +2aΓ| with 2a > 4m+4, with respect to the above covering, we
have

Ȟ1(W,OW (B)) =
1

σ0
B

(
1

R

R⩾0 +R⩽2a−6m
+ ξ

R

R⩾0 +R⩽2a−5m

)
.

Proof. To compute Čech cohomology, we need to describe the section on V and V ′ and then
compare the descriptions over V ∩V ′. For this note that, by the relation between the coordinates,
we can describe the equation for B on V ′

0 as

σ0
B
′
= σ0

B · τ6m−2a ,

so that by (5.5),

Γ(V ′,OW (B)) =
1

σ0
B
′C[τ

′]
〈
1, . . . , ξ′

6〉
=

τ2a−6m

σ0
B

R⩽0

〈
1, τmξ, . . . , τmξ6

〉
.

Then using 2a > 4m+ 4, we compute

Ȟ1(W,OW (B)) = Γ(V ∩ V ′,OW (B))/
(
Γ(V,OW (B)) + Γ(V ′,OW (B))

)
=

1

σ0
B

(1 ·R/ (R⩾0 +R⩽2a−6m) + ξ ·R/ (R⩾0 +R⩽2a−5m))

as claimed.
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Lemma 5.8. This covering computes H1(W, TW ), and explicitly we have

Ȟ1(W, TW ) =
R · ∂

∂ξ

R⩾0 · ∂
∂ξ +R⩽0 · τ−m ∂

∂ξ

∼=
〈
τ−1 ∂

∂ξ
, . . . , τ−(m−1) ∂

∂ξ

〉
,

a vector space of dimension m− 1.

Proof. The sheaf TW does not have higher cohomology on V and V ′, so we can use this covering to
compute cohomology. Again representing everything in the local coordinates given on V0 and V ′

0 ,
we get

Γ(V, TW ) = C[τ ]
〈

∂

∂τ
,
∂

∂ξ
, ξ

∂

∂ξ
, ξ2

∂

∂ξ

〉
,

Γ(V ′, TW ) = C[τ ′]
〈

∂

∂τ ′
,
∂

∂ξ′
, ξ

∂

∂ξ′
, ξ′

2 ∂

∂ξ′

〉
= C[τ−1]

〈
−τ2

∂

∂τ
+mτξ

∂

∂ξ
, τ−m ∂

∂ξ
, ξ

∂

∂ξ
, τmξ2

∂

∂ξ

〉
⊂ Γ(V ∩ V ′, TW ) ,

where we get the formulas for the coordinate change by differentiating (5.5). It is straightforward
to see that we get the basis of the quotient stated above.1

Proposition 5.9. If B = σ∞ + B′ and σ∞ ̸< B′, then the map (5.2) is surjective, and it is an
isomorphism if and only if 2a = 5m.

Proof. We have 2a ⩾ 5m by Lemma 2.2. We write the equation

σ0
B = ξg1 + (higher-order terms in ξ)

for some polynomial g1 of degree 2a−5m ⩾ 0. Then we compute the map (5.2) using Lemma 5.6:

Ȟ1(W, TW ) → Ȟ1(σ∞,Oσ∞(B)) , τ−i ∂

∂ξ
7→ g1 · τ−i 1

σ0
B

.

Since we have chosen coordinates such that g1 has a constant term, the claim follows from
Lemmas 5.7, 5.6 and 5.8.

Proposition 5.10. If B = 2σ∞ +B′ and σ∞ ̸< B′, then the map α from (5.2)

(i) is surjective if and only if H1(B,OB(B)) = 0 if and only if 2a > 6m,

(ii) is zero if and only if 2a ⩾ 5m,

(iii) has rank 5m− 2a− 1 < m− 4 for 4m+ 4 < 2a < 5m.

Note that by Remark 2.3 the last case can only occur for m ⩾ 7, so that the inequalities
make sense.

Proof. We have 2a > 4m+ 4 by Lemma 2.2. We write the equation

σ0
B = ξ2g2 + (higher-order terms in ξ)

for some polynomial g1 of degree 2a− 4m > 4. By Lemma 5.6 we can compute the composition

Ȟ1(W, TW )
α−→ H1(B,OB(B)) → H1(2σ∞,O2σ∞(B)) ,

and the last group is simply the restriction of the one computed in Lemma 5.7 to 2σ∞.

1In [Ser06, Appendix B] the result of this computation is stated with a missing inverse.
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For the explicit representatives computed in Lemma 5.8, we get

α

(
τ−i ∂

∂ξ

)
= τ−i · 2ξ · g2

1

σ0
B

∣∣∣
2σ∞

Since we have chosen coordinates such that g2 has a constant term, the map surjects on the
subspace

Ȟ1(W, TW ) ↠ ξ
R

R⩾0 +R⩽2a−5m
↪→ Ȟ1(2σ∞,O2σ∞(B)) .

Thus the map α is surjective if and only ifH1(B,OB(B)) = 0, which holds if and only if 2a > 6m.
The other two items follow by counting the dimension of the spaces involved.

5.2 Deformation-theoretic interpretations

We now interpret the computations of the previous section in our context. First recall that for
a Hirzebruch surface W = Fm with m > 0, we have

h0(TW ) = m+ 5 , h1(TW ) = m− 1 , h2(TW ) = 0 ,

deformations are unobstructed, and W deforms to Fm−2k for k = 1, . . . , ⌊m/2⌋. This is explained,
for example, in [Cat13, Section 1.2, pp. 169–170], and a more precise description of the stratifi-
cation of the universal deformation space has been given by Suwa [Suw73].

Now for a standard stable Horikawa surface, consider sequence 1 in the cotangent braid (5.1)
and its more worldly incarnation derived from Propositions 5.5 and 5.3:

0 T 0
W T 1

f/W T 1
f T 1

W T 2
f/W T 2

f T 2
W

0 H0(TW ) H0(OB(B)) T 1
X H1(TW ) H1(OB(B)) T 2

X 0 .

α

(5.6)

The first part of the following result re-proves some of the results in [Hor76]. Part of it can
also be deduced directly from the concrete families constructed in Sections 3 and 4.

Proposition 5.11. Let f : X → W be a standard stable Horikawa surface of type (m) with
branch curve B ∈ |6σ∞ + 2aΓ|.
(i) If 2a ⩾ 6m, then deformations of X are unobstructed and every deformation of W can be

lifted to a deformation of X. In particular, X deforms to a Horikawa surface of type (0).

(ii) If 2σ∞ ̸< B, that is, 2a ⩾ 5m, then deformations of X are unobstructed. If 2a < 5m, then
X deforms to a Horikawa surface of lower type.

(iii) Assume 2a = 5m and write B = kσ∞ +B′.

(a) If k = 1, then deformations of X are unobstructed and DefX ∼= Deff/Fm
; that is, every

small deformation is of type (m) again.
(b) If k = 2, then dimT 1

X = 12a− 15m− 1.

(iv) If 5m > 2a > 4m + 4 and B = 2σ∞ + B′, then the map T 1
X → T 1

W is non-trivial of rank
K2

X/2−m+ 3 = 2a− 4m− 1 ⩾ 4.

Proof. All items follow immediately from (5.6) in conjunction with Propositions 5.9 and 5.10,
where we use that a deformation functor is unobstructed if T 2 = 0 and our knowledge of defor-
mations of Hirzebruch surfaces.

We can now complete the proof of Theorem A, giving information on the local structure H̄8k

at a surface as described in Example 3.2.
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Corollary 5.12. Suppose K2
X = 8ℓ with ℓ > 2, and consider a surface X representing a general

point in D ⊂ H̄I ∩ H̄II in the intersection of the special and general component. Then the point
[X] representing X in H̄kℓ lies in exactly these two irreducible components, but H̄8ℓ is not normal
crossing near [X].

Proof. We know that every deformation ofX is again a standard stable Horikawa surface (Propo-
sition 5.5) and that the type can only decrease, so X can only deform to one of these two com-
ponents. If the moduli space were normal crossing at [X], then we would have dimT[X]H̄kℓ =

dimHI
kℓ + 1, but by Proposition 5.11 and Theorem 2.5, we compute

dimT[X]H̄kℓ − dimHI
kℓ = dimT 1

X − dimHI
kℓ + 1 + (m− 2) > 1 .

This proves the claim.

5.3 Proof of Theorem B

We are now ready to prove Theorem B from the introduction.

By induction and Propositions 4.1 and 4.3, we know that all subsets H̄
(m)
2k are contained in

the connected component of the moduli space containing H2k.

So let us now consider a general surface X parametrised by H̄
(m)
2k for 2k > 2m > k + 4. In

particular, we may assume that the reduction of H̄
(m)
2k is smooth at [X].

Then by Lemma 2.2 the surface X is not classical but is a non-normal stable surface, and by
Proposition 5.5, every deformation of X lifts to a deformation of the map f : X → Fm. By the
deformation theory of Hirzebruch surfaces, the type cannot increase in a neighbourhood of X

in H̄2k, so all deformations of X are contained in the union
⋃

m′⩽m H̄
(m′)
2k . On the other hand,

the union of all strata of smaller type has smaller dimension than H̄
(m)
2k by Corollary 2.6, so that

the general X cannot lie in the closure of these components. In other words, all non-infinitesimal

deformations of X are again of type (m), and H̄
(m)
2k forms (an open subset of) an irreducible

component of the moduli space.

Endowing H̄
(m)
2k with the scheme structure defined by the moduli space of stable surfaces and

noting that X is Gorenstein, so every deformation is admissible, we show that the component is
generically non-reduced by computing the dimension of the tangent space at the general point X:

dimT[X]H̄
(m)
2k = dimT 1

X = dim H̄
(m)
2k + k −m+ 3 > dim H̄

(m)
2k = dimT[X]

(
H̄
(m)
2k

)
red

by Proposition 5.11(iv). This concludes the proof.
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