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Standard stable Horikawa surfaces

Julie Rana and Sonke Rollenske

ABSTRACT

We consider the stable compactification $ of the moduli space of Horikawa surfaces
with K% = 2py(X) — 4. When K% = 8/ we show that the closures of the two com-
ponents $H' and H of the Gieseker moduli space intersect, for £ > 2, in a divisor
parametrising explicitly described semi-smooth surfaces. With growing Kgg we find
an increasing number of generically non-reduced irreducible components in the same
connected component of the moduli space of stable surfaces.

1. Introduction

For complex minimal surfaces of general type, we have the classical Noether inequality Kg( >
2pg —4; see [BHP 04, Chapter VII]. In 1976 Horikawa classified surfaces satisfying equality in the
first of a series of seminal papers [Hor76]; in his honour, these surfaces are now called Horikawa
surfaces.

Let us denote by $9x the Gieseker moduli space of Horikawa surfaces with Kg( = 2k. Then
Horikawa showed that $)o is irreducible unless 2k = 0 mod 8, in which case $9 = jr')ék L jr')gk
has two connected components of the same dimension. For 2k = 8 mod 16 he showed that the
two components parametrise non-diffeomorphic surfaces, but ever since it has remained open
whether $},, and Hlk, parametrise diffeomorphic surfaces [Aur06, FS97, LP11].

Nowadays, the Gieseker moduli space $)9;, embeds into a natural compactification $op, the
moduli space of stable Horikawa surfaces, which parametrises stable surfaces with the same
Hilbert polynomial (see [Koll3a, Kol23]). The starting point of the present work was the question
of whether the closures 5{66 and 511166 intersect inside $16¢.

THEOREM A. The intersection of f)gf and S_ﬁgg for £ > 1 contains a divisor ® parametrising ex-
plicitly described non-normal (but semi-smooth) surfaces. The intersection is not normal crossing
at the general point of ®.

We will prove this result in Theorem 3.4 and Corollary 5.12. Horikawa surfaces with Kg( =38
are a bit of an exception because not all such surfaces are double covers of Hirzebruch surfaces.
We show in Section 3.3 that fjé and .?)g intersect but do not have as good a control over the
intersection locus.
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While Theorem A gives us an explicit description of how to move from one component to the
other, the standard tools in 4-manifold topology do not seem to be able to control the resulting
surgery, so that the answer to the diffeomorphism question posed above remains elusive for now.

The ingredients in the proof of Theorem A are some abstract deformation theory and explicit
toric constructions. The latter is a lower-dimensional version of the scrollar deformations used by
Coughlan and Pignatelli to study canonical threefolds of general type on the (three-dimensional)
Noether line [CP23]. It is remarkable that also in the case of threefolds, every eighth instance of
the moduli space has two irreducible components. In contrast to Theorem A, these components
intersect in a locus parametrising threefolds with canonical singularities.

The methods used to prove Theorem A lead us to consider more general stable Horikawa
surfaces. Surprisingly, we find with growing Kg{ a tail of trailing irreducible components in the
moduli space.

THEOREM B. Let k > 5. The connected component of §)9;, containing classical Horikawa surfaces
satisfies

ok D Hoyp U U 55;:) ;
k>m>1 (k+4)

m=k mod 2

where the f)g,:) are generically non-reduced, irreducible components of dimension 5k +4m-+19 >

dimszk.

We illustrate the phenomenon schematically in Figures 1 and 2. The proof of Theorem B can
be found in Section 5.3.

D

FIGURE 2. Standard components in $32
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STANDARD STABLE HORIKAWA SURFACES

2. Standard stable Horikawa surfaces

We work over the complex numbers. General references for the notions related to stable surfaces
and their moduli are [Koll3a, Kol13b, Kol23]. All necessary information about double covers in
this context can be found in [AP12].

Let F,,, be a Hirzebruch surface. We denote the negative curve by ou, so 02, = —m, and the
class of a fibre by I". We also fix a section disjoint from o, namely oy € |oo, +mI'|; in the toric
model introduced later, og can be chosen to be invariant.

DEFINITION 2.1. A standard stable Horikawa surface of type (m) is a double cover
f: X —>F,

branched over B € |60 + 2al'| such that X has semi-log-canonical singularities and Kx is
ample. We call it a classical Horikawa surface if X has at most canonical singularities.

LEMMA 2.2. A standard stable Horikawa surface of type (m) exists for a > 2m + 2 and satisfies
K% =4a—6m—8 and py(X)=2a—3m—2,
so K% = 2py(X) — 4. In addition:
(i) If 2a > 6m, then the linear system has no base points and the general branch divisor is
smooth and connected.

(i) If 6m > 2a > 5m, then B = 0 + B’ and B’ moves in a base-point free linear system with
Ooo - B' = 2a — 5m.
In particular, the general branch divisor is smooth and disconnected for 2a = bm.

(iii) If 5m > 2a > 4m + 4, then the general branch divisor is B = 20, + B’ with B’ in the
base-point free linear system |4o¢ + 2(a — 2m)I'|. In this case, the general X is non-normal
with normal crossing singularities at the general point of f~'(0s) and 2(a — 2m) pinch
points.

In particular, a classical Horikawa surface of type (m) with K% = 2k exists if and only if

m < (k+4)/2 and m and k have the same parity.

Remark 2.3. Note that for m = 0,1,2,3 only the first case can occur, while for m = 4,5,6 only
the first two cases can occur. For m > 7 all three cases are possible.

Also note that K% is always even, and it is divisible by 4 if and only if the type (m) is even.

Proof. The canonical divisor of X is
Kx = f* (Kr,, + 3B)
= (2000 — (M +2)T' + 300 + al')
= [0 +(a—m—=2)T),

and this divisor is ample if and only if it is positive on the pullback of 04, which holds if and
only if a > 2m + 2. Then

K% =2(00+(a—m—2T)2 = —2m +4(a —m —2) = 4a — 6m — 8,
Pg(X) = h (000 + (a —m —2)T) = h®(Op1(a — m — 2)) + h°(Op1(a — m — 2)) = 2a — 3m — 2.

The rest of the claims rely on a standard computation on Hirzebruch surfaces, determining how
often a particular linear system has to contain the negative section. ]
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We denote the subset of the moduli space of stable Horikawa surfaces parametrising standard
stable Horikawa surfaces with Kg( = 2k of type (m) by fjg;j) C $9; and the subset of classical
Horikawa surfaces of type (m) by ﬁgg) = fjg,:) N Hok.

The moduli space of stable surfaces also carries a natural scheme structure, and if .?)g,?) forms

an open subset of an irreducible component of o, then we consider it with this scheme structure.
Otherwise, we just consider it as a reduced subscheme of £qp.

PROPOSITION 2.4. The moduli spaces ?)S,?) of standard stable Horikawa surfaces of type (m) are
irreducible, and

Tk + 28, m=0,
dim 50 — Tk+29—m, 1(k+4)>m>0,
2k 6k +2m+24, $(k+4)>m>1(k+4),
5k+4m+19, k>m> (k+4)

Proof. Since the Picard group of a Hirzebruch surface does not contain 2-torsion, the double cover
is determined by its branch divisor. The condition that a double cover has semi-log-canonical
singularities is open; cf. [Ant20, Lemma 3.2]. Therefore, a complete family of standard Horikawa
surfaces of type (m) is parametrised by an open subset of the linear system |60+ + 2al’| on F,,,
where 2k = 4a — 6m — 8, so its image in the moduli space is irreducible as well.

Determining the dimension of the linear system is a straightforward cohomology computation:

6
10 (Fim, 6000 + 2aT) = > B (P, Op1(—im + 2a))
=0
4 6
=Y (—im+2a+1)+ ZhO(Pl,Opl(—im—FQa)) ,

=0 =5

and since 2a > 4m + 4 and 2a = k + 3m + 4,

(10a — 10m + 5) + h°(Op1(2a — 5m)) + h°(Op1 (2a — 6m))

14a —21m+7, 2a>=6m,
=< 12a —15m+6, 6m > 2a = dm,
10a —10m +5, bm > 2a>4m+4
7k + 35, k>3m—4,
=<6k+3m+30, 3Im—4>k>2m—4,

5k 4+ 5m + 25

2m—4>k>m.

Then, because ho(Tg,,) = m+5 for m > 1 and h®(Tpip1) = 6, as computed in [Hor76] or [Ser06,
Appendix B], we have

7k+28, m:o’
~(m 7k 29— s lk 4 > 0’
dim H(7) = dim [ B| — dim AutF,, = { £+ 297 m g(kdd)>m >0
6k +2m +24, 3(k+4)>m> 3(k+4),
Bk +4m+19, k>m> L(k+4)

as claimed.
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With the above notation, we can phrase some of Horikawa’s original results as follows, see
also [BHP 04, Section VIL9].

THEOREM 2.5 (Horikawa [Hor76]). Let $)or be the moduli space of (classical) Horikawa surfaces
with K% = 2k = 2p,(X) — 4 for k # 1,4.
(i) If k is odd, then
L+ (k+2)]

ok = U 552d+1

is irreducible of dimension 7k + 28.

(ii) If k is even and 2k # 0 mod 8, then

L3(k+9))
$Hok = U 5

is irreducible of dimension 7k + 28.

(iii) If 2k = 0 mod 8, then $a, = 5’)1% I_Iﬁgk, has two connected and irreducible components, both
of dimension 7k + 28: the general component

& (2d)
f)lzk = U o,
d=0
and the special component
5 (k+4)
o = sl ).

If 2k = 8 mod 16, then smooth surfaces in the respective components are not diffeomorphic.

Horikawa surfaces with Kg( = 2 and py(X) = 3 are double covers of the projective plane
branched over a sufficiently general octic; some information on their stable degenerations can be
found in [Ant20]. The case K% = 8 will be discussed briefly in Section 3.3.

In the following we want to investigate how the subsets fjg,:) interact inside $)o,. We focus
particularly on the closures $' and $H'' of the special and general components in the cases
where K% is divisible by 8. As a byproduct, we will actually re-prove most of Theorem 2.5.

For later use we also note the following.
COROLLARY 2.6. Fix Kg( = 2k > 8. Then the dimensions of the non-classical subsets S’J% are
strictly increasing:

(i) If k is odd, then

dim $9p. < dim Y)giL (k+2)J+3> - < dlm.ﬁ (k=2) .

(ii) If k is even, then

dim $H9;. < dlm.&")gk (k+4)J+2) - < dlm.ﬁ (k=2) .

Proof. From Lemma 2.2 one can check that the listed spaces are exactly the ones containing
no classical Horikawa surfaces. The rest follows by comparing their dimensions, computed in
Proposition 2.4, with dim $95 = dimﬁgl?. ]
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3. Connecting $H' and $H!

Recall, for example from [CLS11, Section 5.2], that for any integer o, the Z2-graded ring, with
variables and weights

t() i i) T1

1 1 a a—m

0 0 1 1

and irrelevant ideal (to,t1) N (zo, 1), is the Cox ring of the Hirzebruch surface F,,,. The negative
section o is given by {z; = 0}, the positive section op by {xo = 0}, and the fibres by the
vanishing of linear polynomials { fi(to,t1) = 0}.

3.1 Horikawa surfaces in weighted projective bundles

The fibration on F,, induces a pencil of genus two curves on any standard stable Horikawa
surface X of type (m). Since a genus two curve can be canonically embedded in P(1, 1, 3), we can
thus describe such a surface X with KE( = 2k as a hypersurface in a toric variety Ty, 1, which is
a P(1,1, 3) bundle over P! that varies depending on m and k.

In this section, we suppose that k is even (and therefore m as well by Lemma 2.2), and so
K)Q( = 0 mod 4. We will treat the case where k is odd in Section 4.2. To simplify exposition, we
let m = 2d and k = 2n. Then the surfaces we want to describe are hypersurfaces in the toric
threefold T54 2, (defined for 0 < 2d < n + 2) given by

o xo x1 z
1 1 d=m—-2 —-d—-n—-2 -2(n+2)
0 O 1 1 3

with irrelevant ideal (¢o, t1)N(xo, x1, 2). The surface X arises as a sufficiently general hypersurface
of bidegree (_4(76“"2)), and as such is defined by a polynomial 22 + f(xq,x1,%0,t1), Where we
eliminate the linear term in z by completing the square. Only the first entry of the degree vector
is relevant to determine which monomials appear in f(z, 21, to, t1); denoting it by deg;, we have
for example deg; (2%) = —4(n + 2).

Let us consider three examples corresponding to the lowest and highest possible values of d,
in terms of n.

Example 3.1. If d = 0, then the matrix of weights becomes

to 4 o T z
1 1 —n-2 —n—-2 —-2(n+2)
0 0 1 1 3

In this case, the monomials appearing in f are of the form aﬁgm(f_’"gg(n +2) (to,t1), which are
bihomogeneous when considered in the usual grading. We thus recognize X as a double cover of
Fo = P! x P!

The case of particular interest is the following, which for a choice of coefficients gives a key
example of a singular stable Horikawa surface in .?_)IQI,C

Example 3.2. If n is even and d = (n + 2)/2, then the weight matrix is

to 11 xo 71 z
1 1 —(3n+1) —-3(n+2) —2(n+2)|,
0 0 1 1 3
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and we see that deg; § = —3n — 6 > deg; 2? = deg; zjx1. Since multiplying with a polynomial
in ¢ty and ¢; can only increase the degree, a general polynomial in the linear system is of the form
zz—:):l(u:rg+---), (3.1)

where (1 is a non-zero constant. The branch divisor then contains oo = {x1 = 0} once, and the
rest is disjoint from o, because the term (/L:L’S + - ) has zj with non-vanishing coefficient.

If we eliminate the variable z, the remaining matrix describes the Hirzebruch surface F,, 42,
and so stable hypersurfaces given by such equations lie in the special component H1l .

Ezxample 3.3. In the same ambient toric threefold and linear system as in Example 3.2, we now
consider the hyperplane of surfaces defined by an equation as in (3.1), where the coefficient
vanishes; that is, the polynomial is of the form

22 — 22 (xégn+2(tg, t)+-). (3.2)

The general such surface is stable: it is a double cover of F,, 5 branched over 20, + B’, where B’
is smooth and intersects the negative section transversally. Thus X is smooth outside the non-
normal locus, which is the pullback of the negative section. Over the general point of the negative
section, X has normal crossing singularities, that is, locally x% — 22, and at the n + 2 intersection
points of 0o, and B’, the surface X has pinch points, that is, locally 22 — tz?.

The closure of the locus of these surfaces forms a divisor © in f)izﬂ) C fjffn

3.2 Connecting the general and the special component (K§( > 8)

We assume in this section that Kgg = 2k = 4n = 0 mod 8 and n > 3. Then by Theorem 2.5,
the Gieseker moduli space $4, = ﬁfm L 5’)51 is the union of the two irreducible and connected
components, each of dimension 14(n 4 2), which we call the general and the special component.
We show that the closures of these components intersect in the stable compactification $4y,.

THEOREM 3.4. If K2 = 4n =0mod 8 and n > 3, then the intersection S;J}m N ﬁgn contains the
divisor ® containing the locus of semi-smooth double covers of F,, o described in Example 3.3.

The general surface in ® can be smoothed to a surface in H. using the parameter u in
Example 3.2. So it remains to show that it can be smoothed to the other component as well.

We start by constructing an explicit family over A}\, depending on a choice of two polynomials
Po,P1 € Ry, 241), with special fibre a singular surface described in Example 3.3 and general fibre
a smooth surface of the type described in Example 3.1.

Consider the toric fourfold T" given by

to t Yo o 71 z
1 1 —(dn+1) —n—2 —-n—-2 —2(n+2)
0 0 1 1 1 3

with irrelevant ideal (¢, 1) N (o, zo, %1, 2). Let R = Cltp, t1] with the usual grading.
Inside T let us first consider the family T over A} of threefolds given by

Ayo = p17o — por1  with p; € R, /941y and ged(po,p1) = 1. (3.3)

If XA # 0, then we eliminate the variable yy and obtain Tp 2, the threefold considered in Exam-
ple 3.1.
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If A =0, then we can introduce a new variable
3
xo T —2(n+ 2
y1=—=—, degy = < 2(1 )>
bo D1
because the p; cannot vanish simultaneously. The resulting equations

To =poyi, T1=Ppi (3.4)

eliminate the variables x¢ and x1, and we recover T}, 2 2, the toric threefold from Example 3.2.

To define a family of hypersurfaces in T that restricts in the desired fashion, we need to

analyse which elements in the relevant linear system on the central fibre are global on the family.

That is, we need to describe all polynomials in tg, t1, g, 1, yo of bidegree (_4(’g+2) ) These are
sums of elements of the subspaces

because these have deg; equal to —(6—1)-(n/2+1)—i-2(n/2+1)+(i—2)(n/2+1) = —4(n+2).
Note that the cases ¢ = 0,1 do not occur because there are no polynomials of negative degree
in R.

Now we let A go to zero to see which monomials we get on the central fibre. To describe this,
let V= (po, p1). Then substituting (3.4) into (3.5), we obtain on the special fibre all equations
of the form 2% — f with f in the subspace generated by

Yo 'yh - Sym' V- R 9)(int1) C Yo vt Rgi g)tnsr) (12 2).
3.

LEMMA 3.5. Let po,p1 € R, /241 be without common divisor, and let i > 3. Then the multipli-

cation map
i Sym' Ve R gy1np1) = Rigimo)(Lng)
is surjective.

Proof. Let A= A’ = P'. We have maps
A/ 7r:(po:pl) A U_1> ]Pﬂ ,

where v; is the Veronese embedding of P! into P! as a rational normal curve. Note that the O4-
algebra 1,0 4 is a torsion-free coherent sheaf on P!, hence a vector bundle. The trace map splits
off a trivial summand, and by Grothendieck’s lemma (see for example [Huy05, Corollary 5.2.8]),
the whole bundle is a direct sum of line bundles. Since the cohomology of m,O s gives the
cohomology of O 4/, we have

T Op =0y P OA(—l)@%n .
We then have

Sym'V = n*H°(A,04(i)) = 7*vf HO(P!, Opi(1)) and Ry(init

)= HO(A' m*04(a)).
Restricting the Euler sequence of P! to the rational normal curve and pulling back to A’, we get
0 — 70 (Qpi (1) @7 04(1 — 2) = Sym' V@71 04(i — 2) = 7°0A(2i — 2) = 0
and find by taking global sections that the cokernel of the multiplication map is
coker pf = HY (A", 70} (Qpi (1)) @ 7O a(i — 2))

= H'(A, v} (i (1)) © Oa(i — 2) @1 Or)

= H' (A, 0} (Qp:) © 04(2i — 2) (04 & O4(~1)%3")) ,

576



STANDARD STABLE HORIKAWA SURFACES

which by [BE95, Proposition 5A.2] becomes
coker o = H' (A, (Oa(=i = )¥) ® 04(2i — 2) (04 & O4(~1)*7"))
— H'(A,04(i —3)%) @ H' (A, 0a(i — 4)®2™)
=0 (for i > 3).

Note that for ¢ = 2 it is quite obvious that the map is not onto. ]

Theorem 3.4 now follows immediately from the slightly more precise result.

PROPOSITION 3.6. Let Xy be a hypersurface as in Example 3.3 such that in equation (3.2),
the polynomial ga/241) equals pop1, where p; € Ry, /541 and ged(po, p1) = 1. Then Xo can be
smoothed to a Horikawa surface in 512”.

Proof. By assumption and Lemma 3.5, we can choose monomials such that the surface defined
in the toric fourfold T by the equations

\yo = p1zo — poxr1  and 2%+ yéxoxl + (terms not divisible by yé) =0

degenerates over Ai to Xg in the family described above. After possibly adding A times a general
polynomial, the general fibre will be smooth as claimed. O

3.3 Connecting 3318 and .6%1

Here we consider the last remaining case, Horikawa surfaces with K% = 8 and p,(X) = 6. There
are two new constructions here:

Type (00). The surface X is a double cover of the projective plane branched over a smooth
curve of degree ten. A quick dimension count shows that this family ﬁéoo) has dimension
dim |Op2(10)| — dim Aut(P?) = 57.

Type (4’). The surface X is a double cover of the cone over a rational normal curve of degree
four branched over the vertex and a quintic section. Thus we can realise X as a (sufficiently
general) hypersurface of degree 20 in weighted projective space P(1,1,4,10).

The main difference between this and the general case is that Kp, + % (60 + 20T) is
not ample on F4 but only big and nef and contracts the negative section. So the double
cover of Fy branched over a smooth B € |60 + 20I'| gives a smooth minimal Horikawa
surface, but the preimage of the negative section is a (—2)-curve, which we need to contract
to get the canonical model.

Arguing as in Proposition 2.4, we see that the family ﬁgy) is of dimension 56.
By [Hor76, Section 4] again the moduli space has two connected components, namely
SE= 50 s and o= o Ll

The main point is that every surface of type (4') can be deformed to one of type (co) by taking
a suitable double cover of the Q-Gorenstein smoothing of P(1,1,4) to P2,

Note that in this case, the dimensions of the two components are different, namely dim 5’)% =
56 and dim H = 57.

We will now prove the following.

PROPOSITION 3.7. The closures f)é and f)g intersect in $g.
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Remark 3.8. Arguing more carefully as in Section 3.2, one can be a bit more precise: the inter-
section of the two 56-dimensional subsets fjéo) and 5;4) contains a subset ® of dimension 55,
which is therefore a divisor in .6}3, and a subset of codimension two in f)g. We illustrate this in
Figure 3.

FIGURE 3. Standard strata in $g

Proof. The aim is to construct a surface in the closure of both components. In contrast to the
previous section, this surface will be normal with one elliptic singularity.

Consider the toric fourfold T" given by
to t1 Yo xo x1 2
1 1 4 2 2 10
0o 0o 1 1 1 3
with irrelevant ideal (to,t1) N (yo, zo, 21, 2). Let R = C[to, t1] with the usual grading.
Inside T let us consider the family of threefolds T over Ai given by

Ayo = p1xo — poxr1  with pg,p1 € Re and pop; without multiple zeros,
which we intersect with a sufficiently general hypersurface of bidegree (260) given by
22+ aﬁgmlyé‘ + lower-order terms in yo + Ag(xo, z1, to,t1) = 0

to get a family of surfaces X . If A # 0, then we eliminate the variable yg and find, up to a change
of basis in the weight matrix, the threefold T\ = Tp4 defined at the beginning of Section 3.1.
Thus X is a Horikawa surface of type (0) for A # 0.

Now let us consider the central fibre A = 0. We introduce a new variable
To X1 0
y=_—=—, degy={, |,
Po P1
because the p; cannot vanish simultaneously. The resulting equations zg = poy1 and z1 = p1y1

eliminate the variables zy and 1, and we get the toric threefold Ty with weights

to t1 Yo Y1 2
1 1 4 0 10},
o o0 1 1 3

in which the equation for Xy becomes
22 + pop1yayt + (lower-order terms in o) = 0.

Translating back to geometry, that is, projecting to the first four coordinates, we find that
m: Xg — 4 is a double cover branched over 20,, + B’, where B’ intersects oo, transversally in
four points because pgp; has no multiple zeros.
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Note that Kx, = 7" (000 +4I") is not ample because it is trivial on the non-normal locus, which
is the preimage of 0. To understand the (log)-canonical model, let us take the normalisation,

Xo . Xo
T s
branched over B’ branched over 20+ + B’
Fy.

Then E = 7 1(0s) is a smooth elliptic curve with E? = —8 and v*Kx, = Ky, + E. Since all
sections of m(Kx, + E) are constant on E, we have 7*: H'(mKx,) = H°(m(Kx, + E)), and
the log-canonical model of Xy is the log-canonical model of (Xy, E'). The result is the surface Yj,
where we contract the elliptic curve E to an elliptic singularity.

On the level of the ambient toric threefold Ty, this corresponds to eliminating the variable
Y1, that is, the rational projection

Ty --» P(1,1,4,10) .

The resulting hypersurface Y, can be deformed to a general such hypersurface, which is a Hori-
kawa surface of type (4'). Thus the surface Yp is in the closure of both £} and Hi. O

4. Connecting adjacent (non-classical) components

In this section we use the toric construction described above to show that all standard stable
Horikawa surfaces are contained in the same connected component of $)o.. The details of the
proof depend on the parity of k.

4.1 Connecting 54(3:1) and 5&1‘”2)
We begin by assuming that £ is even and take k = 2n.

PRrRoOPOSITION 4.1. The subsets ﬁﬁd) and f)ﬁdw) are in the same connected component of Hup,.

Proof. Note that the closure of the Gieseker moduli space of classical Horikawa surfaces is con-
nected by Horikawa’s Theorem 2.5 and by Section 3, so we may assume that 5513Ld+2) is a com-

ponent containing only non-classical surfaces; that is, n < 2d < 2n — 2.

Since both subsets are connected, it suffices to exhibit a (Gorenstein, hence Q-Gorenstein)
family of standard stable Horikawa surfaces, where the general fibre is of type (2d) and a special
fibre is of type (2d + 2).

Consider for n < 2d < 2n — 2 the toric fourfold T" given by

to T Yo o T z
1 1 d=n—-1 d-n—-2 —-d—n—-2 —-2(n+2)
0 0 1 1 1 3

with irrelevant ideal (¢, 1) N (yo, zo, 21, 2). Let R = Cltp, t1] with the usual grading.
Inside T let us first consider the family of threefolds T) over A} given by
AYo = p17o — por1  With p1 € Ry, po € Raat1 and ged(po,p1) = 1.

If X # 0, then we eliminate the variable yo and find the threefold 754 2, defined at the beginning
of Section 3.1.
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If A =0, then we can introduce a new variable

i) I —d—’I’L—3
y1=—=—, degy = 1 :
Do p1

because the p; cannot vanish simultaneously. The resulting equations
To=PpPoyi, T1=DpiyY1 (4.1)
eliminate the variables xg and x1, and we get Thq42 2y

To prove that fﬁﬁ meets f)ii”, we need an equation of bidegree (_4(g+2)) on T of the form
22 + f(to,t1,%0, To, r1) that defines a stable surface if we set A = 0. Writing

<—4(7”é+2)> _ <2n82d> +2<—d—1n—2) +4<d—711—1>7

1
F(to,t1, 90, 70, 1) = gon—2alto, t1) - 27 - [ [(wo + aizo + biz1))

we can set

~
[y

for general a; € Ry and b; € Rogy1.
Upon intersection with T for A = 0, we obtain

4
£(to,t1, 50, Poy1, p1y1) = gan—2alto, t1)pius - [ [(wo + (aipo + bip1)wn)) -
i=1
For general choices (for example, choosing py = t%dﬂ, p1 = t1, and generic a;, b;), this equation

defines a stable surface because the branch curve B is the union of 2n — 2d fibres, twice the
negative section, twice a fibre, and four sufficiently general sections in |og| that are disjoint
from o; thus (F2d+2, %B) is a log-canonical pair; cf., for example, [AP12].

More concretely, the double cover (generically) has 16(d + n + 2) A; singularities, normal
crossing singularities over the general point of the double locus, 2n — 2d + 4 pinch points, and
a degenerate cusp with local equation 22 4 2%t? over the point where 20+, meets the double fibre.
This proves the claim. O

4.2 Connecting 5§idj21) and 54(3:1_—21)

We suppose that k = K% /2 is odd and take k = 2n — 1. Then by Lemma 2.2 the type (m) has
to be odd as well.

To connect the components of standard stable Horikawa surfaces of odd type, we follow the
same strategy employed above: we realise the individual surfaces as hypersurfaces of a toric
threefold and then connect these constructions inside a toric fourfold.

Ezample 4.2. Consider for 0 < d < n the toric threefold T5;_1 2,—1 described via

to 11 ZQ 1 z
1 1 d—m—-1 —-d—n -—-2n
0 0 1 1 3

with irrelevant ideal (to,t1) N (xg,x1,2). A general equation of bidegree (_g") without linear

term in z is of the form
6

2 i 6—
27+ E 92n+6d—i(2d—1)ToTq
i=0

%
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and thus defines a double cover of Fyy_; branched over a curve in |60 + (2n + 6d)I'|. By
Lemma 2.2 we can describe all standard stable Horikawa surfaces of type (2d — 1) with K% =
2(2n — 1) in this way.

PROPOSITION 4.3. The subsets 55&@1) and fjé(ﬁi_;) are in the same connected component

of Han+2-

Proof. We exhibit a (Q-)Gorenstein family of standard stable Horikawa surfaces, where the
general fibre is of type (2d — 1) and a special fibre is of type (2d + 1).

Consider for n + 2 < 2d < 2n + 2 the toric fourfold T" given by

to t1 o iy 1 z
1 1 d—m d—-n—-1 —-d—n —-2n
0 0 1 1 1 3

with irrelevant ideal (¢, 1) N (yo, zo, 1, 2). Let R = C[tg, t1] with the usual grading.
Inside T let us consider the family of threefolds T over A} given by
Yo = p12o — pox1 With py € Ry, po € Raq and ged(po,p1) = 1.

If A # 0, then we eliminate the variable yo and find the toric threefold Thq_1 2,—1 from Exam-
ple 4.2.

If A =0, then we can introduce a new variable

i) I —d—n—l
nh=—=—-, degylz 1 )
Po P

because the p; cannot vanish simultaneously. The resulting equations

Lo = PpoY1, 1 =P1y1

eliminate the variables xg and z1, and we find the threefold T5411 2,—1 With weights

to 11 Yo Y1 z
1 1 d—=n —-d—-—n—-1 —-2n
0 0 1 1 3

To prove that 5:342&:12 meets .63?;12, we need an equation of bidegree (_g”) on T of the form
22 + f(to,t1,%0, To, r1) that defines a stable surface if we set A = 0. Writing

(3)- B3l

4

f(to, 1,90, 20, 1) = g2n—2a(to, t1) - 7 - H(?Jo + a;zo + biz1))
i=1
for general a; € Ry and b; € Rog and go,,_9q € Royp_o4, because n > d.

we can set

Upon intersection with T for A = 0, we obtain
4

F(to,t1, 50, Poy1, p1y1) = gan—2alto, t1)piut - [ [(wo + (aipo + bip1)wn)) |
i=1

which defines a stable surface for sufficiently general choices, as in the proof of Proposition 4.1. [
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5. Infinitesimal deformations of standard stable Horikawa surfaces

We start by considering some consequences of the general theory of deformations of maps (see for
example [GLS07, Appendix C]), which we will then apply to Horikawa surfaces. In full generality,
the information of Def 4, deformations of an object A, is encoded in some cotangent complex L%
and the associated cohomology groups le and sheaves 72. More concretely, for a finite morphism

f X =W,
we consider
Def x Deformations of X,
Defy Deformations of W,
Def Deformations of the map f possibly varying both X and W,

Def ;/w Deformations of the map f preserving W,
Def x\ f Deformations of the map f preserving X,
Defx\r/w Deformations of the map f preserving W and X.

The corresponding tangent cohomology groups (or sheaves) are intertwined in the cotangent
braid of Buchweitz (cf. [GLS07, Appendix C, p. 446]), shown in Figure 4.

Tx\s 3w
3 1 .
2< 1\) TfO /3 \)4
. / \ OV-
TW 2 4 .- TX
\ ) P
1< L xaw >3
71 o ~ .
f/w 1 3 X\f
! \ T1 /
4|\ 3 f 1 2 5.1)
NTI / \ o (5.
o e

’N\D
iy
/
/
\ ,
/
(VA

S
IS

y

N w
>R
-
\H
o
=

=

£/

[a=y
S
~
\
\
LR
w

FIGURE 4. The cotangent braid of Buchweitz

Remark 5.1. All spaces that we consider are either smooth or local complete intersections, so
that for deformation purposes it would be enough to work with the sheaf of Kahler differentials.
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But the deformations of f without fixing source or target need another calibre of theory, which
is the reason why we use the general machinery.

Very similar problems have been considered previously, for example in [CvS06, GGP10,
Man97], but we find it most transparent to start from scratch.

LEMMA 5.2. Assume that W is smooth and that
(i) H'W,Tw) — H(W, f.f*Tw) is an isomorphism,
(ii) HY(W, Tw) — HY(W, f.f*Tw) is an isomorphism,
(ii)) H2(W,Tw) = 0.
Then the natural forgetful maps T} — T)i( are isomorphisms for i < 2 and Def ; = Def x. In other
words, every deformation of X is induced by a deformation of the map f in a unique way.

Proof. From sequence 3 in (5.1), we see that it is enough to show that T)i(\f =0 for i =
0,1,2. Using sequence 2 from (5.1) and the isomorphisms TIfV = HY (W, Tw) and T)i(\f/w =
H=YW, f.f*Tw) from [Ser06, Proposition 3.4.2], the result follows. O

Now we work out more specifically some groups and maps in the cotangent braid in the case
of a double cover f: X — W branched over a divisor B. We will always assume that W is smooth
and now recall the standard theory from [BHP*04, Section 1.17]: we have f.Ox = Oy @ L7}
for some line bundle £ such that ££2 =2 Oy (B). Consider the geometric line bundle 7: |£]| =
%W (Sym' E‘l) — W, and denote the tautological section in 7*L by z. If op is the section
defining the branch locus, then X is the divisor in |£| defined by the section ox = 22 — 7*0p of

7*Ow (B). In particular, as a hypersurface in a smooth variety, X is a local complete intersection.

On X the section ogp = z is a square root of 7*ocp and as such defines the ramification
divisor R.

ProproSITION 5.3. Let f: X — W be a double cover of a smooth variety. In the notation above
the following hold:

(i) We have 7?/W =0 fori # 1 and 7}1/W = Ox(f*B)|r = Op(B) (under the identification
f: R=B).
(i) If h'(Ow) = 0, then

0, i#1,2,
T = H X, Tiw) = { HUX, Ox(B))/(og) . i=1,
HY(B,05(B)), i—2.

In other words, infinitesimal deformations of the map with fixed target W are exactly given
by deformations of the branch divisor.

(iii) The map T, — Tf/W in sequence 4 in the cotangent braid (5.1) is, under the identification
a: H (Tw) = Ty — T}y = H'(B,0p(B)), (5.2)

induced by the map of sheaves a: Tyy — Op(B) described in the following way: for a local
vector field &, the section a(§) is the restriction to B of the derivative of the equation of B
in direction &. That is,

a(§) = (§adop) B =&(0B)|B -
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Proof. Note that the sheaf of relative differentials of the line bundle 7: |£| — W is naturally
wic|w = L7, Thus we can consider the commutative diagram

0 0
[ Qw —— ["Ow
-do e 7

where the second row is the usual conormal sequence for a divisor and the first map is given by
multiplication with the derivative of the section ox as indicated. In the third row we only look
at the differential in fibre direction; therefore, under the identification w s = L1, the first
map becomes multiplication with 2z = 20p.

Note that because X is a local complete intersection and because Lx\ r/yr = f*Qw as in the
proof of Lemma 5.2, applying Hom(—, Ox) to the third column of (5.3) gives sequence 4 in the
cotangent braid (5.1).

Applying sfomp, (—, Ox) to the last row, we get a short exact sequence
0— f*L 2% Ox(f*B) — Tiw — 0, (5.4)
SO
Tiw =0 fori#1 and T/ = Ox(f*B)|r = Op(B)
(under the identification f: R = B).

If we push forward to W and then take cohomology, then multiplication with the equation of
the ramification divisor on X exchanges the invariant and anti-invariant subspaces of cohomology
groups, so we can identify

Hi{(X, f*L) 7R H'(X, f*Ow(B))

| |

HY(W, L) & H(W,Ow) ~—— H'(W,Ow(B)) ® H (W, L™ (B)) .

Cancelling the components on which the map is an isomorphism and noting that H'(Oy) = 0
by assumption, we see that the long exact sequence associated with (5.4) and the local-to-global
Ext sequence give claim (ii).
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To identify the map « in sequence 1 in (5.1), we apply somp, (—Ox) to (5.3) and obtain

0 Tyw
! T —— ST
0 T3 < FOw(B) 7% T |x Tx + 0
0 +— ”r;/W — f*Ow(B) fiz: 4 0
ijw 0.

Chasing through the diagram shows that the map « is defined as follows: Given a (local) vector
field € on W, we can choose any lift € to a vector field on |£|. Then «(&) = £.dox projected
to 7} w»> Where ox is the equation defining X and _ is the contraction of 1-forms with vector
fields. This gives the claimed map. O

Remark 5.4. To summarize, sequence 1 in the cotangent braid in the situation of a double cover
is associated with the dual of the residue sequence 0 — Qu — Qu(log B) — Op — 0, which is
also explained in [CvS06].

5.1 Cohomology computations

We will now apply the results of the previous section to standard stable Horikawa surfaces.

ProOPOSITION 5.5. Let W = T, be a Hirzebruch surface and f: X — W be a double cover
branched over any divisor B in |60 +2al'| with a > 2m+2. Then the natural map Def ; — Def x
is an isomorphism.

Proof. We need to check the conditions of Lemma 5.2. First note that H2(W, Ty) = 0 by, for
example, [Ser06, Appendix B| or the computations done below. For the other two conditions, we
follow the proof of [Hor76, Lemma 2.3].

First note that since fif*Tw = Tw ® fuOx = Tw ® Tw(—30« — al'), it is enough to show
that H'(Tyw (—30s —al')) =0 for i = 0, 1.

In the relative tangent sequence for the fibration 7: F,,, — P,
0— Tg,,/pt = Tr,, = 7 Tpr =0,

we can identify 7*7p1 = Op,, (2I') and Tg,, p1 = OF,, (200 + mI'). Twisting with (=304 — al'),
we immediately get
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Furthermore,
Y (=300 4+ (2 — a)T) = KN (Kw — 00 + (4 +m — a)T)
= h' (00 + (a — 4 —m)T)
= W' (Opi(a — 4 —m)) + Y (Opi(a — 4 — 2m))
=0

because by assumption a > 2m + 2, that is, a — 4 — 2m > —2. The required vanishing follows
from the long exact cohomology sequence. O

In the situation of standard Horikawa surfaces, we want to compute the map (5.2) explicitly,
thereby taking control over sequence 1 in the cotangent braid (5.1).

Fix m > 0, and consider B € |60 + 2al’| with a > 2m 42 on W = F,,.

LEMMA 5.6. If B = kos + B’ with k € {0,1,2}, then the inclusions kos, — B — W induce
isomorphisms

H'(W,Ow(B)) = H'(B,0p(B)) = H'(kow, Opr..(B)).
and the dimension of this group is
0, 2a =2 6m —1,
(W, 0w (6000 +2al')) = 6m —2a —1, 6m—1>2a>5m—1,
11lm—4a—-2, dm—1>2a>4m+4.

Under the given conditions, the group vanishes if m < 4.

Proof. The first isomorphism follows from the restriction sequence and H'(Oy) = H?(Ow) = 0.
Using 2a > 4m + 4, the dimensions are computed as

6
WY (W, Ow (605 + 2aT)) = > b (P!, Op1 (20 — im))

=0
= h' (P!, Op1(2a — 5m)) + h' (P!, Op1(2a — 6m))
0, 2a =2 6m — 1,

=<¢bm—2a—-1, 6m—1>2a=25m—1,
11lm—4a—-2, bm—1>2a>4m+4.

Now assume B = ko, + B’ with kK =1 or k = 2. Then there is an exact sequence
0— Op/(B') = Op(B) = Ok (B) = 0.

The corresponding long exact cohomology sequence gives an isomorphism between H' (B, Og(B))
and H'(kowo, Oko.. (B)).

Note that Lemma 2.2 ensures that B contains o, or even 20, when the cohomology group
HY (W, Ow (B)) is non-zero. O

To compute the map (5.2) explicitly, we want explicit Cech cohomology descriptions of the
relevant groups. We will assume m > 0 since otherwise the cohomology groups we are interested
in vanish anyway. We closely follow [Ser06, Appendix B]. Let us set up our notation starting
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from the toric model of the Hirzebruch surface given by

to 11 xo I

0 0 1 1
with projection 7: F,, — P!. Let
to xltm
T = Ea E = $01 )
5.5
/. _—1 ! :1}17581 _ m ( )
e e
Zo

and R = Spec[r, 77!], considered as a Z-graded ring. Then with U = {t; # 0} and U’ = {tq # 0},
we have P! = U U U’. Consider
V =n""U) D Vp := SpecC]r,¢]
V' =771 (U") > Vj := SpecCJr, ¢].

We will compute Cech cohomology with respect to the covering W = V UV’ but represent
sections by their restrictions to the affine subsets Vj, respectively Vjj. On V} the curve B is defined
by an equation

0% =go+ g€+ g+ + g6&°

for certain g; € C[r]. We may assume for simplicity that we see all zeros of the coefficients of op
in V. NV’; that is, deg g; = 2a — 6(m — i) and g¢; has a non-zero constant term unless it vanishes
identically. Note that deg gy = 2a — 6m = B - 0.

LEMMA 5.7. For any B € |60 + 2al’| with 2a > 4m + 4, with respect to the above covering, we

have
) 1 R R
H'(W,0w(B)) = — (1 + ) '
( W( )) o'% < R;o + R§2a76m €R>0 + RgZa*‘r’m

Proof. To compute Cech cohomology, we need to describe the section on V' and V' and then
compare the descriptions over V' NV". For this note that, by the relation between the coordinates,
we can describe the equation for B on Vj as

O'OB/ _ O'% . 7_6”1,72&7
so that by (5.5),
, 1 ’ 16 T2a_6m m m ~6
(V' 0w(B)) = —Clr'[(1,....,€") = —5—Reo(L,7™E, ..., 7).
op OB

Then using 2a > 4m + 4, we compute
HY(W, 0w (B)) =T(VNV',0w(B))/ (T(V,Ow(B)) + T(V', Ow(B)))

1
=0 (1-R/(R=0+ R<2a—6m) +& - R/ (R>0 + R<2a—5m))
B

as claimed. 0
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LEMMA 5.8. This covering computes H'(W, Ty), and explicitly we have

. R-2
HY W, Tw) = o = <Tla,...,7<ml>a>,

Rq - 3% + Reo - T‘ma% 23 o3

a vector space of dimension m — 1.

Proof. The sheaf Ty does not have higher cohomology on V' and V', so we can use this covering to
compute cohomology. Again representing everything in the local coordinates given on Vj and Vj,
we get,

o 0
TV i) = Clrl (o g S €3 )
, o 0 )
F(V,TW): [ ]<a /785/7686,’§2a§/>

ol {22 9
— (g e S e D)
cT(VnV Tw),

where we get the formulas for the coordinate change by differentiating (5.5). It is straightforward
to see that we get the basis of the quotient stated above.! O

PROPOSITION 5.9. If B = 0o, + B’ and 0o, £ B’, then the map (5.2) is surjective, and it is an
isomorphism if and only if 2a = 5m.

Proof. We have 2a > 5m by Lemma 2.2. We write the equation
0% = £g1 + (higher-order terms in &)

for some polynomial g; of degree 2a—5m > 0. Then we compute the map (5.2) using Lemma 5.6:

. . -0 o1

HW, Tw) = H (000, Os.(B)), T_la—gr—)gl-T —O
Since we have chosen coordinates such that g; has a constant term, the claim follows from
Lemmas 5.7, 5.6 and 5 O

PROPOSITION 5.10. If B =204 + B’ and 0, £ B’, then the map « from (5.2)
(i) is surjective if and only if H'(B,Og(B)) = 0 if and only if 2a > 6m,

(ii) is zero if and only if 2a > 5m,

(iii) has rank 5m —2a —1 < m — 4 for 4m +4 < 2a < 5m.

Note that by Remark 2.3 the last case can only occur for m > 7, so that the inequalities
make sense.

Proof. We have 2a > 4m + 4 by Lemma 2.2. We write the equation
0% = €29y + (higher-order terms in £)
for some polynomial g; of degree 2a — 4m > 4. By Lemma 5.6 we can compute the composition
HY (W, Tw) = HY(B,05(B)) = H' (20, 02,..(B)),

and the last group is simply the restriction of the one computed in Lemma 5.7 to 20.

'In [Ser06, Appendix B] the result of this computation is stated with a missing inverse.
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For the explicit representatives computed in Lemma 5.8, we get

L0\ 1
Oz<7' 8€>—7‘ 2¢ gga% oo

Since we have chosen coordinates such that go has a constant term, the map surjects on the
subspace
R

R>0 + R<2a-5m
Thus the map « is surjective if and only if H'(B, Op(B)) = 0, which holds if and only if 2a > 6m.
The other two items follow by counting the dimension of the spaces involved. O

HY W, Tw) — & — H' (2000, 00 (B)) .

5.2 Deformation-theoretic interpretations

We now interpret the computations of the previous section in our context. First recall that for
a Hirzebruch surface W = F,,, with m > 0, we have

R(Tw)=m+5, hY(Tw)=m-1, h*(Tw)=0,

deformations are unobstructed, and W deforms to F,,,_ox for k = 1,...,|m/2]. This is explained,
for example, in [Cat13, Section 1.2, pp. 169-170], and a more precise description of the stratifi-
cation of the universal deformation space has been given by Suwa [Suw73].

Now for a standard stable Horikawa surface, consider sequence 1 in the cotangent braid (5.1)
and its more worldly incarnation derived from Propositions 5.5 and 5.3:

0 T Tfl/W 3 T} Ty = T]?/W — TJ? — TZ,
[ I [ [ I [ | (60
0 — H(Tw) — H°(Op(B)) — Ty — HY(Tw) — HY(Op(B)) — T — 0.

The first part of the following result re-proves some of the results in [Hor76]. Part of it can
also be deduced directly from the concrete families constructed in Sections 3 and 4.

PROPOSITION 5.11. Let f: X — W be a standard stable Horikawa surface of type (m) with
branch curve B € |60 + 2al’|.

(i) If 2a > 6m, then deformations of X are unobstructed and every deformation of W can be
lifted to a deformation of X. In particular, X deforms to a Horikawa surface of type (0).
(ii) If 204 £ B, that is, 2a > 5m, then deformations of X are unobstructed. If 2a < 5m, then
X deforms to a Horikawa surface of lower type.
(i) Assume 2a = 5m and write B = koo, + B'.
(a) If k =1, then deformations of X are unobstructed and Defx = Def; g ; that is, every
small deformation is of type (m) again.
(b) If k =2, then dim T} = 12a — 15m — 1.
(iv) If 5m > 2a > 4m + 4 and B = 20 + B’, then the map Ty — T}, is non-trivial of rank
K%/2-m+3=2a—4m—1>4.
Proof. All items follow immediately from (5.6) in conjunction with Propositions 5.9 and 5.10,
where we use that a deformation functor is unobstructed if 72 = 0 and our knowledge of defor-
mations of Hirzebruch surfaces. O

We can now complete the proof of Theorem A, giving information on the local structure $gj,
at a surface as described in Example 3.2.
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COROLLARY 5.12. Suppose K?( = 8¢ with £ > 2, and consider a surface X representing a general
point in ® C H' N HM in the intersection of the special and general component. Then the point
[X] representing X in $yy lies in exactly these two irreducible components, but $)gy is not normal
crossing near [X].

Proof. We know that every deformation of X is again a standard stable Horikawa surface (Propo-
sition 5.5) and that the type can only decrease, so X can only deform to one of these two com-
ponents. If the moduli space were normal crossing at [X], then we would have dim T[X}fjke =
dim Jﬁ}d + 1, but by Proposition 5.11 and Theorem 2.5, we compute

dim Ty Hre — dim H5, = dim T, — dim $5, + 1+ (m —2) > 1,
This proves the claim. O

5.3 Proof of Theorem B
We are now ready to prove Theorem B from the introduction.

By induction and Propositions 4.1 and 4.3, we know that all subsets fjézl) are contained in
the connected component of the moduli space containing £op.

So let us now consider a general surface X parametrised by 5:357,?) for 2k > 2m > k+ 4. In
particular, we may assume that the reduction of fjg,:) is smooth at [X].

Then by Lemma 2.2 the surface X is not classical but is a non-normal stable surface, and by

Proposition 5.5, every deformation of X lifts to a deformation of the map f: X — F,,. By the
deformation theory of Hirzebruch surfaces, the type cannot increase in a neighbourhood of X
in o, so all deformations of X are contained in the union Um/gm fjg,: ). On the other hand,
the union of all strata of smaller type has smaller dimension than fjg]?) by Corollary 2.6, so that
the general X cannot lie in the closure of these components. In other words, all non-infinitesimal
deformations of X are again of type (m), and 5:357,?) forms (an open subset of) an irreducible
component of the moduli space.

Endowing fjg,?) with the scheme structure defined by the moduli space of stable surfaces and
noting that X is Gorenstein, so every deformation is admissible, we show that the component is
generically non-reduced by computing the dimension of the tangent space at the general point X:

dim Tix 95 = dim Tk = dim §5) + & —m + 3 > dim H5) = dim Tix (H5).
by Proposition 5.11(iv). This concludes the proof.
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