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A Serre-type spectral sequence for motivic

cohomology

Fabio Tanania

Abstract

In this paper, we construct and study a Serre-type spectral sequence for motivic coho-
mology associated with a map of bisimplicial schemes with motivically cellular fiber.
Then, we show how to apply it in order to approach the computation of the motivic
cohomology of the Nisnevich classifying space of projective general linear groups. This
naturally yields an explicit description of the motive of a Severi–Brauer variety in terms
of twisted motives of its Čech simplicial scheme.

1. Introduction

One of the greatest features of topology is the abundance of powerful computational tools. The
Serre spectral sequence associated with a fibration is a notable example that allows one to extract
information about the cohomology of the total space, once the cohomology of the base and of
the fiber is known. As a particular case, when the fiber is a sphere, the Serre spectral sequence
gives back the Gysin long exact sequence associated with a sphere bundle.

The development of motivic homotopy theory made it possible to efficiently import topological
techniques into the algebro-geometric world. This translation is usually not straightforward or
even unique (for example, unlike in the topological picture, in motivic homotopy theory we have
several classifying spaces, each one corresponding to a different Grothendieck topology). Most
of the time, in fact, it is not clear how the topologically inspired tool should look in the motivic
world and what assumptions are needed in order to make the translation successful.

In this paper, we would like to propose the construction of a Serre-type spectral sequence
for motivic cohomology. This spectral sequence arises from a Postnikov system in a certain tri-
angulated category of motives associated with a morphism of bisimplicial schemes whose fiber
is motivically cellular, that is, a direct sum of Tate motives. As in topology, our Serre spectral
sequence reconstructs the motivic cohomology of the total space out of the motivic cohomology
of the base and the cellular structure of the fiber. It is a natural generalization of the Gysin long
exact sequence that was first introduced by Smirnov and Vishik in [SV14] for computing the
motivic cohomology of the Nisnevich classifying space of orthogonal groups, and subsequently

Received 23 September 2022, accepted in final form 19 June 2023.
2020 Mathematics Subject Classification 14F42 (primary), 20G15, 55R40, 55T10 (secondary).
Keywords: motivic cohomology, Serre spectral sequence, projective general linear groups, classifying spaces, char-
acteristic classes.
This journal is © Foundation Compositio Mathematica 2024. This article is distributed with Open Access under
the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse,
distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial
re-use, please contact the Foundation Compositio Mathematica.

The author acknowledges support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
through the Collaborative Research Centre TRR 326 Geometry and Arithmetic of Uniformized Structures, project
number 444845124.

http://algebraicgeometry.nl
http://www.ams.org/msc/
http://algebraicgeometry.nl
http://creativecommons.org/licenses/by-nc/3.0/
http://algebraicgeometry.nl


A Serre-type spectral sequence for motivic cohomology

studied by the author in [Tan22] for the general case of morphisms of simplicial schemes with
reduced Tate fiber (the motivic analogs of sphere bundles). To construct our spectral sequence,
we need to work with bisimplicial schemes instead of simplicial ones. Indeed, we want to allow
simplicial fibers that are in some sense infinite-dimensional. We also want to point out that a mo-
tivic Serre spectral sequence of a different nature was recently developed by Asok, Déglise and
Nagel in [ADN20]. A significant difference resides in the fact that, while the latter is achieved by
filtering with respect to the δ-homotopy t-structure whose slices are homotopy modules, in our
spectral sequence the slices are, instead, Tate motives.

The Gysin long exact sequence for motivic cohomology was successfully exploited for comput-
ing the motivic cohomology ring of the Nisnevich classifying space BG for some linear algebraic
groups G, which in turn produced new subtle invariants for G-torsors. These new invariants,
unlike the usual ones coming from the motivic cohomology of the étale classifying space BétG,
take values in a more informative object, namely the motivic cohomology of the Čech simplicial
scheme of the torsor under study.

More precisely, the Gysin sequence was used for orthogonal groups in [SV14], for unitary
groups in [Tan19] and for spin groups in [Tan22]. Unfortunately, some algebraic groups are out
of its range of application, for example the projective general linear group PGLn. The cohomology
of its classifying space is notoriously difficult to study even in topology, where, nevertheless, some
important results are known thanks to the use of the Serre spectral sequence. For example, the
singular cohomology of BPUn was computed in low degrees by Antieau and Williams in [AW14]
and by Gu in [Gu21a]. Moreover, the singular cohomology groups and the Chow groups of the
étale classifying space of PGLp for an odd prime p were completely computed by Vistoli in
[Vis07]. The Nisnevich classifying space of PGLn was first studied by Rolle in [Rol18]. In this
paper, we show how to apply our spectral sequence to obtain some information about the motivic
cohomology of BPGLn. Indeed, we use the Serre spectral sequence developed here for the obvious
map BGLn → BPGLn with fiber BGm in order to compute the motivic cohomology of BPGLn
in low motivic weights.

As noted before, investigating classifying spaces from a cohomological point of view is essential
for the program of classifying torsors of linear algebraic groups. For example, the importance of
studying Nisnevich classifying spaces for the classification of quadratic forms was highlighted by
Smirnov and Vishik in [SV14]. In the case of projective general linear groups, torsors are central
simple algebras, and a better understanding of the Nisnevich classifying space of PGLn provides
information about them.

Motivic descriptions of geometric objects related to central simple algebras have been widely
investigated in the last decades. For example, Karpenko showed in [Kar96] that the Chow motive
of the Severi–Brauer variety associated with a central simple algebra is the direct sum of twisted
copies of the motive of the Severi–Brauer variety associated with the underlying division algebra,
while the latter is indecomposable. In [KL10], Kahn and Levine obtained a Postnikov tower in the
Voevodsky’s triangulated category of motives for the Severi–Brauer variety associated with a di-
vision algebra of prime degree. In [Shi14], Shinder studied the slice filtration for the motive of the
group of units of a division algebra of prime degree, which involves the motive of the associated
Čech simplicial scheme. In this paper, we show how to apply the techniques developed here to ob-
tain a description of the motive of a Severi–Brauer variety associated with any central simple alge-
bra in terms of the respective Čech simplicial scheme. That description also induces a spectral se-
quence whose first differential is fully understood, strongly converging to the motivic cohomology
of the Severi–Brauer variety starting from the motivic cohomology of its Čech simplicial scheme.
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As we have already pointed out, a complete description of the singular cohomology of BPUn
seems to still be out of reach. Nevertheless, in [Gu21b] and [Gu20], Gu constructed non-trivial
torsion classes in the cohomology ring of BPUn and in the Chow ring of BétPGLn over the
complex numbers, by using Steenrod operations and the cycle class map going from Chow groups
to singular cohomology. These important results shed new light on the structure of these rings.
In this paper, by following the lead of [Gu21b] and [Gu20], we show that there are similar non-
trivial torsion classes in the motivic cohomology of the Nisnevich classifying space of PGLn. By
exploiting the homomorphism in motivic cohomology induced by the canonical map BPGLn →
BétPGLn (that replaces the cycle class map over general fields), we then generalize Gu’s results
on the torsion classes in the Chow ring of BétPGLn to fields of characteristic not dividing n
containing a primitive nth root of unity.

Outline. In Section 2, we introduce the main notation we need in this paper. In Section 3,
we recall a few things about Postnikov systems in triangulated categories and induced spectral
sequences. Section 4 is devoted to the introduction of the triangulated category of motives over
a bisimplicial scheme that is modeled on the one constructed for simplicial schemes by Voevodsky
in [Voe10a]. Sections 5 and 6 contain the main results of this paper, that is, the construction
of the Serre spectral sequence for motivic cohomology (see Theorem 5.11) and the investigation
of its multiplicative structure (see Theorem 6.13). In Section 7, we apply the latter to compute
the motivic cohomology of the Nisnevich classifying space of PGLn in low motivic weights (see
Theorem 7.3). Section 8 provides a Postnikov system for the motive of a Severi–Brauer variety
(see Proposition 8.4). Finally, in Section 9, we find torsion classes in the motivic cohomology of
BPGLn generalizing some results from [Gu21b] and [Gu20] (see Corollary 9.6).

2. Notation

Here we fix some notation we use throughout this paper.

k infinite perfect field

R commutative ring with identity

Y•,• smooth bisimplicial scheme over k

d(Y•,•) diagonal simplicial scheme of Y•,•
DM−

eff(k,R) triangulated category of motives over k with R-coefficients

DM−
eff(Y•,•, R) triangulated category of motives over Y•,• with R-coefficients

DM−
coh(Y•,•, R) localizing subcategory of coherent motives over Y•,• with R-coefficients

T unit object in DM−
eff(k,R)

H∗∗(−, R) motivic cohomology with R-coefficients

H∗∗(−) motivic cohomology with Z-coefficients

CH∗(−) Chow groups, that is, CHq(−) ∼= H2q,q(−)
Hs(k) simplicial homotopy category over k

H(k) A1-homotopy category over k

BG• Nisnevich classifying space of the simplicial algebraic group G•
BétG étale classifying space of the algebraic group G

PGLn projective general linear group

A central simple algebra over k

SB(A) Severi–Brauer variety associated with A

XA motive of the Čech simplicial scheme of SB(A)
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3. Some general facts about spectral sequences

Let us start by recalling some well-known facts about Postnikov systems in triangulated ca-
tegories, spectral sequences associated with them and convergence issues (see [Boa99, GM03,
McC01]).

Throughout this section, we denote by C a triangulated category, by A an abelian category
and by H : C → A a cohomological functor, that is, an additive contravariant functor sending
distinguished triangles in C into long exact sequences in A.

Definition 3.1. An exact couple in A is a triangle

D
i // D

j~~~~
~~
~~
~~

E
k

``@@@@@@@@

that is exact at each vertex.

The morphism d defined as the composition jk is a differential; that is, d2 = 0. Set E′ =
ker(d)/ im(d) and D′ = im(i). One can define morphisms j′ : D′ → E′ and k′ : E′ → D′ by
j′(i(x)) = j(x) and k′([y]) = k(y) for any x ∈ D and y ∈ ker(d). The triangle

D′ i // D′

j′~~||
||
||
||

E′
k′

``BBBBBBBB

obtained in this way is again an exact couple, called the derived couple. Reiterating this con-
struction, one gets a sequence of objects Er in A, endowed with differentials dr, each of which is
the homology of the previous one. More precisely, we can give the following definition.

Definition 3.2. The sequence {Er, dr}r⩾1 constructed inductively by

Er = ker(dr−1)/ im(dr−1)

is called the spectral sequence associated with the exact couple in Definition 3.1.

In practical situations, one often encounters bigraded exact couples, which naturally give rise
to bigraded spectral sequences

{
Es,tr , ds,tr

}
r⩾1

. We now provide the definition of the limit page of
a bigraded spectral sequence.

Definition 3.3. Let
{
Es,tr , ds,tr

}
r⩾1

be a bigraded spectral sequence, and suppose that there

is an integer r(s, t) such that Es,tr ∼= Es,tr(s,t) for any r ⩾ r(s, t). Then we say that the spectral

sequence abuts to Es,t∞ = Es,tr(s,t).

At this point, let us recall some notions about filtrations and convergence of spectral sequences
from [Boa99].

An increasing filtration of an object G in A is a diagram of the following shape:

· · · ↪→ F 1 ↪→ F 2 ↪→ · · · ↪→ Fm ↪→ Fm+1 ↪→ · · · ↪→ G .

389



F. Tanania

Definition 3.4. The increasing filtration {Fm}m∈Z of G is said to be

(1) exhaustive if G = lim−→m
Fm,

(2) Hausdorff if lim←−m F
m = 0,

(3) complete if lim←−
1
m
Fm = 0.

In practice, one is often interested in filtrations of graded objects. So, for any F s in the
filtration we denote by F s,t its graded component in degree t.

Definition 3.5. A spectral sequence associated with an exact couple is called

(1) weakly convergent to G if there exists an increasing filtration of G that is exhaustive and
such that Es,t∞ ∼= F s,t/F s−1,t for any s,

(2) convergent to G if it is weakly convergent and the filtration of G is Hausdorff,

(3) strongly convergent to G if it is weakly convergent and the filtration of G is complete
Hausdorff.

We now recall the definition of a Postnikov system in a triangulated category (see [GM03]).

Definition 3.6. A Postnikov system for an object X in C is a diagram

· · · // Xi+1
//

��

Xi
//

��

· · · // X2
//

��

X = X1 ,

��
Yi+1

[1]

bbDDDDDDDDD

Yi

[1]

bbDDDDDDDD
Y2

[1]

``AAAAAAAA

Y1

[1]

ddHHHHHHHHHH

where all the triangles are distinguished triangles in C.

One can always construct an exact couple associated with a Postnikov system by applying
a cohomological functor H. More precisely, we have the bigraded exact couple

D
i // D ,

j~~~~
~~
~~
~~

E ,

k

__????????

where Ds,t = Ht(Xs) := H(Xs[−t]), Es,t = Ht(Ys) := H(Ys[−t]) and the morphisms i : Ds,t →
Ds+1,t, j : Ds,t → Es−1,t+1 and k : Es,t → Ds,t are induced by the morphisms in the Postnikov
system.

As usual, we obtain an increasing filtration of the object Ht(X) in A given by

F 1,t ↪→ F 2,t ↪→ · · · ↪→ F s−1,t ↪→ F s,t ↪→ · · · ↪→ Ht(X) ,

where F s,t = ker
(
Ht(X)→ Ht(Xs)

)
and the morphism Ht(X)→ Ht(Xs) is the one induced by

the Postnikov system. Moreover, observe that the filtration
{
F s,t

}
s⩾1

just introduced is complete
Hausdorff since it is bounded from below, but that it is not necessarily exhaustive. Anyway, we
have the following result that guarantees the strong convergence of the spectral sequence just
constructed, provided that a certain condition holds.

Theorem 3.7. If lim−→s
H∗(Xs) ∼= 0, then the spectral sequence associated with the Postnikov

system in Definition 3.6 is strongly convergent to H∗(X).

Proof. See [Boa99, Theorem 6.1].
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4. Motives over a bisimplicial scheme

For technical reasons, in this paper we need to work over bisimplicial schemes. To this end, we
need a triangulated category of motives over a bisimplicial scheme. The triangulated category
of motives over a simplicial scheme was introduced and studied by Voevodsky in [Voe10a]. More
recently, Cisinski and Déglise constructed in [CD19] a triangulated category of motives over an
arbitrary diagram of schemes indexed by a small category. We point out that the constructions
and results we need from [Voe10a] extend to the bisimplicial case in a straightforward way. In
this section, we briefly summarize them.

Let Y•,• be a smooth bisimplicial scheme over k. Following [Voe10a, Section 2], we de-
fine Sm /Y•,• in the following way.

Definition 4.1. Denote by Sm /Y•,• the category whose objects are triples (U, i, h), where i
and h are non-negative integers and U is a smooth scheme over Yi,h, and whose morphisms from
(U, i, h) to (V, j, k) are triples (f, ϕ, ψ), where ϕ : [j] → [i] and ψ : [k] → [h] are simplicial maps
and f : U → V is a morphism of schemes such that the following square commutes:

U
f //

��

V

��
Yi,h Yϕ,ψ

// Yj,k .

We can also define presheaves on Y•,• following [Voe10a, Definition 2.1].

Definition 4.2. A presheaf of sets (respectively with transfers) on Y•,• consists of a collection
{Fi,h}i,h⩾0 of presheaves of sets (respectively with transfers) on Sm /Yi,h together with a mor-
phism of presheaves of sets (respectively with transfers) Fϕ,ψ : Y

∗
ϕ,ψ(Fj,k)→ Fi,h for any simplicial

maps ϕ : [j] → [i] and ψ : [k] → [h], such that Fid,id = id and Fϕα,ψβ : Y
∗
ϕα,ψβ(Fm,n) → Fi,h is

equal to the composition of Y ∗
ϕ,ψFα,β : Y

∗
ϕ,ψY

∗
α,β(Fm,n)→ Y ∗

ϕ,ψ(Fj,k) and Fϕ,ψ : Y
∗
ϕ,ψ(Fj,k)→ Fi,h,

where α : [m]→ [j] and β : [n]→ [k] are simplicial maps.

Denote by PShv(Y•,•) the category of presheaves of sets on Y•,• and by PST(Y•,•, R) the
abelian category of presheaves of R-modules with transfers on Y•,•. Note that PShv(Y•,•) is
nothing but the category of contravariant functors from Sm /Y•,• to Sets.

If F = {Fi,h}i,h⩾0 is a presheaf of sets on Y•,•, then RtrF = {RtrFi,h}i,h⩾0 is a presheaf with
transfers on Y•,•. In particular, denote by Rtr(U, i, h) the presheaf with transfers associated with
the representable presheaf of sets corresponding to (U, i, h).

Let SmCor(Y•,•, R) be the full subcategory of PST(Y•,•, R) whose objects are arbitrary direct
sums of objects of the form Rtr(U, i, h).

Lemma 4.3. The category PST(Y•,•, R) is naturally equivalent to the category of R-linear con-
travariant functors from SmCor(Y•,•, R) to the category of R-modules that preserve coproducts.

Proof. See [Voe10a, Lemma 2.3].

The previous result allows one, as usual, to construct left resolutions Lres(F ) consisting of
representable presheaves with transfers for any F in PST(Y•,•, R).

For any non-negative integers i and h, denote by ri,h : SmCor(Yi,h, R)→ SmCor(Y•,•, R) the
functor that sends U to Rtr(U, i, h). These functors induce in the standard way pairs of adjoint

391



F. Tanania

functors

ri,h,# : PST(Yi,h, R) ⇄ PST(Y•,•, R) : r∗i,h .

There are similar functors ri,• : SmCor(Yi,•, R)→ SmCor(Y•,•, R) sending Rtr(U, h) to Rtr(U, i, h),
which induce pairs of adjoint functors

ri,•,# : PST(Yi,•, R) ⇄ PST(Y•,•, R) : r∗i,• ,

and r•,h : SmCor(Y•,h, R)→ SmCor(Y•,•, R) sending Rtr(U, i) to Rtr(U, i, h), which induce pairs
of adjoint functors

r•,h,# : PST(Y•,h, R) ⇄ PST(Y•,•, R) : r∗•,h .

Finally, we can also consider the diagonal functor d : SmCor(d(Y•,•), R) → SmCor(Y•,•, R)
that sends Rtr(U, i) to Rtr(U, i, i). As usual, this functor induces a pair of adjoint functors

d# : PST(d(Y•,•), R) ⇄ PST(Y•,•, R) : d∗ .

As in [Voe10a, Section 3], we can define the tensor product of presheaves with transfers F
and G on Y•,• in the following way:

(F ⊗G)i,h = (Fi,h ⊗Gi,h) = h0(Lres(Fi,h)⊗ Lres(Gi,h)) .

Let D(Y•,•, R) be the derived category of complexes on PST(Y•,•, R) bounded from above. Then,
the tensor product just defined induces a tensor triangulated structure on D(Y•,•, R) given by

K
L
⊗ L = Lres(K)⊗ Lres(L)

for all complexes of presheaves with transfers K and L. The unit of this tensor structure is the
constant presheaf with transfers also denoted by R whose components are the constant presheaves
with transfers on each Yi,h.

Lemma 4.4. Consider the bisimplicial object LR•,• in SmCor(Y•,•, R) with terms

LRi,h = Rtr(Yi,h, i, h)

and the obvious structure morphisms. Let LR∗ be the total complex of the corresponding double
complex. Then there is a natural quasi-isomorphism LR∗ → R.

Proof. See [Voe10a, Lemma 3.9].

Let W el
i,h(Y•,•, R) be the class of complexes on PST(Y•,•, R) obtained as ri,h,#

(
W el(Yi,h, R)

)
,

where W el(Yi,h, R) is defined in [Voe10a, Section 4].

LetW (Y•,•,R) be the smallest localizing subcategory of D(Y•,•,R) containing allW el
i,h(Y•,•,R).

A morphism in D(Y•,•, R) is called an A1-equivalence if its cone lives in W (Y•,•, R).

Definition 4.5. The triangulated category DM−
eff(Y•,•, R) of motives over Y•,• is the localization

of D(Y•,•, R) with respect to A1-equivalences.

What follows consists of several properties of the restriction functors whose simplicial analogs
can be found in [Voe10a, Sections 3 and 4].

The family {r∗i,h}i,h⩾0 induces a family of restriction functors from D(Y•,•, R) to D(Yi,h, R),

with corresponding left adjoints Lri,h,#, that respect A
1-equivalences. Hence, we get a family of

restriction functors {r∗i,h}i,h⩾0 from DM−
eff(Y•,•, R) to DM

−
eff(Yi,h, R) that is moreover conserva-

tive. The same is also true for the families of functors {r∗i,•}i⩾0 and {r∗•,h}h⩾0.
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The diagonal functor d∗ also induces a functor from D(Y•,•, R) to D(d(Y•,•), R), with left
adjoint Ld#, respecting A1-equivalences. Therefore, we get a diagonal restriction functor d∗

from DM−
eff(Y•,•) to DM

−
eff(d(Y•,•)).

The tensor product on D(Y•,•, R) respects A
1-equivalences, making DM−

eff(Y•,•, R) into a ten-
sor triangulated category. All restriction functors introduced above respect this tensor structure.

There are also standard functoriality properties. If p : Y•,• → Y ′
•,• is a morphism of smooth

bisimplicial schemes, then we get a pair of adjoint functors

Lp∗ : DM−
eff(Y

′
•,•, R) ⇄ DM−

eff(Y•,•, R) : Rp∗ .

If p is smooth, then Lp∗ = p∗ and there is also the following adjunction:

Lp# : DM−
eff(Y•,•, R) ⇄ DM

−
eff(Y

′
•,•, R) : p∗ .

In particular, we have a pair of adjoint functors

Lc# : DM−
eff(Y•,•, R) ⇄ DM

−
eff(k,R) : c∗ ,

where c : Y•,• → Spec(k) is the projection to the base.

Definition 4.6. A Tate object T (q)[p] in DM−
eff(Y•,•, R) is defined as c∗(T (q)[p]). In general,

for any motive M in DM−
eff(k,R), we also denote by M its image c∗(M) in DM−

eff(Y•,•, R).

Remark 4.7. Note that by [CD19, Theorem 11.1.13] (which holds true over any diagram of
schemes), the unit object T is compact (and so are all T (q)[p]) in DM−

eff(Y•,•, R).

A smooth bisimplicial scheme Y•,• induces a bisimplicial object Rtr(Y•,•) in SmCor(k,R).
Then, one can define the motive M(Y•,•) of Y•,• in DM−

eff(k,R) as the total complex of the
double complex Rtr(Y∗,∗) associated with Rtr(Y•,•). It is an immediate consequence of Lemma 4.4
that

M(Y•,•) ∼= Lc#T .

This definition naturally extends the definition of the motive of a simplicial scheme given in
[Voe10a, Section 5] to the bisimplicial case. Note that, by the Eilenberg–Zilber theorem,M(Y•,•)
and M(d(Y•,•)) are isomorphic in DM−

eff(k,R). In particular, they have the same motivic coho-
mology.

The most important result that we need in the following sections is the following.

Proposition 4.8. Let Y•,• be a smooth bisimplicial scheme. Then, there is an isomorphism

HomDM−
eff(Y•,•,R)(T (q

′)[p′], T (q)[p]) ∼= HomDM−
eff(k,R)(M(Y•,•)(q

′)[p′], T (q)[p])

for all integers q, q′, p and p′.

Proof. See [Voe10a, Proposition 5.3].

5. A Serre spectral sequence for motivic cohomology

The main purpose of this section is to construct Postnikov systems in a suitable triangulated
category of motives and to study the associated spectral sequences. More precisely, we set our
triangulated category C to be DM−

eff(Y•,•, R), our abelian category A to be the category of left
H∗∗(Y•,•, R)-modules and our cohomological functor H to be motivic cohomology H∗∗(−, R).

For all i ⩾ 0, denote simply by

r∗i : DM−
eff(Y•,•, R)→ DM

−
eff(Yi,•, R)
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the restriction functors r∗i,• introduced in the last section, and by Lri,# the respective left adjoint

functors. The image of a motive N in DM−
eff(Y•,•, R) under r

∗
i is simply denoted by Ni.

Now let us recall some facts about coherence from [SV14] and adapt them to the bisimplicial
case we are interested in.

Definition 5.1. A smooth coherent morphism of smooth bisimplicial schemes is a smooth mor-
phism π : X•,• → Y•,• such that there is a cartesian square of simplicial schemes

Xj,•
πj //

Xθ
��

Yj,•

Yθ
��

Xi,• πi
// Yi,•

for any simplicial map θ : [i]→ [j].

Definition 5.2. A motive N in DM−
eff(Y•,•, R) is said to be coherent if all simplicial morphisms

θ : [i] → [j] induce structural isomorphisms Nθ : LY
∗
θ (Ni) → Nj in DM−

eff(Yj,•, R). The full
subcategory of DM−

eff(Y•,•, R) consisting of coherent motives is denoted by DM−
coh(Y•,•, R).

Remark 5.3. Note that DM−
coh(Y•,•, R) is a localizing subcategory of DM−

eff(Y•,•, R). Since Lπ#
maps coherent motives to coherent ones for any smooth coherent morphism π, we have that
M

(
X•,•

π−→ Y•,•
)
is an object in DM−

coh(Y•,•, R), where M
(
X•,•

π−→ Y•,•
)
is the image Lπ#(T ) of

the unit Tate motive in DM−
eff(X•,•, R).

Proposition 5.4. For any motive N in DM−
coh(Y•,•, R), there exists a functorial increasing

filtration

(N)⩽0 → (N)⩽1 → · · · → (N)⩽n−1 → (N)⩽n → · · · → N

with graded pieces (N)n = Cone((N)⩽n−1 → (N)⩽n) ∼= Lrn,#r
∗
n(N)[n] that converges in the

sense that ⊕
n

(N)⩽n
id− sh−−−−→

⊕
n

(N)⩽n → N

extends to a distinguished triangle, where sh: (N)⩽n−1 → (N)⩽n is the map from the filtration.

Proof. The proofs of [SV14, Propositions 3.1.6 and 3.1.8] extend verbatim to the bisimplicial
case.

The next proposition is a generalization of [SV14, Proposition 3.1.5]. Indeed, it allows us
to construct Postnikov systems for coherent motives with simplicial components that are direct
sums of Tate motives satisfying some specific conditions. The proof follows the guidelines of
[SV14, Proposition 3.1.5] and essentially reproduces the same arguments in our more general
context. Before proceeding, we need to define a strict order relation on the bidegrees (q)[p].

Definition 5.5. We set (q)[p] ≺ (q′)[p′] if and only if one of the following two conditions is
satisfied:

(1) q < q′;

(2) q = q′ and p < p′.

For any j ⩾ 0, let T j be the possibly infinite direct sum
⊕

Ij
T (qj)[pj ] in DM−

eff(k,R) such

that (qj)[pj ] ≺ (qj+1)[pj+1], and let N in DM−
coh(Y•,•, R) be a motive such that its simplicial

components Ni in DM−
eff(Yi,•, R) are isomorphic to the direct sum

⊕
j⩾0 T

j .
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Note that in DM−
eff(Y1,•, R), the automorphism group Aut

(⊕
j⩾0 T

j
)
consists of invertible

upper triangular matrices since

HomDM−
eff(Y1,•,R)(T, T (q)[p])

∼= Hp,q(Y1,•, R) ∼= 0

for any (q)[p] ≺ (0)[0].

Recall that, since N is coherent, for any simplicial map θ : [i] → [j], the structural map
Nθ : LY

∗
θ (Ni)→ Nj is an isomorphism. In particular, we have two automorphisms

N∂0 : LY
∗
∂0(N0) ∼=

⊕
j⩾0

T j → N1
∼=

⊕
j⩾0

T j

and

N∂1 : LY
∗
∂1(N0) ∼=

⊕
j⩾0

T j → N1
∼=

⊕
j⩾0

T j .

Definition 5.6. Denote by ωN the composition N∂1 ◦ N
−1
∂0

belonging to Aut(N1). For any

j ⩾ 0, consider the homomorphism Aut
(⊕

j⩾0 T
j
)
→ Aut

(
T j

)
that sends each invertible upper

triangular matrix to its jth diagonal entry. Denote the images of ωN under these homomorphisms
by ωNj .

Remark 5.7. Suppose that Ij is a finite set of order nj , and let CC(Y•,•) be the bisimplicial
set obtained by applying to Y•,• the connected components functor CC that sends a connected
scheme to the point and respects coproducts. Denote its geometric realization by |CC(Y•,•)|.

If the non-abelian cohomology H1(|CC(Y•,•)|,GLnj (R)) is trivial, then ω
N
j is the identity.

In fact, ωNj is an automorphism of T j in DM−
eff(Y1,•, R), thus an invertible element of

HomDM−
eff(Y1,•,R)

(
T j , T j

) ∼= ∏
Ij

⊕
Ij

HomDM−
eff(Y1,•,R)(T, T )

∼=
∏
Ij

⊕
Ij

H0,0(Y1,•, R)

by Remark 4.7.

Note that H0,0(Y1,•, R) is the free R-module of rank given by the number of connected
components of Y1,•. Hence, if we fix a connected component of Y1,•, then ωNj restricts to an
invertible element of ∏

Ij

⊕
Ij

R ∼=Mnj (R) ,

that is, to an element of GLnj (R). This way, one can see ωNj as a morphism of groupoids

Π1(|CC(Y•,•)|)→ GLnj (R) ,

so as an element of H1(|CC(Y•,•)|,GLnj (R)).

Proposition 5.8. Let N be a motive in DM−
coh(Y•,•, R) such that its simplicial components Ni

in DM−
eff(Yi,•, R) are isomorphic to the direct sum

⊕
j⩾0 T

j , where T j is the possibly infinite
direct sum

⊕
Ij
T (qj)[pj ] such that (qj)[pj ] ≺ (qj+1)[pj+1] for all j.

If ωNj is trivial for any j ⩾ 0, then there exists a Postnikov system in DM−
eff(Y•,•, R)

· · · // N j+1 //

��

N j //

��

· · · // N1 //

��

N = N0

��
T j+1

[1]

bbEEEEEEEE

T j
[1]

bbFFFFFFFFF
T 1

[1]

aaBBBBBBBB

T 0
[1]

ddIIIIIIIIII
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such that the simplicial components N j
i are isomorphic to the direct sum

⊕
k⩾j T

k and the

morphisms r∗i
(
N j → T j

)
are the natural projections

⊕
k⩾j T

k → T j in DM−
eff(Yi,•, R).

Proof. To construct the desired Postnikov system, we just need to produce morphisms N j → T j ,
where each N j is defined as the cone of the previous morphism, namely N j = Cone

(
N j−1 →

T j−1
)
[−1]. We proceed by induction.

Notice that each simplicial component of N is isomorphic to
⊕

j⩾0 T
j and T 0 is the direct sum

of possibly infinite T (q0)[p0] such that (q0)[p0] ≺ (qj)[pj ] for any j ⩾ 1, by hypothesis. By applying
the triangulated functor Lc# to the filtration of Proposition 5.4, one gets a filtration (Lc#N)⩽n
for Lc#N with graded pieces (Lc#N)n ∼=

⊕
j⩾0

⊕
Ij
M(Yn,•)(qj)[pj+n]. Following the lines of the

proof of [SV14, Proposition 3.1.5], we denote by (Lc#N)>n the cone Cone((Lc#N)⩽n → Lc#N)
and by (Lc#N)m⩾∗>n the cone Cone((Lc#N)⩽n → (Lc#N)⩽m) for any m > n. Now, note that

(Lc#N)>n ∼= Cone

(⊕
m>n

(Lc#N)m⩾∗>n
id-sh−−−→ (Lc#N)m⩾∗>n

)
and moreover (Lc#N)m⩾∗>n is an extension of (Lc#N)k for n < k ⩽ m. Therefore, we have that

HomDM−
eff(k,R)

(
(Lc#N)>0, T

0
) ∼= 0 ,

HomDM−
eff(k,R)

(
(Lc#N)>1, T

0
) ∼= 0 ,

HomDM−
eff(k,R)

(
(Lc#N)>1, T

0[1]
) ∼= 0

since HomDM−
eff(k,R)(M(Yn,•), T (q)[p]) ∼= 0 for any n ⩾ 0 and any (q)[p] ≺ (0)[0]. We deduce

from these remarks and from the application of the cohomological functor HomDM−
eff(k,R)

(
−, T 0

)
to the distinguished triangle

(Lc#N)0 → Lc#N → (Lc#N)>0 → (Lc#N)0[1]

that there exists an exact sequence

0→ HomDM−
eff(k,R)

(
Lc#(N), T 0

)
→ HomDM−

eff(k,R)

(
Lc#,0(N0), T

0
)

→ HomDM−
eff(k,R)

(
Lc#,1(N1), T

0
)
.

Repeating the same arguments for T 0 in DM−
coh(Y•,•, R), one gets a similar sequence

0→ HomDM−
eff(k,R)

(
Lc#

(
T 0

)
, T 0

)
→ HomDM−

eff(k,R)

(
Lc#,0

(
T 0

)
, T 0

)
→ HomDM−

eff(k,R)

(
Lc#,1

(
T 0

)
, T 0

)
.

At this point, we want to produce an isomorphism between HomDM−
eff(k,R)

(
Lc#(N), T 0

)
and

HomDM−
eff(k,R)

(
Lc#

(
T 0

)
, T 0

)
. To do so, we need to identify the last morphisms of the two exact

sequences. Since in the exact sequences only the 0th and the 1st simplicial components appear, it
is enough to get a compatibility between the coherent system (Ni, Nθ) and that of T 0 for i = 0, 1
and simplicial maps θ : [0] → [1], where Nθ is the structural isomorphism LY ∗

θ (N0) → N1 in
DM−

eff(Y1,•, R). In other words, we want a commutative diagram

N1
∼=

⊕
j⩾0 T

j ωN //

��

N1
∼=

⊕
j⩾0 T

j

��
T 0

id
// T 0 .

396



A Serre-type spectral sequence for motivic cohomology

Indeed, we have such a commutative diagram since by hypothesis ωN0 is trivial. Hence, the two
exact sequences above coincide. Then, we have that

HomDM−
eff(Y•,•,R)

(
N,T 0

) ∼= HomDM−
eff(k,R)

(
Lc#(N), T 0

) ∼= HomDM−
eff(k,R)

(
Lc#

(
T 0

)
, T 0

)
∼= HomDM−

eff(Y•,•,R)

(
T 0, T 0

)
by adjunction, and the identity of T 0 provides the desired morphismN → T 0 whose restriction on
each simplicial component is given by the natural projection

⊕
k⩾0 T

k → T 0. It follows that N1
i

is isomorphic to
⊕

k⩾1 T
k for any i. This proves the base case of the induction.

Now, suppose that we have a morphism from Nk to T k for any 0 ⩽ k ⩽ j − 1, where each
Nk is defined as Cone

(
Nk−1 → T k−1

)
[−1]. We denote by N j the cone Cone

(
N j−1 → T j−1

)
[−1].

Notice that the simplicial components of N j are all isomorphic to
⊕

l⩾j T
l and T j is the direct

sum of possibly infinite T (qj)[pj ] such that (qj)[pj ] ≺ (ql)[pl] for any l ⩾ j + 1, by hypothesis.
Therefore, by applying the same arguments as those for the base case to N j , using the fact
that ωN

j

0 = ωNj is trivial by hypothesis, we see that there exists a morphism N j → T j . This
completes the proof.

Remark 5.9. We point out that if there exists an integer k such that Ij is empty for all j ⩾ k,
the previous result provides a finite Postnikov system for N in DM−

eff(Y•,•, R).

We want to apply Proposition 5.8 to produce a spectral sequence for morphisms having
motivically cellular fibers, that is, fibers whose motives are direct sums of Tate motives satisfying
certain conditions. First, we need to construct suitable Postnikov systems. The next result is
a generalization of [Tan22, Proposition 4.2].

Proposition 5.10. Let π : X•,• → Y•,• be a smooth coherent morphism of smooth bisimplicial
schemes over k and A• a smooth simplicial k-scheme, and, for any j ⩾ 0, let T j be the possibly
infinite direct sum of Tate motives

⊕
Ij
T (qj)[pj ] in DM−

eff(k,R) such that (qj)[pj ] ≺ (qj+1)[pj+1].
Moreover, suppose that

(1) over the 0th simplicial component, π is isomorphic to the projection Y0,• ×A• → Y0,•;

(2) ω
M(X•,•→Y•,•)
j is trivial for any j ⩾ 0;

(3) M(A•) ∼=
⊕

j⩾0 T
j ∈ DM−

eff(k,R).

Then, there exists a Postnikov system in DM−
eff(Y•,•, R)

· · · // N j+1 //

��

N j //

��

· · · // N2 //

��

N1 //

��

M
(
X•,•

π−→ Y•,•
)
= N0

��
T j+1

[1]

aaDDDDDDDDD

T j
[1]

bbDDDDDDDDD

T 2

[1]

``@@@@@@@@

T 1

[1]

``AAAAAAAAA

T 0

[1]

hhPPPPPPPPPPPPPPPP

such that the simplicial components N j
i are isomorphic to the direct sum

⊕
k⩾j T

k and the

morphisms r∗i
(
N j → T j

)
are the natural projections

⊕
k⩾j T

k → T j in DM−
eff(Yi,•, R).

Proof. By the coherence of π, we have that πi : Yi,• × A• ∼= Xi,• → Yi,• is the projection onto
the first factor for any i. It follows that the coherent motive N0 (see Remark 5.3) has simplicial
components given by N0

i
∼=M(A•) in DM−

eff(Yi,•, R) for any i. Therefore, Proposition 5.8 implies
the existence of the desired Postnikov system in DM−

eff(Y•,•, R), and the proof is complete.

Recall from Section 3 that, once we have constructed a Postnikov system in a triangulated
category and considered a suitable cohomological functor, we can obtain a spectral sequence
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which may converge if some extra requirements are met. The following theorem just states
the existence of a strongly convergent spectral sequence related to the Postnikov system of
Proposition 5.10.

Theorem 5.11. Let π : X•,• → Y•,• be a smooth coherent morphism of smooth bisimplicial
schemes over k and A• a smooth simplicial k-scheme satisfying all conditions of Proposition 5.10.
Moreover, for any bidegree (q)[p], suppose that there is an integer l such that (q)[p] ≺ (ql)[pl].
Then, there exists a strongly convergent spectral sequence

Ep,q,s1 =
∏
Is

Hp−ps,q−qs(Y•,•, R) =⇒ Hp,q(X•,•, R) .

Proof. We start by applying the construction of the exact couple associated with a Postnikov
system of Section 3 to the cohomological functor HomDM−

eff(Y•,•,R)(−, T (q)), for any q. This way,
we get a spectral sequence with E1-page given by

Ep,q,s1 = HomDM−
eff(Y•,•,R)(T

s, T (q)[p]) ∼=
∏
Is

Hp−ps,q−qs(Y•,•, R) .

The filtration we are considering is defined by Fm = ker(H∗∗(X•,•, R) → H∗∗(Nm, R)). To get
the strong convergence, we need to check that lim−→m

H∗∗(Nm, R) ∼= 0. Since all the Nm are
coherent motives, by Proposition 5.4 we have filtrations (Nm)⩽n with graded pieces (Nm)n ∼=
Lrn,#r

∗
n(N

m)[n]. Hence, we have filtrations (Lc#N
m)⩽n with graded pieces

(Lc#N
m)n ∼=

⊕
k⩾m

⊕
Ik

M(Yn,•)(qk)[pk + n] .

Now, fix a bidegree (q)[p]; then, by hypothesis, there exists an integer l such that (q)[p] ≺ (ql)[pl],
from which it follows that

HomDM−
eff(k,R)

((
Lc#N

l
)
n
, T (q)[p]

) ∼= 0

for any n. Therefore,

HomDM−
eff(k,R)

(
Lc#

(
N l

)
, T (q)[p]

) ∼= 0 ,

from which we deduce by adjunction that Hp,q
(
N l, R

) ∼= 0, which implies, in particular, the
triviality of lim−→m

H∗∗(Nm, R). Hence, by Theorem 3.7, we obtain the result.

The next result assures that the spectral sequence just constructed is functorial.

Proposition 5.12. Let π : X•,• → Y•,• and π′ : X ′
•,• → Y ′

•,• be smooth coherent morphisms
of smooth bisimplicial schemes over k and A• a smooth simplicial k-scheme that satisfies all
conditions from Proposition 5.10 with respect to π′ and is such that the following square is
cartesian with all morphisms smooth:

X•,•
π //

pX
��

Y•,•

pY
��

X ′
•,• π′

// Y ′
•,• .

Then, the induced morphism LpY#M
(
X•,•

π−→ Y•,•
)
→ M

(
X ′

•,•
π′
−→ Y ′

•,•
)
in DM−

eff(Y
′
•,•, R)

extends uniquely to a morphism of Postnikov systems where, for any j ⩾ 0, LpY#T
j → T j is

given by
⊕

Ij
M(pY )(qj)[pj ].
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Proof. We denote by N j the objects from the Postnikov system of π and by N ′j those from the
Postnikov system of π′.

First, recall that by Proposition 5.4, there is a filtration of Lc#N
j with graded pieces

(
Lc#N

j
)
n
∼=

⊕
k⩾j

⊕
Ik

M(Yn,•)(qk)[pk + n] .

It follows that

HomDM−
eff(k,R)

((
Lc#N

j
)
n
, T j−1[−1]

) ∼= 0 and HomDM−
eff(k,R)

((
Lc#N

j)n, T
j−1

) ∼= 0

for any n since, for any k ⩾ j, we have that (qj−1)[pj−1] ≺ (qk)[pk] by hypothesis. Therefore,

HomDM−
eff(Y

′
•,•,R)

(
LpY#N

j , T j−1[−1]
) ∼= HomDM−

eff(Y•,•,R)

(
N j , T j−1[−1]

)
∼= HomDM−

eff(k,R)

(
Lc#N

j , T j−1[−1]
) ∼= 0

and, similarly,

HomDM−
eff(Y

′
•,•,R)

(
LpY#N

j , T j−1
) ∼= HomDM−

eff(Y•,•,R)

(
N j , T j−1

)
∼= HomDM−

eff(k,R)

(
Lc#N

j , T j−1
) ∼= 0 ,

from which we deduce that there are no non-trivial morphisms from LpY#N
j to either T j−1[−1]

or T j−1 for any j.

Now, we can construct the morphism of Postnikov systems by induction on j. The base case
is provided by the square of motives in DM−

eff(Y
′
•,•, R) induced by the geometric square of the

hypothesis. By the induction hypothesis, there is a morphism LpY#N
j−1 → N ′j−1. It follows that

there exist unique morphisms LpY#T
j−1 → T j−1 and LpY#N

j → N ′j fitting into a morphism
of Postnikov systems in DM−

eff(Y
′
•,•, R)

· · · // LpY#N
j //

��

LpY#N
j−1

wwppp
ppp

ppp
pp

��

// · · ·

LpY#T
j−1

[1]

ffMMMMMMMMMM

��

· · · // N ′j // N ′j−1

wwnnn
nnn

nnn
nnn

n
// · · ·

T j−1 .
[1]

ggOOOOOOOOOOOO

If we restrict our previous diagram to the 0th simplicial component, we obtain in DM−
eff(Y

′
0,•, R)

399



F. Tanania

the morphism of Postnikov systems

· · · //
⊕

k⩾j LpY0#T
k //

��

⊕
k⩾j−1 LpY0#T

k

vvmmm
mmm

mmm
mmm

��

// · · ·

LpY0#T
j−1

[1]

ggPPPPPPPPPPP

��

· · · //
⊕

k⩾j T
k //

⊕
k⩾j−1 T

k

vvmmm
mmm

mmm
mmm

m
// · · ·

T j−1 ,

[1]

hhPPPPPPPPPPPPP

where each triangle is split. By hypothesis, the morphism LpY0#T
j−1 → T j−1 in the previous

diagram is basically given by
⊕

Ij−1
M(pY0)(qj−1)[pj−1], while the map LpY0#N

j−1
0 → N ′j−1

0 is

given by
⊕

k⩾j−1

⊕
Ik
M(pY0)(qk)[pk].

Now, note that by Remark 4.7, the morphisms LpY#T
j → T j and

⊕
Ij
M(pY )(qj)[pj ] are

both in

HomDM−
eff(Y

′
•,•,R)

(
LpY#T

j , T j
) ∼= HomDM−

eff(Y•,•,R)

(
T j , p∗Y T

j
)

∼= HomDM−
eff(Y•,•,R)

(
T j , T j

) ∼= ∏
Ij

⊕
Ij

H0,0(Y•,•, R) ,

and, for the same reason,
(
LpY0#T

j → T j
)
=

⊕
Ij
M(pY0)(qj)[pj ] is in

HomDM−
eff(Y

′
0,•,R)

(
LpY0#T

j , T j
) ∼= HomDM−

eff(Y0,•,R)

(
T j , p∗Y0T

j
)

∼= HomDM−
eff(Y0,•,R)

(
T j , T j

) ∼= ∏
Ij

⊕
Ij

H0,0(Y0,•, R) .

Recall that H0,0(Y•,•, R) is the free R-module with rank equal to the number of connected
components of Y•,• and, analogously, H0,0(Y0,•, R) is the free R-module with rank equal to
the number of connected components of Y0,•. Since, as in the argument at the end of [Tan19,
Proposition 3.4], the homomorphism

r∗0 : H
0,0(Y•,•, R)→ H0,0(Y0,•, R)

is injective, we deduce that LpY#T
j → T j and

⊕
Ij
M(pY )(qj)[pj ] are identified, which completes

the proof.

Remark 5.13. Note that we can always “dilute” the Postnikov system of Proposition 5.10 by
allowing some empty sets Ij . In particular, if we are in the situation of Proposition 5.12 but
without assuming that the square is cartesian (that is, π and π′ both satisfy the conditions
of Proposition 5.10 with possibly different fibers A• and A′

•, respectively), we can stretch the
Postnikov systems for N and N ′ so that they have the same set of weights (take, for example, the
union of the two sets of weights). Then, by the proof of Proposition 5.12, we still have a unique
morphism of Postnikov systems. The only thing we lose is the description of the morphisms on
the slices LpY#T

j → T ′j , which indeed requires the square to be cartesian.

We would like to finish this section by establishing a comparison between the spectral sequence
presented here and the Serre spectral sequence associated with a fiber bundle in topology. Recall

400



A Serre-type spectral sequence for motivic cohomology

that in topology, for a fiber sequence

F → E → B

with π1(B) acting trivially on H∗(F ), one has a spectral sequence converging to H∗(E)

Es,t2 = Hs
(
B,Ht(F )

)
=⇒ H∗(E)

called the Serre spectral sequence (see for example [Swi75, Theorem 15.27]).

Analogously, our spectral sequence allows us to somehow reconstruct the cohomology of the
total bisimplicial scheme from the cohomology of the base and of the fiber, provided that the

fiber is motivically cellular. Moreover, the triviality condition on the ω
M(X•,•→Y•,•)
j for any j ⩾ 0

is reminiscent of the topological condition on the triviality of the action of π1(B) on H∗(F ). On
the other hand, the main difference between the two spectral sequences resides in how they are
obtained. In fact, while the topological Serre spectral sequence is classically achieved by filtering
the base, our spectral sequence is instead realized by filtering the fiber.

6. The multiplicative structure

We are now ready to discuss the multiplicative properties of the motivic Serre spectral sequence
constructed in the previous section.

Definition 6.1. A set of bidegrees {(qj)[pj ]}j⩾0, ordered as in Definition 5.5, is called collinear
if piqj = qipj for all i, j ⩾ 0. A motive

⊕
j⩾0 T

j is called collinearly weighted if its set of bidegrees
is collinear.

Note that if A• is a simplicial scheme whose motive is M(A•) ∼=
⊕

j⩾0 T
j , then pj ⩾ qj ⩾ 0

for all j ⩾ 0 (with p0 = q0 = 0). Hence, if M(A•) is collinearly weighted, its set of bidegrees is
contained in a maximal collinear set of type {(qk)[pk]}k⩾0 for some relatively prime p ⩾ q ⩾ 0.

Let π : X•,• → Y•,• be a map satisfying the conditions of Proposition 5.10 with a collinearly
weightedM(A•), and consider the associated diagonal map ∆: X•,• → X•,•×Y•,•X•,•. Note that
the sets of weights of M(A•) and M(A•×A•) are both contained in the same maximal collinear
set.

Now, construct the Postnikov system for N , according to Proposition 5.10, with M(A•) ∼=⊕
k⩾0 T

k, where {(qk)[pk]}k⩾0 is the corresponding maximal collinear set of weights (we are
allowing some Ik to be empty). Then, consider the Postnikov system for N ⊗N parametrized in
the same way, provided by Proposition 5.10, whose slices are given by

(N ⊗N)k/(N ⊗N)k+1 = Cone
(
(N ⊗N)k+1 → (N ⊗N)k

) ∼= ⊕
i+j=k

T i ⊗ T j .

By Remark 5.13, the morphism N → N ⊗N induced by ∆ extends uniquely to a morphism
of Postnikov systems Nk → (N ⊗N)k in DM−

eff(Y•,•, R).

At this point, we would like to produce some Cartan–Eilenberg systems out of these Postnikov
systems in order to study the multiplicative structure of our spectral sequence. The standard
reference for Cartan–Eilenberg systems and the multiplicative structure of spectral sequences is
[Dou59], but in this section, we will mainly refer to [Rog21], where general definitions and full
proofs can be found. We start with some preliminary results.

Remark 6.2. Let M and N be extensions of Tate motives such that the lowest bidegree of the
slices of M is strictly greater than the greatest bidegree of the slices of N (with respect to the
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order in Definition 5.5). Then there are no non-trivial morphisms fromM to N since the motivic
cohomology groups of simplicial schemes are trivial in negative motivic weights and in motivic
weight 0 with negative topological degrees.

Lemma 6.3. For any i ⩽ i′ and j ⩽ j′ satisfying i ⩽ j and i′ ⩽ j′, there exists a unique

η : N i′+1/N j′+1 → N i+1/N j+1

such that the following diagram is commutative:

N i′+1 //

��

N i′+1/N j′+1

η

��
N i+1 // N i+1/N j+1 .

Proof. Consider the diagram

N j′+1 //

��

N i′+1 //

��

N i′+1/N j′+1 //

η

��

N j′+1[1]

��
N j+1 // N i+1 // N i+1/N j+1 // N j+1[1]

obtained by completing the leftmost commutative square to a morphism of distinguished trian-
gles. The map η is uniquely determined since there are no non-trivial morphisms from N j′+1[1]
to N i+1/N j+1 by Remark 6.2.

Lemma 6.4. For any i ⩽ i′ ⩽ i′′ and j ⩽ j′ ⩽ j′′ satisfying i ⩽ j, i′ ⩽ j′ and i′′ ⩽ j′′, the
composite

N i′′+1/N j′′+1 η−→ N i′+1/N j′+1 η−→ N i+1/N j+1

equals η : N i′′+1/N j′′+1 → N i+1/N j+1.

Proof. This follows easily from Lemma 6.3.

For any i ⩽ j ⩽ k, denote by δ the composite N i+1/N j+1 → N j+1[1]→ N j+1/Nk+1[1].

Lemma 6.5. For any i ⩽ i′, j ⩽ j′ and k ⩽ k′ satisfying i ⩽ j ⩽ k and i′ ⩽ j′ ⩽ k′, the diagram

N i′+1/N j′+1 δ //

η

��

N j′+1/Nk′+1[1]

η

��
N i+1/N j+1

δ
// N j+1/Nk+1[1]

is commutative.

Proof. By Lemma 6.3, we have two commutative squares

N i′+1/N j′+1 //

η

��

N j′+1[1] //

��

N j′+1/Nk′+1[1]

η

��
N i+1/N j+1 // N j+1[1] // N j+1/Nk+1[1] ,

where the horizontal composites are both δ by definition.
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Lemma 6.6. For any i, j and k satisfying i ⩽ j ⩽ k, there is a distinguished triangle

N j+1/Nk+1 η−→ N i+1/Nk+1 η−→ N i+1/N j+1 δ−→ N j+1/Nk+1[1] .

Proof. Consider the diagram

N j+1 //

��

N i+1 //

��

N i+1/N j+1 // N j+1[1]

��
N j+1/Nk+1

η
// N i+1/Nk+1 // N i+1/N j+1 // N j+1/Nk+1[1]

obtained by completing the leftmost commutative square to a morphism of distinguished trian-
gles. Then, by Lemma 6.3, the middle bottom horizontal map is also η, while the right bottom
horizontal map is δ by definition.

Proposition 6.7. The motivic cohomology groups

H∗∗(s, t) = H∗∗(N−t+1/N−s+1
)

for all s ⩽ t, together with the homomorphisms η∗ and δ∗ induced by, respectively, η and δ,
constitute a cohomological Cartan–Eilenberg system.

For the notation of cohomological Cartan–Eilenberg system, see [Rog21, Definition 6.1.1].

Proof. The result is a direct consequence of Lemmas 6.4, 6.5 and 6.6.

Our aim now is to produce a pairing of Cartan–Eilenberg systems. To do so, we need some
technical lemmas.

Lemma 6.8. For any i, j and k satisfying i+ j ⩽ k, there exists a unique

f : (N ⊗N)/(N ⊗N)k+1 → N/N i+1 ⊗N/N j+1

such that the following diagram is commutative:

N ⊗N //

��

(N ⊗N)/(N ⊗N)k+1

fttjjjj
jjjj

jjjj
jjjj

N/N i+1 ⊗N/N j+1 .

Proof. The map f exists and is unique since there are no non-trivial morphisms from either
(N ⊗N)k+1 or (N ⊗N)k+1[1] to N/N i+1 ⊗N/N j+1 by Remark 6.2.

From now on, we will denote by η and δ the maps attached to the Postnikov system for N⊗N .

Lemma 6.9. For any i ⩽ i′, j ⩽ j′ and k ⩽ k′ satisfying i+ j ⩽ k and i′ + j′ ⩽ k′, the diagram

(N ⊗N)/(N ⊗N)k
′+1 η //

f
��

(N ⊗N)/(N ⊗N)k+1

f
��

N/N i′+1 ⊗N/N j′+1
η⊗η

// N/N i+1 ⊗N/N j+1

is commutative, and the composites equal f .

Proof. This follows easily from Lemma 6.8.
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Lemma 6.10. For any i ⩽ i′, j ⩽ j′ and k ⩽ k′ satisfying i+ j′ ⩽ k, i′ + j ⩽ k and i′ + j′ ⩽ k′,
there exists a unique

F : (N ⊗N)k+1/(N ⊗N)k
′+1 → N i+1/N i′+1 ⊗N j+1/N j′+1

such that the following diagram is commutative:

(N ⊗N)k+1/(N ⊗N)k
′+1 η //

F
��

(N ⊗N)/(N ⊗N)k
′+1

f
��

N i+1/N i′+1 ⊗N j+1/N j′+1
η⊗η

// N/N i′+1 ⊗N/N j′+1 .

Proof. Let P be the homotopy pushout

N i+1/N i′+1 ⊗N j+1/N j′+1 η⊗id //

id⊗η
��

N/N i′+1 ⊗N j+1/N j′+1

ψ

��
N i+1/N i′+1 ⊗N/N j′+1

ϕ
// P ,

and consider the diagrams

(N ⊗N)/(N ⊗N)k
′+1 η //

f
��

(N ⊗N)/(N ⊗N)k+1 δ //

f
��

(N ⊗N)k+1/(N ⊗N)k
′+1[1]

η //

g

��
N/N i′+1 ⊗N/N j′+1

η⊗η
// N/N i+1 ⊗N/N j+1 // P [1] // ,

(N ⊗N)/(N ⊗N)k
′+1 η //

f
��

(N ⊗N)/(N ⊗N)k+1 δ //

f
��

(N ⊗N)k+1/(N ⊗N)k
′+1[1]

η //

g′

��
N/N i′+1 ⊗N/N j′+1

η⊗id
// N/N i+1 ⊗N/N j′+1

δ⊗id
// N i+1/N i′+1 ⊗N/N j′+1[1]

η⊗id
//

and

(N ⊗N)/(N ⊗N)k
′+1 η //

f
��

(N ⊗N)/(N ⊗N)k+1 δ //

f
��

(N ⊗N)k+1/(N ⊗N)k
′+1[1]

η //

g′′

��
N/N i′+1 ⊗N/N j′+1

id⊗η
// N/N i′+1 ⊗N/N j+1

id⊗δ
// N/N i′+1 ⊗N j+1/N j′+1[1]

id⊗η
//

obtained by completing the leftmost commutative squares to morphisms of distinguished trian-
gles. Note that the maps g, g′ and g′′ are uniquely determined since there are no non-trivial
morphisms from (N ⊗N)k+1/(N ⊗N)k

′+1[1] to any of N/N i+1 ⊗N/N j+1, N/N i+1 ⊗N/N j′+1

and N/N i′+1 ⊗N/N j+1 by Remark 6.2.

Hence, the composite

(N ⊗N)k+1/(N ⊗N)k
′+1

(
g′

g′′

)
−−−−→

(
N i+1/N i′+1 ⊗N/N j′+1

)
⊕
(
N/N i′+1 ⊗N j+1/N j′+1

)
(ϕ,−ψ)−−−−→ P
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is trivial since both ϕg′ and ψg′′ equal g. It follows that there exists a map

F : (N ⊗N)k+1/(N ⊗N)k
′+1 → N i+1/N i′+1 ⊗N j+1/N j′+1

such that the composite
(

id⊗η
η⊗id

)
◦ F equals

(
g′

g′′

)
.

Therefore, we have that

(η ⊗ η) ◦ F = (η ⊗ id) ◦ (id⊗ η) ◦ F = (η ⊗ id) ◦ g′ = f ◦ η .

Let P ′ be the homotopy pullback

P ′ //

��

N/N i′+1 ⊗N/N j+1

η⊗id
��

N/N i+1 ⊗N/N j′+1
id⊗η

// N/N i+1 ⊗N/N j+1 ,

and consider the distinguished triangle

N i+1/N i′+1 ⊗N j+1/N j′+1 η⊗η−−→ N/N i′+1 ⊗N/N j′+1 → P ′ → N i+1/N i′+1 ⊗N j+1/N j′+1[1] .

Since there are no non-trivial morphisms from (N⊗N)k+1/(N⊗N)k
′+1 to P ′[−1] by Remark 6.2,

we conclude that F is uniquely determined.

Proposition 6.11. For any i ⩽ i′, j ⩽ j′, k ⩽ k′, l ⩽ l′, m ⩽ m′ and n ⩽ n′ satisfying i+ j′ ⩽ k,
i′ + j ⩽ k, i′ + j′ ⩽ k′, l +m′ ⩽ n, l′ +m ⩽ n, l′ +m′ ⩽ n′, i ⩽ l, j ⩽ m, k ⩽ n, i′ ⩽ l′, j′ ⩽ m′

and k′ ⩽ n′, the diagram

(N ⊗N)n+1/(N ⊗N)n
′+1 η //

F
��

(N ⊗N)k+1/(N ⊗N)k
′+1

F
��

N l+1/N l′+1 ⊗Nm+1/Nm′+1
η⊗η

// N i+1/N i′+1 ⊗N j+1/N j′+1

is commutative, and the composites equal F .

Proof. This follows easily from Lemma 6.10.

Proposition 6.12. For any i, j and r ⩾ 1, the diagonal composite in the diagram

(N⊗N)i+j−r/(N⊗N)i+j−r+1 F //

F

��

δ

++VVVV
VVVVV

VVVVV
VVVVV

N i/N i+1⊗N j−r/N j−r+1

η⊗δ

��

(N⊗N)i+j−r+1/(N⊗N)i+j+1[1]

F

++VVVV
VVVVV

VVVVV
VVVVV

N i−r/N i−r+1⊗N j/N j+1
δ⊗η

//N i−r+1/N i+1⊗N j−r+1/N j+1[1]

equals the sum of the two outer composites.
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Proof. Let P ′ be the homotopy pullback

P ′ ψ′
//

ϕ′

��

N i−r/N i−r+1 ⊗N j−r/N j+1

id⊗η
��

N i−r/N i+1 ⊗N j−r/N j−r+1
η⊗id
// N i−r/N i−r+1 ⊗N j−r/N j−r+1 ,

and consider the distinguished triangle

N i−r+1/N i+1 ⊗N j−r+1/N j+1 η⊗η−−→ N i−r/N i+1 ⊗N j−r/N j+1 → P ′

∂−→ N i−r+1/N i+1 ⊗N j−r+1/N j+1[1] .

Then, the commutative square

(N ⊗N)i+j−r+1/(N ⊗N)i+j+1 η //

F
��

(N ⊗N)i+j−r/(N ⊗N)i+j+1

F
��

N i−r+1/N i+1 ⊗N j−r+1/N j+1
η⊗η

// N i−r/N i+1 ⊗N j−r/N j+1

induces a unique map G : (N ⊗N)i+j−r/(N ⊗N)i+j−r+1 → P ′ on the cones since there are no
non-trivial morphisms from (N ⊗N)i+j−r+1/(N ⊗N)i+j+1[1] to P ′ by Remark 6.2.

Note that the map

(
N i/N i+1⊗N j−r/N j−r+1

)
⊕
(
N i−r/N i−r+1⊗N j/N j+1

) (
η⊗id
id⊗η

)
−−−−−→ N i−r/N i−r+1⊗N j−r/N j−r+1

factoring through
(
N i−r/N i+1 ⊗ N j−r/N j−r+1

)
⊕

(
N i−r/N i−r+1 ⊗ N j−r/N j+1

)
is trivial by

Remark 6.2. Hence, there exists a unique

(α, β) :
(
N i/N i+1 ⊗N j−r/N j−r+1

)
⊕
(
N i−r/N i−r+1 ⊗N j/N j+1

)
→ P ′

such that
(
ϕ′

ψ′

)
◦ (α, β) =

(
η⊗id 0
0 id⊗η

)
. For a similar reason, there exists a unique map G′ :

(N ⊗ N)i+j−r/(N ⊗ N)i+j−r+1 → P ′ such that
(
ϕ′

ψ′

)
◦ G′ =

(
F
F

)
. Since

(
ϕ′

ψ′

)
◦ G =

(
F
F

)
and(

ϕ′

ψ′

)
◦ (α, β) ◦

(
F
F

)
=

(
F
F

)
, it follows that G = (α, β) ◦

(
F
F

)
.

Therefore, we deduce that

F ◦ δ = ∂ ◦G = ∂ ◦ (α, β) ◦
(
F
F

)
.

At this point, we only need to identify ∂ ◦ (α, β) with (η ⊗ δ, δ ⊗ η).
Note that the commutative square

N i/N i+1 ⊗N j−r+1/N j+1 id⊗η //

η⊗id
��

N i/N i+1 ⊗N j−r/N j+1

η⊗id
��

N i−r+1/N i+1 ⊗N j−r+1/N j+1
η⊗η

// N i−r/N i+1 ⊗N j−r/N j+1

induces a unique map α′ : N i/N i+1 ⊗ N j−r/N j−r+1 → P ′ on the cones since there are no non-
trivial morphisms from N i/N i+1 ⊗N j−r+1/N j+1[1] to P ′ by Remark 6.2. For the same reason,
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we have a unique map β′ : N i−r/N i−r+1⊗N j/N j+1 → P ′, and ∂ ◦ (α′, β′) = (η⊗δ, δ⊗η). On the

other hand,
(
ϕ′

ψ′

)
◦ (α′, β′) =

(
η⊗id 0
0 id⊗η

)
, hence (α′, β′) = (α, β). This completes the proof.

Theorem 6.13. Let π : X•,• → Y•,• be a smooth coherent morphism satisfying all conditions
of Proposition 5.10 with a collinearly weighted M(A•). Then, the spectral sequence induced by
the Postnikov system parametrized with the corresponding maximal collinear set of weights is
multiplicative; that is, there are products ·r : Eir ⊗ E

j
r → Ei+jr such that

di+jr (a ·r b) = dir(a) ·r b+ (−1)|a|a ·r djr(b) ,

where a and b are classes in Eir and E
j
r , respectively, and |a| is the topological degree of a.

Proof. For all r ⩾ 1, denote by Φ the composite

N i+j−r+1/N i+j+1 → (N ⊗N)i+j−r+1/(N ⊗N)i+j+1 F−→ N i−r+1/N i+1 ⊗N j−r+1/N j+1 .

By Propositions 6.11 and 6.12, the induced morphisms in motivic cohomology Φ∗ provide us
with a pairing of Cartan–Eilenberg systems µ : ((H∗∗, η∗, δ∗), (H∗∗, η∗, δ∗)) → (H∗∗, η∗, δ∗); see
[Rog21, Definition 6.2.1]. Then, the result follows from [Rog21, Theorem 6.2.3].

7. The case of BPGLn

In this section, we want to apply the spectral sequence of Theorem 5.11 to approach the com-
putation of the motivic cohomology of the Nisnevich classifying space of PGLn. From now on,
we assume that the base field k has characteristic not dividing n.

First, we recall a few definitions. For a simplicial algebraic group G•, denote by EG• the
weakly contractible bisimplicial scheme defined by

(EG•)i,h = Gi+1
h

with face and degeneracy maps given, respectively, by partial projections and partial diagonals
along i and by the appropriate power of face and degeneracy maps of G• along h. Note that EG•
has a right free G•-action. Denote by BG• the bisimplicial scheme obtained as a quotient of EG•
by this action. On each simplicial component, BG• looks like

(BG•)i,h = Gih .

By abuse of notation, we also denote by EG• and BG• the diagonals of the respective bisimplicial
schemes.

Definition 7.1 ([MV99, Example 1.11]). The simplicial scheme BG• is called the Nisnevich
classifying space of G•.

Remark 7.2. Note that the map of bisimplicial schemes EG• → BG• is smooth coherent and
that over the 0th simplicial component, it is the projection G• → Spec(k). This is the reason why
we need to work with bisimplicial models. Indeed, these maps provide a rich source of examples
where it is possible to apply the spectral sequence in Theorem 5.11. In fact, if G is a commutative
algebraic group, then for any n ⩾ 1, there are simplicial commutative algebraic groups BnG,
each of which is the (diagonal of the) classifying space of the previous one. So, we get coherent
morphisms of bisimplicial schemes EBnG → Bn+1G with fiber BnG. In particular, if G = Gm,
then BnG is a motivic Eilenberg–MacLane space K(Z, n + 1, 1), and we know from [Voe10b]
that their motives are cellular, that is, direct sums of Tate motives. Hence, we get Serre spectral
sequences for the motivic cohomology of Eilenberg–MacLane spaces of this type.
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From the short exact sequence of algebraic groups

1→ Gm → GLn → PGLn → 1 , (7.1)

one gets the fiber sequence

BGm → BGLn → BPGLn .

For our purposes, consider EBGm×BGLn and (EBGm×BGLn)/BGm as bisimplicial models
for BGLn and BPGLn, respectively (see [Jar15, Example 9.11]). The smooth coherent morphisms
of bisimplicial schemes

EBGm×BGLn → (EBGm×BGLn)/BGm

and

EBGm → BBGm

are both trivial projections over the 0th simplicial component with fiber BGm. Hence, we get
a cartesian square of bisimplicial schemes

EBGm×BGLn //

��

(EBGm×BGLn)/BGm

��
EBGm

// BBGm .

(7.2)

Recall from [MV99, Proposition 3.7] that BGm is A1-homotopy equivalent to P∞, whose
motive is cellular. Indeed, we have that M(P∞) ∼=

⊕∞
j=0 T (j)[2j]. Therefore, we can apply the

spectral sequence constructed in Theorem 5.11 to the BPGLn case, which leads to the following
result.

Theorem 7.3. There exists a strongly convergent spectral sequence

Ep,q,s1 = Hp−2s,q−s(BPGLn) =⇒ Hp,q(BGLn)

with differentials dp,q,sr : Ep,q,sr → Ep+1,q,s−r
r . Moreover, the differential

dp,q,s1 : Hp−2s,q−s(BPGLn)→ Hp−2s+3,q−s+1(BPGLn)

is the multiplication by s · d2,1,11 (1).

Proof. Applying Theorem 5.11 to the map EBGm×BGLn → (EBGm×BGLn)/BGm gives the
strongly convergent spectral sequence. The description of the first differential follows easily by
induction on s. In fact, suppose d2s−2,s−1,s−1

1 (1) = (s − 1) · d2,1,11 (1). Then from Theorem 6.13,
we deduce that

d2s,s,s1 (1) = d2s−2,s−1,s−1
1 (1) + d2,1,11 (1) = s · d2,1,11 (1) ,

which concludes the proof.

Since the motivic cohomology of BGLn is known, that is, H∗∗(BGLn) ∼= H∗∗(k)[c1, . . . , cn],
we can “reverse engineer” the previous spectral sequence in order to obtain information about
the motivic cohomology of BPGLn.

Before proceeding, recall that the Chern class ci is in bidegree (i)[2i] for any i, so we have
that Hp,q(BGLn) ∼= 0 for p > 2q.

Corollary 7.4. For all p ⩾ 3q + 1, we have that Hp,q(BPGLn) ∼= 0.
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Proof. We proceed by induction on q. For q = 0, it follows from an easy inspection of the spectral
sequence that Hp,0(BPGLn) ∼= Hp,0(BGLn) ∼= 0 for all p ⩾ 1, which provides the base case.

Now, suppose that the statement holds for all motivic weights less than q. The E1-page of
the spectral sequence is

Ep,q,s1 = Hp−2s,q−s(BPGLn) .

Consider p ⩾ 3q + 1; then p − 2s ⩾ 3q + 1 − 2s ⩾ 3(q − s) + 1. Hence, by the induction
hypothesis, Ep,q,s1

∼= 0 for all s ⩾ 1. It follows that the only piece of the spectral sequence that

contributes to Hp,q(BGLn) ∼= 0 for p ⩾ 3q + 1 comes from Ep,q,01 = Hp,q(BPGLn). But the

differentials dr : E
p−1,q,r
r → Ep,q,0r are all trivial since Ep−1,q,r

1
∼= Hp−1−2r,q−r(BPGLn) ∼= 0 as

p− 1− 2r ⩾ 3q − 2r ⩾ 3(q − r) + 1.

Therefore,Hp,q(BGLn) ∼= Ep,q,0∞ ∼= Hp,q(BPGLn) for p ⩾ 3q+1. This concludes the proof.

Recall from [Jar15, Example 9.11] that BBGm is the Eilenberg–MacLane space K(Gm, 2), so
by adjunction there is a canonical element χ in

H3,1(BBGm) ∼= H2
Nis(BBGm,Gm) ∼= [BBGm, BBGm]

corresponding to the identity BBGm → BBGm (here, by [−,−] we mean hom-sets in Hs(k)).

Lemma 7.5. We have that H3,1(BBGm) ∼= Z; it is generated by χ.

Proof. We can apply Theorem 5.11 to the coherent morphism EBGm→ BBGm with fiber BGm.
Note that for q = 0, the differentials are all trivial, and we get

Hp,0(EBGm) ∼= Ep,0,0∞
∼= Hp,0(BBGm) ,

from which it follows that H0,0(BBGm) ∼= Z and Hp,0(BBGm) ∼= 0 for p ̸= 0.

To compute H3,1(BBGm), since E
3,1,1
1
∼= H1,0(BBGm) ∼= 0, the part of the E1-page we need

consists only of the groups E3,1,0
1
∼= H3,1(BBGm) and E

2,1,1
1
∼= H0,0(BBGm) ∼= Z linked by the

differential d2,1,11 : H0,0(BBGm) ∼= Z→ H3,1(BBGm). Hence, we obtain

0 ∼= H3,1(EBGm) ∼= E3,1,0
∞
∼= H3,1(BBGm)/ im

(
d2,1,11

)
,

E2,1,0
∞
∼= H2,1(BBGm)

and

E2,1,1
∞
∼= ker

(
d2,1,11

)
.

Therefore, from the short exact sequence

0→ E2,1,0
∞ → H2,1(EBGm) ∼= 0→ E2,1,1

∞ → 0 ,

one gets that d2,1,11 is an isomorphism, which completes the proof.

The right vertical map in (7.2) induces in Hs(k) a class of [BPGLn, BBGm] ∼= H3,1(BPGLn)
that classifies the central extension (7.1) (see [Rol18, Theorem 1.2]). Denote this canonical el-
ement by x. Note that x is nothing but the image of χ under the induced homomorphism
H3,1(BBGm)→ H3,1(BPGLn).
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Theorem 7.6. In motivic weights 0, 1 and 2, the following isomorphisms hold:

Hp,0(BPGLn) ∼=

{
Z , p = 0 ,

0 , otherwise ;

Hp,1(BPGLn) ∼=


k∗ , p = 1 ,

Z /n · x , p = 3 ,

0 , otherwise ;

Hp,2(BPGLn) ∼=



Hp,2(k) , p ⩽ 2 ,

µn(k) , p = 3 ,

k∗/n · x⊕ Z , p = 4 ,

Z /2 · x2 , p = 6 and n even ,

0 , otherwise .

Proof. The result follows from the spectral sequence in Theorem 7.3.

Let us start with the case q = 0. Then, the only possibly non-trivial groups in the E1-page
are Ep,0,01

∼= Hp,0(BPGLn) for p ⩾ 0. In this case, the differentials are all trivial, and we get

Hp,0(BGLn) ∼= Ep,0,0∞
∼= Hp,0(BPGLn) ,

from which the motivic weight 0 case follows.

For the case q = 1, the non-trivial part of the E1-page possibly consists of the groups Ep,1,01
∼=

Hp,1(BPGLn) for p ⩾ 1 and E2,1,1
1
∼= H0,0(BPGLn) ∼= Z. There is only one non-zero differential

d2,1,11 : H0,0(BPGLn) ∼= Z→ H3,1(BPGLn). Hence, we obtain

Hp,1(BGLn) ∼= Ep,1,0∞
∼= Hp,1(BPGLn)

for p ̸= 2, 3,

0 ∼= H3,1(BGLn) ∼= E3,1,0
∞
∼= H3,1(BPGLn)/ im

(
d2,1,11

)
,

E2,1,0
∞
∼= H2,1(BPGLn)

and

E2,1,1
∞
∼= ker

(
d2,1,11

)
.

Therefore, from the short exact sequence

0→ E2,1,0
∞ → H2,1(BGLn)→ E2,1,1

∞ → 0 ,

one gets the exact sequence

0→ H2,1(BPGLn)→ Z→ Z
d2,1,11−−−→ H3,1(BPGLn)→ 0 .

At this point, we only need to understand the homomorphism Z→ Z in the middle. Note that this
is just the homomorphismH2,1(BGLn)→ H2,1

(
N1

)
induced by the Postnikov system generating

the spectral sequence. Recall that H2,1(BGLn) is generated by the first Chern class c1 while
H2,1(N1) ∼= H2,1(BGm) is generated by the Chern class c. Since the map BGm → BGLn factors
through (BGm)

n, the homomorphism Z → Z maps c1 to nc. It follows that H2,1(BPGLn) ∼= 0
and H3,1(BPGLn) ∼= Z /n is generated by x = d2,1,11 (1), by Lemma 7.5 and the functoriality of
the spectral sequence.

For the case q = 2, we have Ep,2,01
∼= Hp,2(BPGLn), E

3,2,1
1

∼= H1,1(BPGLn) ∼= k∗, E5,2,1
1

∼=
H3,1(BPGLn) ∼= Z /n and E4,2,2

1
∼= H0,0(BPGLn) ∼= Z. The possibly non-trivial differentials on
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the E1-page are d4,2,21 , d3,2,11 and d5,2,11 . Note that, by Theorem 7.3, the differential d4,2,21 is the

multiplication by 2x, and d5,2,11 is surjective since H6,2(BGLn) is trivial.

From the short exact sequence

0→ E5,2,0
∞ → H5,2(BGLn)→ E5,2,1

∞ → 0

and the identity H5,2(BGLn) ∼= 0, we get that both E5,2,0
∞ ∼= H5,2(BPGLn)/ im

(
d4,2,22

)
and

E5,2,1
∞ ∼= ker

(
d5,2,11

)
/ im

(
d4,2,21

)
are trivial. In particular, d4,2,22 is surjective, and the complex

H0,0(BPGLn)
·2x−−→ H3,1(BPGLn)

·x−→ H6,2(BPGLn)→ 0

is exact. The first homomorphism of this complex is Z ·2−→ Z /n. Hence, when n is odd, it is surjec-
tive andH6,2(BPGLn) ∼= 0, while, when n is even, its image is Z /(n/2) andH6,2(BPGLn) ∼= Z /2
is generated by x2.

From the short exact sequence

0→ E3,2,0
∞ → H3,2(BGLn)→ E3,2,1

∞ → 0

and the fact that c1 is mapped to nc via H2,1(BGLn)→ H2,1
(
N1

)
, we get the exact sequence

0→ H3,2(BPGLn)→ k∗
·n−→ k∗ → k∗/n→ 0 ,

where the homomorphism in the middle can be identified with H3,2(BGLn)→ H3,2
(
N1

)
. Hence,

H3,2(BPGLn) ∼= µn(k).

Finally, from the short exact sequence

0→ E4,2,0
∞ → H4,2(BGLn)→ E4,2,2

∞ → 0 ,

we get the exact sequence

0→ H4,2(BPGLn)/ im
(
d3,2,11

)
→ Z⊕Z→ E4,2,2

∞ → 0 .

Note that E4,2,2
∞ is a subgroup of H4,2

(
N2

) ∼= Z. The latter is generated by c2, and the ho-

momorphism H4,2(BGLn) → E4,2,2
∞ maps c21 to n2c2 and c2 to 1

2n(n − 1)c2. At this point, we

want to prove that d4,2,22 is trivial. To this end, it is enough to prove that the homomorphism
H4,2(BGLn)→ H4,2

(
N1

)
is surjective. First, note that since H2,1(BPGLn) ∼= 0, the homomor-

phism H4,2
(
N1

)
→ H4,2

(
N2

)
induced by the Postnikov system is injective. Hence, we get an

exact sequence

0→ H4,2
(
N1

) ∼= Z→ H4,2
(
N2

) ∼= Z ·2−→ H3,1(BPGLn) ∼= Z /n

from which it follows that H4,2
(
N1

) ∼= Z is generated by an element z mapping to nc2 if n is odd
and to 1

2nc
2 if n is even, in H4,2

(
N2

)
. But c21− 2c2 in H4,2(BGLn) maps to nc2 in H4,2

(
N2

)
if n

is odd, while 1
2nc

2
1− (n+1)c2 maps to 1

2nc
2 if n is even. Therefore, d4,2,22 is trivial and surjective,

so H5,2(BPGLn) ∼= 0. It immediately follows that H4,2(BPGLn) ∼= k∗/n · x ⊕ Z, where the
generator of Z maps to (n − 1)c21 − 2nc2 if n is even and to 1

2(n − 1)c21 − nc2 if n is odd. This
concludes the proof.

The next result tells us that, as expected, the interesting part of H∗∗(BPGLn) is n-torsion.

Proposition 7.7. There are isomorphisms of H∗∗(k,Z[1/n])-algebras

H∗∗(BPGLn,Z
[
1
n

]) ∼= H∗∗(BSLn,Z
[
1
n

]) ∼= H∗∗(k,Z [
1
n

])
[c2, . . . , cn] .
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Proof. The second isomorphism is well known (already with Z-coefficients), so we only need to
show the first one.

Since the standard morphism GLn → PGLn is a Gm-torsor, we have a cartesian square

GLn×Gm
π //

α

��

GLn

��
GLn // PGLn ,

where π is the projection and α is the Gm-action. The latter in turn induces a cartesian square

SLn×Gm
π //

α̃
��

SLn

��
GLn // PGLn ,

where the morphism SLn → PGLn (factoring through GLn) is the usual µn-torsor.

Note that α̃ induces a homomorphism on the motivic cohomology of the respective classifying
spaces H∗∗(BGLn) → H∗∗(BSLn) ⊗H∗∗(k) H

∗∗(BGm) that maps the total Chern class c•(t) =∑n
i=0 cit

n−i to c•(t+ c). Hence, we get an isomorphism

Bα̃∗ : H∗∗(BGLn,Z
[
1
n

]) ∼= H∗∗(BSLn,Z
[
1
n

])
⊗H∗∗(k,Z[ 1

n
]) H

∗∗(BGm,Z
[
1
n

])
.

Now we want to prove by induction on the motivic weight that the homomorphism

H∗∗(BPGLn,Z
[
1
n

])
→ H∗∗(BSLn,Z

[
1
n

])
is an isomorphism. We use the functoriality of the Postnikov systems provided by Proposi-
tion 5.12. For q = 0 and all p, our spectral sequence implies that

Hp,0
(
BPGLn,Z

[
1
n

]) ∼= Hp,0
(
BGLn,Z

[
1
n

]) ∼= Hp,0
(
BSLn,Z

[
1
n

])
,

which provides the base case. Suppose that Hp,q′(BPGLn,Z[1/n]) ∼= Hp,q′(BSLn,Z[1/n]) for all
q′ < q and all p. Since both Hp,q(BPGLn,Z[1/n]) and Hp,q(BSLn,Z[1/n]) can be reconstructed,
respectively, from compatible extensions of Hp,q′(BPGLn,Z[1/n]) and Hp,q′(BSLn,Z[1/n]) for
q′ < q and Hp,q(BGLn,Z[1/n]), the five lemma implies that

Hp,q
(
BPGLn,Z

[
1
n

])
→ Hp,q

(
BSLn,Z

[
1
n

])
is an isomorphism. That is what we aimed to show.

8. The motive of a Severi–Brauer variety

The purpose of this section is to apply previous results to obtain a description of the motive of
a Severi–Brauer variety.

Let A be a central simple algebra of degree n and Č(SB(A)) be the Čech simplicial scheme of
the Severi–Brauer variety SB(A); that is, Č(SB(A))n = SB(A)n+1 with face and degeneracy maps
given by, respectively, partial projections and diagonals. Moreover, denote by XA the motive of
Č(SB(A)) in DM−

eff(k) and by XA the PGLn-torsor associated with A; that is, XA = Iso{A ↔
Mn(k)}.

Remark 8.1. Since XA is a form of PGLn, the scheme XA/P is a Severi–Brauer variety for A;
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that is,

SB(A) ∼= XA/P ,

where P is the parabolic subgroup of PGLn that stabilizes the point [0, . . . , 0, 1] in Pn−1. Simi-
larly, let P̃ be the parabolic subgroup of GLn that stabilizes [0, . . . , 0, 1]. Then, we have a cartesian
square

P̃ //

��

P

��
GLn // PGLn ,

where the top horizontal map is a split Gm-torsor since P̃ and P can, respectively, be identified
with An−1 ⋊ (GLn−1×Gm) and A

n−1 ⋊GLn−1. It follows that the inclusion P ↪→ PGLn factors
through GLn, so that we have a sequence of maps

GLn−1 → P → GLn → PGLn ,

where the first morphism is an A1-weak equivalence and the composition of the first two maps
is the inclusion GLn−1 ↪→ GLn. In particular, the restriction H2,1(BGLn) → H2,1(BP ) ∼=
H2,1(BGLn−1) is an isomorphism. Therefore, we can consider the following diagram of long
exact sequences:

H2,1(BPGLn) ∼= 0 // H2,1(BGLn) //

∼=
��

H2,1
(
N
)

//

��

H3,1(BPGLn) // H3,1(BGLn) ∼= 0

��
H2,1(BPGLn) ∼= 0 // H2,1(BP ) // H2,1(N) // H3,1(BPGLn) // H3,1(BP ) ∼= 0 ,

where N is Cone(M(BGLn → BPGLn) → T )[−1] and N is Cone(M(BP → BPGLn) →
T )[−1] in DM−

eff(BPGLn). By the five lemma, the homomorphism H2,1(N) → H2,1(N) is an
isomorphism, which means that the class x in H3,1(BPGLn) is the image of a generator of
H2,1(N) ∼= Z.

Let us denote ker
(
Hp

ét

(
k, µ⊗p−1

n

)
→ Hp

ét

(
k(SB(A)), µ⊗p−1

n

))
simply by kerp. Also, in the fol-

lowing results, we denote the étale motivic cohomology by H∗∗
ét (−). So, in particular, we have

that

Hp,q
ét (−,Z /n) ∼= Hp

ét

(
−, µ⊗qn

)
.

Proposition 8.2. We have the following isomorphisms:

Hp,q(XA) ∼= Hp,q(k)

for all p ⩽ q. Moreover,

Hp,p−1(XA) ∼= 0 and Hp+1,p−1(XA) ∼= kerp

for all p.

Proof. By the Bloch–Kato conjecture (see [Voe11, Theorems 6.16, 6.17 and 6.18]), one has that
Hp,q(XA) ∼= Hp,q

ét (XA) and Hp,q(k) ∼= Hp,q
ét (k) for p ⩽ q + 1. Since Hp,q

ét (XA) ∼= Hp,q
ét (k), we get

the first two isomorphisms of the statement.

Regarding the last one, again by the Bloch–Kato conjecture, we have that

Hp,p−1(XA,Z /n) ∼= kerp
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(see [Voe11, Remark 5.3]). The short exact sequence

0→ Z ·n−→ Z→ Z /n→ 0

induces a long exact sequence in motivic cohomology

· · · → Hp,p−1(XA)→ Hp,p−1(XA,Z /n)→ Hp+1,p−1(XA)
·n−→ Hp+1,p−1(XA)→ · · · .

Therefore, since Hp,q(XA) is n-torsion for p ⩾ q + 1 and Hp,p−1(XA) ∼= 0, we obtain

Hp,p−1(XA,Z /n) ∼= Hp+1,p−1(XA) .

This concludes the proof.

Recall from [SV14, Section 2.3.11 and Proposition 2.3.14] that in Hs(k),

Č(SB(A)) ∼= (XA × EPGLn)/PGLn .

Thus, there is a natural homomorphism α∗
A : H

∗∗(BPGLn) → H∗∗(XA) induced by the map
αA : (XA × EPGLn)/PGLn → BPGLn.

Proposition 8.3. We have that α∗
A(x) = [A], where x is the canonical class in H3,1(BPGLn)

from Theorem 7.6 and [A] is the Brauer class of A in H3,1(XA) ∼= ker2.

Proof. First note that since H3,1(BPGLn) and H3,1(XA) are both n-torsion, they are, respec-
tively, isomorphic to H2,1(BPGLn,Z /n) and H2,1(XA,Z /n).

The change of topology from Nisnevich to étale gives a commutative square

H2,1(BPGLn,Z /n) //

��

H2,1
ét (BPGLn,Z /n) ∼= H2

ét(BPGLn, µn)

��
H2,1(XA,Z /n) ∼= ker2 // H2,1

ét (XA,Z /n) ∼= H2
ét(k, µn) ,

where the bottom horizontal morphism is the inclusion of ker2 in the Brauer group of k. By
[Rol18, Theorem 1.2], the right vertical morphism maps the central extension

1→ µn → SLn → PGLn → 1

(that is the image of x under the top horizontal homomorphism; see Lemma 9.1 below for more
details) to the class [A] in the Brauer group. Hence, we deduce that the left vertical morphism
does the same, as we aimed to show.

Proposition 8.4. There exists a Postnikov system in DM−
eff(k)

XA(n− 1)[2n− 2] //Mn−2 //

��

· · · //M2 //

��

M1 //

��

M(SB(A))

��
XA(n− 2)[2n− 4]

[1]

iiSSSSSSSSSSSSSSS
XA(2)[4]

[1]

bbFFFFFFFFF

XA(1)[2]

[1]

eeKKKKKKKKKKK

XA ,

[1]

ffMMMMMMMMMMMM

where the composition XA →M1[1]→ XA(1)[3] is the class [A] in H3,1(XA).

Proof. First, note that the projection to the second factor (EPGLn×EP )/P → EP/P has
contractible fiber EPGLn over each simplicial component, so it is an isomorphism in Hs(k). On
the other hand, the projection to the first factor (EPGLn×EP )/P → EPGLn /P is also an
isomorphism in Hs(k) since the P -torsor PGLn → PGLn /P ∼= Pn−1 is Zariski-locally trivial. So,
we can fix EPGLn /P as a simplicial model for BP and apply Proposition 5.10 to the coherent
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morphism EPGLn /P → EPGLn /PGLn with fiber Pn−1. This way we obtain a Postnikov
system for the motive of BP → BPGLn in DM−

eff(BPGLn)

T (n− 1)[2n− 2] // Nn−2 //

��

· · · // N2 //

��

N1 //

��

M(BP → BPGLn)

��
T (n− 2)[2n− 4]

[1]

iiRRRRRRRRRRRRRR
T (2)[4]

[1]

aaCCCCCCCCC

T (1)[2]

[1]

ccHHHHHHHHHH

T ,

[1]

ggPPPPPPPPPPPPPPP

where the composition T → N1[1]→ T (1)[3] is x by Remark 8.1.

Note that there is a cartesian square

(XA × EPGLn)/P //

��

(XA × EPGLn)/PGLn

��
EPGLn /P // EPGLn /PGLn .

Since the P -torsor XA → XA/P is Zariski-locally trivial, we have a sequence of isomorphisms
in Hs(k)

(XA × EPGLn)/P ← (XA × EP )/P ∼= Č(XA → XA/P )→ XA/P ∼= SB(A) .

Therefore, by restricting the previous Postnikov system forM(BP → BPGLn) along the functor
DM−

eff(BPGLn) → DM−
eff

(
Č(SB(A))

)
and by applying the forgetful functor to DM−

eff(k), one
obtains the needed Postnikov system for the motive of SB(A). Then, Proposition 5.12 applied to
the cartesian square above and Proposition 8.3 guarantee that the composition XA →M1[1]→
XA(1)[3] is the class [A] in H3,1(XA).

Theorem 8.5. There exists a strongly convergent spectral sequence

Ep,q,s1 =

{
Hp−2s,q−s(XA) , 0 ⩽ s ⩽ n− 1 ,

0 , otherwise
=⇒ Hp,q(SB(A))

with differentials dp,q,sr : Ep,q,sr → Ep+1,q,s−r
r . Moreover, the differential

dp,q,s1 : Hp−2s,q−s(XA)→ Hp−2s+3,q−s+1(XA)

is the multiplication by s[A] for 1 ⩽ s ⩽ n− 1.

Proof. The spectral sequence is obtained by applying motivic cohomology to the Postnikov
system in Proposition 8.4. The first differential is computed by using the same arguments as in
the proof of Theorem 7.3.

Corollary 8.6. For all p ⩾ 3q + 1, we have that Hp.q(XA) ∼= 0.

Proof. The proof is the same as that of Corollary 7.4.

As an immediate consequence of the spectral sequence for the Severi–Brauer variety, we obtain
a description of the Chow group CH2(SB(A)).

Proposition 8.7. There is a short exact sequence

0→ coker
(
k∗

·[A]−−→ ker3
)
→ CH2(SB(A))→ Z→ 0 .

Proof. We use the spectral sequence of Theorem 8.5. In this case, the E1-page is given by

E4,2,0
1
∼= H4,2(XA) ∼= ker3 , E4,2,1

1
∼= H2,1(XA) ∼= 0 , E4,2,2

1
∼= H0,0(XA) ∼= Z .
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To compute the E2-page, we also need

E3,2,1
1
∼= H1,1(XA) ∼= k∗ , E5,2,1

1
∼= H3,1(XA) ∼= ker2 .

Note that E4,2,2
2 is the kernel of the differential d4,2,21 : E4,2,2

1 → E5,2,1
1 , that is,

E4,2,2
2
∼= ker(Z ·2[A]−−−→ ker2) ∼= Z ,

while E4,2,0
2 is the cokernel of d3,2,11 : E3,2,1

1 → E4,2,0
1 , that is, the cokernel of the homomorphism

k∗
·[A]−−→ ker3. Since E

5,2,0
2

∼= E5,2,0
1

∼= H5,2(XA) is n-torsion, we have that E4,2,2
∞ ∼= E4,2,2

3
∼= Z.

Moreover, E4,2,0
∞ ∼= E4,2,0

2 and we get a filtration

F 4,2,0 ↪→ F 4,2,1 ↪→ F 4,2,2 ∼= H4,2(SB(A))

such that E4,2,0
∞ ∼= F 4,2,0, E4,2,1

∞ ∼= F 4,2,1/F 4,2,0 and E4,2,2
∞ ∼= F 4,2,2/F 4,2,1. Since E4,2,1

∞ ∼= 0, we
obtain a short exact sequence

0→ E4,2,0
∞ → F 4,2,2 → E4,2,2

∞ → 0

that is exactly the one we aimed to get.

Proposition 8.7 was already obtained by Peyre in [Pey95] using different techniques. We have
reported this new proof anyway as an example of a possible approach to the computation of
Chow groups (and, more generally, motivic cohomology groups) of Severi–Brauer varieties by
means of the spectral sequence in Theorem 8.5. Of course, to get any information on the torsion
of CHi(SB(A)) for i ⩾ 3 by using our spectral sequence, one should first compute the Hp,q(XA)
for p ⩾ q + 3, which are generally unknown, to the best of our knowledge.

9. Torsion classes in H∗∗(BPGLn)

In this section, following [Gu21b] and [Gu20], we find torsion classes in the motivic cohomology
of BPGLn. This also allows us to generalize some results about the Chow groups of BétPGLn
from the complex numbers (see [Gu21b, Theorem 1.1] and [Gu20, Theorem 1]) to more general
fields. Indeed, we only require that the base field k has characteristic not dividing n and contains
a primitive nth root of unity.

First, let n = p be an odd prime, and consider the finite subgroup Cp×µp of PGLp described
in [Vis07, Section 5]. Recall that Cp is the subgroup of the symmetric group Sp ⊂ PGLp generated
by the cycle σ = (1 2 . . . p) and µp is the subgroup of PGLp generated by the diagonal matrix
ρ =

[
ω, . . . , ωp−1, 1

]
, where ω is a primitive pth root of unity. Note that ρσ = ωσρ in GLp, so the

two generators commute in PGLp. The inclusion ι : Cp × µp → PGLp induces a homomorphism
Bι∗ : H∗∗(BPGLp,Z /p)→ H∗∗(B(Cp × µp),Z /p).

Recall from Theorem 7.3 that H2,1(BPGLp) ∼= 0 and H3,1(BPGLp) ∼= Z /p, so the Bockstein
homomorphism B: H2,1(BPGLp,Z /p) → H3,1(BPGLp) is an isomorphism. Let z be the class
in H2,1(BPGLp,Z /p) such that x = B(z). By [Rol18, Theorem 1.1], we know that

H2,1
ét (BPGLp,Z /p) ∼= H2

ét(BPGLp, µp)

is the group of central extensions of PGLp by µp.

Before proceeding, also note that the change of topology homomorphisms

H2,1(−,Z /p)→ H2,1
ét (−,Z /p) and H2,1(−)→ H2,1

ét (−)
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are, respectively, a monomorphism and an isomorphism for all simplicial schemes by [Voe11,
Theorems 6.17 and 6.18].

Lemma 9.1. The change of topology homomorphism H2,1(BPGLp,Z /p)→ H2,1
ét (BPGLp,Z /p)

sends z to the central extension

1→ µp → SLp → PGLp → 1 .

Proof. We have a commutative square

H2,1(BPGLp,Z /p) //

B
��

H2,1
ét (BPGLp,Z /p) ∼= H2

ét(BPGLp, µp)

B
��

H3,1(BPGLp) // H3,1
ét (BPGLp) ∼= H2

ét(BPGLp,Gm) .

Note that H2,1
ét (BPGLp) ∼= H2,1(BPGLp) ∼= 0, so the Bockstein homomorphism on the right is

a monomorphism. Now, the statement immediately follows from the fact that x = B(z) maps to
the central extension

1→ Gm → GLp → PGLp → 1

in H3,1
ét (BPGLp) ∼= H2

ét(BPGLp,Gm).

It follows from [Rol18, Lemma 2.3] that

H∗∗(B(Cp × µp),Z /p) ∼= H∗∗(k)[a, b, u, v]/
(
a2 = b2 = 0

)
with a and b in bidegree (0)[1] and u and v in bidegree (0)[2] such that β(a) = u and β(b) = v
(where β is the reduction mod p of B).

Lemma 9.2. We have that Bι∗(z) = λτab, where λ is a non-zero element in Z /p and τ is the
class in H0,1(k,Z /p) ∼= µp(k) corresponding to the primitive pth root of unity ω.

Proof. Note that Bι∗(z) is the class in H2,1(B(Cp × µp),Z /p) that maps via the change of
topology homomorphism to the central extension

1→ µp → G→ Cp × µp → 1

induced by the one in Lemma 9.1. The class Bι∗(z) is non-zero since this extension is non-split,
but it restricts to a split extension both of Cp and of µp.

For degree reasons, Bι∗(z) has the general form

Bι∗(z) = λτab+ λuτu+ λvτv + {ra}a+ {rb}b ,

where λ, λu and λv are in Z /p and {ra} and {rb} are in KM
1 (k)/p. Since Bι∗(z) restricts

to zero both in H2,1(BCp,Z /p) and in H2,1(Bµp,Z /p), we deduce that λu = λv = 0 and
{ra} = {rb} = 0. Therefore, Bι∗(z) = λτab. This concludes the proof.

Proposition 9.3. There are non-trivial classes zp,k in H
2pk+1+1,pk+1

(BPGLp,Z /p) for all k ⩾ 0.

Proof. For all k ⩾ 0, define classes

zp,k = Pp
k
Pp

k−1 · · ·Pp P1 β(z) ,

where the Pi are the motivic Steenrod pth power operations constructed in [Voe03].
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Since β is a graded derivation [Voe03, (8.1)], we have that β(z) is mapped to λτ(ub− av) by
Bι∗. Now, we want to prove by induction on k that

Bι∗(zp,k) = λτp
k+1(

up
k+1

b− avpk+1)
for any k ⩾ 0. For k = 0, this reduces to

Bι∗(zp,0) = Bι∗
(
P1 β(z)

)
= P1(λτ(ub− av)) = λτp

(
upb− avp

)
,

which follows from [Voe03, Proposition 9.7, Lemmas 9.8 and 9.9]. By the induction hypothesis,

we have Bι∗(zp,k−1) = λτp
k(
up

k
b− avpk

)
; then

Bι∗(zp,k) = Bι∗
(
Pp

k
(zp,k−1)

)
= Pp

k(
λτp

k(
up

k
b− avpk

))
= λτp

k+1(
up

k+1
b− avpk+1)

again by [Voe03, Proposition 9.7, Lemmas 9.8 and 9.9].

Hence, zp,k is non-trivial for all k, which is what we aimed to show.

Proposition 9.4. There are non-trivial p-torsion classes yp,k in H2pk+1+2,pk+1
(BPGLp) for

all k ⩾ 0.

Proof. Define yp,k as B(zp,k), where B: H∗∗(BPGLp,Z /p) → H∗∗(BPGLp) is the Bockstein
homomorphism. Note that the reduction mod p of yp,k is nothing but β(zp,k), which is non-

trivial since it maps to λτp
k+1(

up
k+1

v − uvpk+1)
via Bι∗. This finishes the proof.

Note that the classes z, β(z), zp,k and β(zp,k) are not τ -torsion since their images under Bι∗

are not τ -torsion.

Recall from [MV99] that the étale classifying space BétG is defined as the object Rπ∗π
∗(BG)

in Hs(k), where (π∗,Rπ∗) is the pair of adjoint functors induced by the morphism of sites
π : (Sm /k)ét → (Sm /k)Nis.

Proposition 9.5. There are non-trivial p-torsion classes υp,k in CHp
k+1+1(BétPGLp) for all

k ⩾ 0.

Proof. By [Voe11, Theorem 6.17], we have an isomorphism

H2,2(BétPGLp,Z /p)→ H2,2(BPGLp,Z /p) .

Let ζ be the class in H2,2(BétPGLp,Z /p) lifting τz, and define

υp,k = BPp
k
Pp

k−1 · · ·Pp P1 β(ζ) .

The classes υp,k are non-trivial since their reductions mod p map to τβ(zp,k).

Let p be an odd prime dividing n. Then, the diagonal map ∆: PGLp → PGLn induces
a homomorphism H∗∗(BPGLn) → H∗∗(BPGLp) that maps x to x. Since the classes zp,k, yp,k
and υp,k for BPGLp are constructed starting from β(z) (that is the reduction mod p of x), we
can define classes for BPGLn in the same way. This immediately implies the following result.

Corollary 9.6. For any odd prime p dividing n and k ⩾ 0, there are non-trivial p-torsion
classes

(1) zp,k in H2pk+1+1,pk+1
(BPGLn,Z /p),

(2) yp,k in H2pk+1+2,pk+1
(BPGLn),

(3) υp,k in CHp
k+1+1(BétPGLn).
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