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On K-stability of Fano weighted hypersurfaces
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Abstract

Let X ⊂ P(a0, . . . , an) be a quasi-smooth weighted Fano hypersurface of degree d and
index IX such that ai | d for all i. If IX = 1, we show that, under a suitable condition,
the α-invariant of X is greater than or equal to dimX/(dimX +1) and X is K-stable.
This can be applied in particular to any X as above such that dimX ⩽ 3. If X is
general and IX < dimX, then we show that X is K-stable. We also give a sufficient
condition for the finiteness of automorphism groups of quasi-smooth Fano weighted
complete intersections.

1. Introduction

Let X be a Fano variety with log terminal singularities. The α-invariant of X (also known as
global log canonical threshold) is defined as

α(X) = glct(X) := sup{c ∈ Q | (X, cD) is log canonical for all 0 ⩽ D ∼Q −KX} .

This was introduced by Tian [Tia87] in analytic terms to find a Kähler–Einstein metric on
a Fano manifold (see also [CS08, Appendix]). This is a fundamental invariant of X from many
points of view. It is known that if α(X) > dimX/(dimX + 1), then X is K-stable (see [OS12,
Theorem 1.4]). If X is smooth, then equality is enough; see [Fuj19, Theorem 1.3] (cf. [LZ22]).

In [Puk98, Che01], it is shown that if X ⊂ Pn+1 is a smooth Fano hypersurface of de-
gree n + 1, then α(X) ⩾ n/(n+ 1) and so X is K-stable. (See also [AZ22, AZ23] for recent
progress in the higher-index cases.) A natural case to then consider is that of Fano weighted
hypersurfaces X ⊂ P(a0, . . . , an) of index 1. Del Pezzo surfaces X ⊂ P(a0, . . . , a3) of index 1
have been classified in [JK01b], and the existence of Kähler–Einstein metrics has been deter-
mined (cf. [JK01b, BGN02, Ara02, CPS10, LP22]). Fano threefolds X ⊂ P(a0, . . . , a4) of index 1
have been classified in [JK01a], and the K-stability of the terminal ones is well studied (cf.
[Che08, Che09, KOW18, KOW20]). Very little is known in higher dimension except for [JK01a,
Proposition 3.3], [Zhu20b, Theorem 1.2] and [Zhu20a, Theorem 1.3], to the authors’ knowledge.

The idea of this paper is to generalize the methods introduced in [Puk98] and [Che01, CP02]
to study the α-invariant of weighted Fano hypersurfaces in any dimension. Some consequences
of our work are collected in the following result.
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On K-stability of Fano weighted hypersurfaces

Theorem 1.1. Let X ⊂ P(a0, . . . , an) be a well-formed quasi-smooth weighted hypersurface of
degree d. Assume ai | d for all i and that X is Fano of index 1. Also assume that (at least) one
of the following conditions holds:

(i) The hypersurface X is general.

(ii) We have a2 = · · · = an = 1.

(iii) We have dimX ⩽ 3.

(iv) The hypersurface X is smooth, and dimX ⩽ 49.

Then we have

α(X) ⩾

{
d−2
d if d = 2a, a ⩾ 3 and (up to permutation) P = P(a0, . . . , an−2, 2, a) ,

d−1
d otherwise .

Moreover, X is K-stable and admits a Kähler–Einstein metric.

If in addition ai ⩾ 2 for any i and we are not in the first case above, then α(X) ⩾ 1.

Remark 1.2. Quasi-smooth Fano fourfold hypersurfaces X ⊂ P(a0, . . . , a4) of index 1 are classi-
fied in [BK16]; see [BK02] for a complete list. In this list, there are 661 cases such that ai | d for
all i. Using the same argument as in the proof of Theorem 1.1 when condition (iii) holds, one can
check that all members of 653 such families satisfy the conclusion of Theorem 1.1. See Example
2.4 for more details.

An important point in this approach, which is interesting in itself, is given by the following
question, whose answer is positive in the standard projective space due to [Puk98, Section 3]
(see [Che01, Statement 3.3]).

Question 1.3. LetX ⊂ P(a0, . . . , an) be a quasi-smooth weighted hypersurface of degree d which
is not a linear cone. Let D be an effective divisor on X such that D ∼Q H, where H := OX(1),
and let C be a curve in X. Is it true that

omultC D ⩽ 1 ?

Here omult is the orbifold multiplicity as in [KOW20, Definition 2.1.9] (see Remark 2.7).
A positive answer to Question 1.3 implies that (X,D) is log canonical outside a finite set.
Section 2 is devoted to studying Question 1.3. In particular, in Lemma 2.1, we give an explicit
condition on the equation of X to have a positive answer to such a question. In Section 4, we
then develop a method to compute the log canonical threshold of weighted hypersurfaces. The
final consequence is the following.

Theorem 1.4. Let X ⊂ P(a0, . . . , an) be a well-formed quasi-smooth weighted hypersurface of
degree d. Assume ai | d for all i and that X is Fano of index 1. Assume that Question 1.3 has a
positive answer for X. Then we have

α(X) ⩾

{
d−2
d if d = 2a, a ⩾ 3 and (up to permutation) P = P(a0, . . . , an−2, 2, a) ,

d−1
d otherwise .

Moreover, X is K-stable and admits a Kähler–Einstein metric.

If in addition ai ⩾ 2 for any i and we are not in the first case above, then α(X) ⩾ 1.

We expect that this approach can be applied to several other cases to compute the α-invariant
of Fano weighted complete intersections besides those treated in Theorems 1.1 and 1.4; see for
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instance Example 4.9, where the α-invariant is computed for a hypersurface X2a+1 ⊂ P
(
1(a+2), a

)
(cf. [KOW20, Example 7.2.2]). Further applications would be toward the study of birational
rigidity following [Puk98] and [dFe13, dFe16] (see also [SZ19]).

Finally, in Section 6, we study the K-stability of Fano weighted hypersurfaces of index greater
than 1. In Theorem 6.1, we obtain a criterion of the K-polystability (respectively, K-semistability)
of weighted hypersurfaces of Fermat type by using the argument in [Zhu21, Corollary 4.17]. In
Theorem 6.5, we also give a sufficient condition for the finiteness of automorphism groups of
quasi-smooth weighted complete intersections. This is a generalization of [PS19, Theorem 1.3].
As a consequence, we show the following.

Corollary 1.5. Let X = Xd ⊂ P(a0, . . . , an) be a well-formed quasi-smooth general Fano
weighted hypersurface of degree d such that the Fano index IX := d −

∑n
i=0 ai is less than

dimX and ai | d for all i. Then X is K-stable. In particular, a general smooth Fano weighted
hypersurface is K-stable if it is not isomorphic to the projective space or a quadric hypersurface.

We also exhibit some K-unstable hypersurfaces of Fermat type (Remark 6.3).

The existence of a Kähler–Einstein metric on a Fano orbifold hypersurface is closely related to
the existence of a Sasaki–Einstein metric on the link of the corresponding weighted homogeneous
singularity (cf. [BGK05, BG06, GMSY07, CS19]). In fact, a variant of Theorem 6.1 is used
in [LST22] to construct infinitely many families of Sasaki–Einstein metrics on spheres.

Notation 1.6. We work over the complex number field C.
We define P := P(a0, . . . , an) to be the weighted projective space with weights a0, . . . , an, that

is, P = ProjC[z0, . . . , zn], where zi has weight ai. For simplicity, we assume that P = P(a0, . . . , an)
is well formed unless otherwise stated; that is, the greatest common divisor of any n weights is 1
(although non-well-formed weighted projective spaces appear in the proof of Proposition 4.3).

A closed subvariety X = Xd1,...,dc ⊂ P is said to be a weighted complete intersection of
multidegree (d1, . . . , dc) if its weighted homogenous ideal in C[z0, . . . , zn] is generated by a regular
sequence of homogenous polynomials {fj}cj=1 such that deg fj = dj for j = 1, . . . , c. Let π : An+1\
{0} → P be the natural projection. Then X is quasi-smooth if π−1(X) is smooth. We say that
X is well formed if P is well formed and codimX(X ∩ Sing(P)) ⩾ 2.

Finally, Xd1,...,dc ⊂ P is said to be a linear cone if dj = ai for some i and j. We recall that if P
is well formed and X ⊂ P is a weighted complete intersection of dimension at least 3, then X is
well formed, or it is a linear cone (see [Ian00] for generalities on weighted complete intersections).

We write P
(
b
(k1)
1 , . . . , b

(kl)
l

)
for P(b1, . . . , b1︸ ︷︷ ︸

k1

, . . . , bl, . . . , bl︸ ︷︷ ︸
kl

).

2. A multiplicity lemma

Let X ⊂ P(a0, . . . , an) be a weighted hypersurface of degree d defined by a polynomial F =
F (z0, . . . , zn) ∈ C[z0, . . . , zn]. For i = 0, 1, . . . , n, let

πi : P(a0, . . . , 1, . . . an) =: Pi → P(a0, . . . , an) ;
[x0 : · · · : xi : · · · : xn] 7→ [x0 : · · · : xaii : · · · : xn]

be the finite cover branched along the hyperplane (zi = 0). Also, let π : Pn → P(a0, . . . , an)
defined by [x0 : · · · : xn] 7→ [xa00 : · · · : xann ] be the finite cover which is a composition of the
morphisms π0, . . . , πn.
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Note that Yi := π−1
i (X) ⊂ Pi (respectively, Y := π−1(X) ⊂ Pn) is defined by the polynomial

Gi = Gi(x0, . . . , xn) := F
(
x0, . . . , x

ai
i , . . . , xn

)
∈ C[x0, . . . , xn] (respectively, G(x0, . . . , xn) :=

F (xa00 , . . . , xann )).

Lemma 2.1. Let X ⊂ P(a0, . . . , an) be a quasi-smooth weighted hypersurface of degree d defined
by a polynomial F .

(i) If X is general and ai | d for all i, then Y = π−1(X) ⊂ Pn is smooth.

(ii) Fix an i such that ai > 1 and assume that the following condition holds:

– Let zk00 · · · zknn be a monomial appearing in F with non-zero coefficient such that ki = 1.
Then

ai =
∑

j ̸=i : kj>0

mjaj ,

where the mj are non-negative integers.

Then we can take an automorphism ϕ ∈ AutP such that (ϕ◦πi)−1(X) ⊂ Pi is quasi-smooth.

(iii) Assume that the following condition holds:

⋆ Let zk00 · · · zknn be a monomial appearing in F with non-zero coefficient. If ki = 1 for
some i such that ai > 1, then

ai =
∑

j ̸=i : kj>0

mjaj ,

where the mj are non-negative integers.

Then we can construct π′ := π′
1 ◦ · · · ◦ π′

m : Pn → P(a0, . . . , an) such that π′
1, . . . , π

′
m are

finite covers of the form ϕi ◦ πi, where the ϕi are automorphisms and Y = (π′)−1(X) ⊂ Pn

is smooth.

Proof. (i) This follows from a direct calculation by using that

∂G

∂xi
= aix

ai−1
i

∂F

∂zi

(
xa00 , . . . , xann

)
and that a general F defines a quasi-smooth hypersurface in (zi = 0 | i ∈ I) ⊂ P(a0, . . . , an) for
all I ⊂ {0, 1, . . . , n}.

(ii) Let Zi := (Fz0 = · · · = |Fzi = · · · = Fzn = 0), where Fzj := ∂F
∂zj

for j = 0, . . . , n and

|Fzi means that we skip the term Fzi . Then Zi is zero-dimensional since X is quasi-smooth. If
Zi ∩ (zi = 0) = ∅, then we see that π−1

i (X) = (Gi = 0) ⊂ Pi is quasi-smooth since we compute

∂Gi

∂xi
(Q) = aiq

ai−1
i

∂F

∂zi

(
q0, . . . , q

ai
i , . . . , qn

)
̸= 0

for Q = [q0 : · · · : qn] ∈ π−1
i (Zi).

Hence we may assume Zi ∩ (zi = 0) ̸= ∅. Take P = [p0 : · · · : pn] ∈ Zi ∩ (zi = 0). Note that
Fzi(P ) ̸= 0 by the quasi-smoothness of X. Since

∂
(
zk00 · · · zknn

)
∂zi

(P )

can be non-zero at P only if ki = 1, we have at least one monomial zk00 · · · zknn appearing in F
such that ki = 1 and pj ̸= 0 for any j ̸= i such that kj > 0 (otherwise, we have Fzi(P ) = 0).

Now fix such a monomial zk00 · · · zknn .
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Then we see that (
zi + λ

∏
j ̸=i : kj>0

z
mj

j = 0

)
∩ Zi = ∅

for a general λ ∈ C∗. Now consider the automorphism ϕ ∈ AutP such that

ϕ(zℓ) =

{
zℓ (ℓ ̸= i) ,

zi + λ
∏

j ̸=i : kj>0 z
mj

j (ℓ = i) .

Then we see that (ϕ ◦ πi)−1(X) ⊂ Pi is quasi-smooth, as before.

(iii) Take an i such that ai is a minimum among the weights bigger than 1.

If Zi ∩ (zi = 0) = ∅, then, as in the proof of item (ii), we have that π−1
i (X) = (G = 0) ⊂ Pi

is quasi-smooth, and we can easily check condition (⋆).

If Zi∩(zi = 0) ̸= ∅, then we can take ϕi ∈ AutP such that (ϕi◦πi)−1(X) ⊂ Pi is quasi-smooth
as in the proof of item (ii). Since ai is a minimum, condition (⋆) implies that aj = ai (or aj = 1)

for some j ̸= i such that kj > 0 in the monomial zk00 · · · zknn . The latter case (aj = 1) is easier,
so we consider the former case. Then we can take ϕi(zi) = zi + λzj for a general λ ∈ C∗. We
can check that the equation Gϕ of (ϕ ◦ πi)−1(X) ⊂ Pi satisfies condition(⋆) as follows. Note that
Gϕ(x0, . . . , xn) = Fϕ

(
x0, . . . , x

ai
i , . . . , xn

)
, where Fϕ(z0, . . . , zn) := F (z0, . . . , ϕ(zi), . . . , zn). Also

note that

Fϕ(z0, . . . , zn) =
∑

cT z
t0
0 · · · (zi + λzj)

ti · · · ztnn ;

thus new monomials to consider are of the form c · zt00 · · ·
(
zti−1
i zj

)
· · · ztnn for j such that aj = ai.

Hence Fϕ satisfies condition (⋆), and we can check that Gϕ also satisfies condition (⋆).

Repeating this argument a finite number of times, we obtain a smooth cover Y as in the
statement.

Lemma 2.2. Let a0, a1, a2 be positive integers such that ai ̸= mjaj+mkak for {i, j, k} = {0, 1, 2}
and non-negative integers mj , mk. If gcd(ai, aj) = 1 for any i ̸= j, then

a0a1a2 − a0 − a1 − a2 ⩾ 48 .

Proof. Write 1 < a0 < a1 < a2 (equalities are not possible by assumption). Note that a0 ⩾ 3.
Indeed, if a0 = 2, then a1 and a2 are both odd, but then there exists a positive integer m0 such
that a2 = a1 +m0a0. The smallest a0a1a2 − a0 − a1 − a2 is now given by (a0, a1, a2) = (3, 4, 5);
it is 48.

Lemma 2.3. Let X ⊂ P(a0, . . . , an) be a well-formed quasi-smooth weighted hypersurface of
degree d. Assume ai | d for all i. Assume that one of the following holds:

(i) We have a2 = a3 = · · · = an = 1.

(ii) We have a3 = a4 = · · · = an = 1, gcd(ai, aj) = 1 for any i ̸= j and

d−
∑

i : ai>1

ai < 48 .

(iii) We have dimX ⩽ 49, and X is a smooth Fano of index 1.

(iv) We have X ⊂ P(a0, a1, a2, 1, 1) with gcd(a0, a1, a2) = 1 and d−
∑

i : ai>1 ai < 48.

(v) We have dimX ⩽ 3, and X is a Fano of index 1.

Then we can construct π′ := π′
1 ◦ · · · ◦ π′

m : Pn → P(a0, . . . , an) such that π′
1, . . . , π

′
m are finite

covers of the form ϕi ◦ πi, where the ϕi are automorphisms and Y = (π′)−1(X) ⊂ Pn is smooth.
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Proof. Case 1: Condition (i) holds. Let us show that condition (⋆) of Lemma 2.1(iii) holds.
Assume toward a contradiction that there exists a monomial M = zi00 · · · zinn appearing in F with
ij = 1 for some j such that aj > 1 and that for any other k such that ik ⩾ 1, we have ak ̸ |aj . In
particular, ak > 1 for any k such that ik > 0. The monomial M is thus of the form zjz

ik
k with

ik > 0. Then d = aj + akik, which implies ak | aj , giving a contradiction.

Case 2: Condition (ii) holds. We can assume a0, a1, a2 > 1 by Case 1. By Lemma 2.2 we get
an i such that ai = mjaj +mkak for {i, j, k} = {0, 1, 2} and non-negative integers mj ,mk. Hence
the conditions of Lemma 2.1(ii) are satisfied, and we can take a cover (ϕ ◦ πi)

−1(X) ⊂ Pi. We
can now apply Case 1 to conclude.

Case 3: Condition (iii) holds. Since X is smooth, the weights are pairwise coprime. If there are
at most two weights bigger than 1, then we can apply Case 1. If there are at least three weights
bigger than 1, then (using that dimX ⩽ 49) it is easy to check that the only possible cases are
X30 ⊂ P

(
2, 3, 5, 1(21)

)
and X42 ⊂ P

(
2, 3, 7, 1(31)

)
, which are covered by Case 2 (see Example 2.5

for the case X60 ⊂ P
(
3, 4, 5, 1(49)

)
of dimension 50).

Case 4: Condition (iv) holds. If gcd(ai, aj) = 1 for any i ̸= j, then we can apply Case 2, so
assume that (up to reordering) gcd(a0, a1) > 1. If a2 = 1, then we are done by Case 1, so assume
a2 > 1. We claim that we can now apply Lemma 2.1(ii) for i = 2. In fact, consider a monomial
of the form zk00 · · · zk44 such that k2 = 1. Since a3 = a4 = 1, the only case to check is k3 = k4 = 0.
But then d = a2 + k0a0 + k1a1 and so gcd(a0, a1) | a2, giving a contradiction. Hence, by Lemma
2.1(ii), we can take a cover ϕ ◦ π2 and then apply Case 1 to conclude.

Case 5: Condition (v) holds. We will show that there is always a smooth cover as in Lemma
2.1. To make the proof short, we are going to use the available classification results.

First assume dimX = 2, that is, X ⊂ P(a0, a1, a2, a3). By [JK01b, Theorem 8], there
are only four possible cases satisfying ai | d: X3 ⊂ P3, X4 ⊂ P(1, 1, 1, 2), X6 ⊂ P(1, 1, 2, 3)
and X15 ⊂ P(3, 3, 5, 5). In all cases, it is immediate to see that we can apply Lemma 2.1(iii).

Now assume dimX = 3, that is, X ⊂ P(a0, a1, a2, a3, a4) (see Table 1 for a list obtained using
the classification given in [JK01a, Theorem 2.2]). If a3 = a4 = 1, then d = a0 + a1 + a2 + 1,
which implies gcd(a0, a1, a2) = 1 since ai | d for any i. Then the result follows from Case 4. If
a0, a1, a2, a3 > 1 and a4 = 1, then we see from Table 1 that there are only two possible cases:
X12 ⊂ P(2, 3, 3, 4, 1) and X30 ⊂ P(2, 3, 10, 15, 1). In both cases, we can apply Lemma 2.1(ii) to
take a cover ϕ ◦ π3 and then conclude by Case 4. We are left with the case 1 < a0 ⩽ a1 ⩽ a2 ⩽
a3 ⩽ a4. One can check from Table 1 that it is possible to apply Lemma 2.1(ii) first with i = 4,
then after the cover with i = 3 and finally with i = 2. Then to conclude, it is enough to use
Case 1.

Example 2.4. In P(3, 4, 5, 4, 15, 30), consider X given by

z170 z1z2 + z0z
13
1 z2 +

(
z40 + z31

)5
+
(
z50 + z32

)4
+
(
z51 + z42

)3 − z200 − z151 − z122 +G(z3, z4, z5) = 0 ,

where G is general of degree 60. Then X is a quasi-smooth Fano fourfold of index 1. (The quasi-
smoothness was checked by computer.) Moreover, X∩(zi = 0) is not quasi-smooth for i = 0, 1, 2,
and it is not possible to perform a procedure as in Lemma 2.1 to get a smooth cover Y .

Similar examples can be constructed forX105⊂P(40, 40, 30, 5, 3, 3),X140⊂P(70, 35, 20, 7, 5, 4),
X210 ⊂ P(105, 42, 35, 14, 10, 5), X420 ⊂ P(210, 140, 35, 28, 5, 3), X714 ⊂ P(357, 238, 51, 34, 21, 14),
X1386 ⊂ P(693, 462, 198, 14, 11, 9) and X1890 ⊂ P(945, 630, 270, 27, 14, 5). Using the classification
given in [BK16], we could check that for any other Fano fourfold quasi-smooth hypersurface
Xd ⊂ P(a0, . . . , a4) of index 1 such that ai | d, there exists a smooth cover.
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Table 1. Weights for Fano 3-folds of index 1 with ai | d (∀i).

a0 a1 a2 a3 a4 d

1 1 1 1 1 4

1 1 1 1 3 6

1 1 1 2 2 6

1 1 1 2 4 8

1 1 1 4 6 12

1 1 2 2 5 10

1 1 2 3 6 12

1 1 2 6 9 18

1 1 3 4 4 12

1 1 3 8 12 24

1 1 4 5 10 20

1 1 6 14 21 42

1 2 3 3 4 12

1 2 3 10 15 30

2 2 3 3 3 12

a0 a1 a2 a3 a4 d

2 2 3 3 9 18

2 3 3 14 21 42

2 3 5 6 15 30

2 4 5 5 5 20

2 5 9 30 45 90

2 6 7 7 21 42

3 3 3 8 8 24

3 3 5 5 15 30

3 3 5 10 10 30

3 3 5 20 30 60

3 3 15 20 20 60

4 4 7 7 7 28

5 5 18 18 45 90

5 7 10 14 35 70

6 6 11 11 33 66

Example 2.5. In P
(
1(49), 3, 4, 5

)
, consider X given by

z600 + · · ·+ z60n−3 + zn−2z
13
n−1zn + z2n−2zn−1z

10
n

+
(
z4n−2 + z3n−1

)5
+
(
z5n−2 + z3n

)4
+
(
z5n−1 + z4n

)3 − z20n−2 − z15n−1 − z12n = 0 .

Then X is a smooth Fano of index 1 and dimension 50. Moreover, X ∩ (zi = 0) is not quasi-
smooth for i = n− 2, n− 1, n, and it is not possible to perform a procedure as in Lemma 2.1 to
get a smooth cover Y .

Proposition 2.6. Let X ⊂ P(a0, . . . , an) be a weighted hypersurface of degree d. With the
above notation, assume that we have a finite cover π′ : Pn → P(a0, . . . , an) with the ramification
formula

KPn = (π′)∗
(
KP +

n∑
i=0

ai − 1

ai
H ′

i

)
(2.1)

for some hyperplanes H ′
i ∈ |OP(ai)| for i = 0, . . . , n such that Y := (π′)−1(X) ⊂ Pn is smooth

and (π′)∗OP(1) = OPn(1). (Such a cover exists for X as in Lemmas 2.1 and 2.3.) Let D be an
effective Q-divisor on X such that

D ∼Q H ,

where H := OX(1) is the hyperplane section.

Then (X,D) is log canonical outside a finite set Z ⊂ X.

Proof. We can write D = (1/r)Dr for some r ∈ Z>0 and Dr ∈ |OX(r)|. Since we have the
ramification formula (2.1), we obtain

KY = π∗
(
KX +

n∑
i=0

ai − 1

ai
Hi

)
,

where Hi := H ′
i ∩X for i = 0, . . . , n. Let D̃ := π∗(D) so that D̃ ∼Q OY (1). Take an irreducible
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curve C̃ ⊂ Y . By [Che01, Statement 3.3], we see that

multC̃
(
D̃
)
⩽ 1 .

This implies that
(
Y, D̃

)
is log canonical on Y \ Z̃ for some finite set Z̃ ⊂ Y .

Let R :=
∑n

i=0(ai − 1)a−1
i Hi. Then we have the ramification formula

KY + D̃ = π∗(KX +D +R) .

From this, we conclude that (X,D + R) is log canonical on X \ Z for Z := π
(
Z̃
)
(cf. [KM98,

Proposition 5.20]); thus (X,D) is log canonical on X \ Z.

Remark 2.7. In Proposition 2.6, we can show that omultC(D) ⩽ 1 for any irreducible curve
C ⊂ X. We recall the definition of orbifold multiplicity (see [KOW20, Definition 2.1.9]): if p ∈ X
is a cyclic quotient singularity and D is an effective divisor on X, then omultpD = multp′ π

∗D,
where π : X ′ → X is the quotient map and p′ is a preimage of p.

Let p ∈ C be a general point and Up ⊂ X be a small neighborhood of p. Let Vp := π−1(Up),
and let νp : Ũp → Up be a finite cover from some smooth variety Ũp such that νp is étale in
codimension 1 and Up ≃ Ũp/Zm for some m. Let Ṽp be the normalization of the fiber prod-
uct Vp ×Up Ũp. Then we have the following diagram:

Ṽp
ν̃p
//

π̃p

��

Vp

πp

��

Ũp
νp
// Up .

Note that Ṽp is smooth and ν̃p is étale by the purity of the branch locus. For an irreducible
curve C̃ ⊂ Y such that π

(
C̃
)

= C, we see that multC̃ D̃ ⩽ 1, as above. This implies that

multq
(
D̃
)
⩽ 1 for q ∈ π−1

p (p); thus we see that multq̃ ν̃
−1
p

(
D̃ ∩ Vp

)
⩽ 1 for q̃ ∈ ν̃−1

p (q) since ν̃p
is étale. Then we see that multp̃ ν

−1
p (Up ∩ D) ⩽ 1 for p̃ ∈ ν−1

p (p) by considering the local

homomorphism π̃♯
p : OŨp,p̃

→ OṼp,q̃
on the stalks. This implies that omultC D ⩽ 1.

3. A Nadel vanishing–type theorem

The following is a version of Nadel vanishing for Q-Cartier integral Weil divisors (not necessary
Cartier) that we are going to use to compute the α-invariant.

Lemma 3.1. Let (X,B) be a log canonical pair and D a Q-Cartier integral Weil divisor on X
such that A = D−KX −B is nef and big. Let J = J ((X,B);−D) be the multiplier ideal sheaf
associated with −D with respect to (X,B).

(i) There is an inclusion J ↪→ OX(D).

(ii) We have H i(X,J ) = 0 for any i > 0.

(iii) Let x ∈ X be such that OX(D)x ∼= OX,x; that is, D is Cartier at x. Then J ((X,B);−D)x =
J (X,B)x ⊗OX(D)x, where J (X,B) := J (X,B; 0).

Proof. Let µ : W → X be a log resolution of (X,B +D), and define a Q-divisor BW by

KW +BW = µ∗(KX +B) .

We can write µ∗D = D̃ +
∑m

k=1 bkEk, where D̃ ⊂ W is the strict transform of D and
E1, . . . , Em are exceptional divisors of µ. Since D is integral, D̃ is a Cartier divisor on W .
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Set

L := OW

(
D̃ +

⌈∑
bkEk −BW

⌉)
= OW

(
D̃ −

(⌊
−
∑

bkEk +BW

⌋))
.

Then by the definition of the multiplier ideal sheaf (see [Laz04, Definition 9.3.56]),

J = J ((X,B);−D) = µ∗L .

If E is the exceptional locus of µ and Z := µ(E), we have

L|(W\E)
∼= OX\Z(D + ⌈−B⌉) ↪→ OX\Z(D) .

Hence we have µ∗L ↪→ (µ∗L)∨∨ ≃ OX(D + ⌈−B⌉) ↪→ OX(D) and obtain an injection J ↪→
OX(D) as a composition.

We now prove item (ii). Since

D̃ +
∑

bkEk −BW ≡ µ∗(D)−BW ≡ µ∗(KX +B +A)−BW = KW + µ∗(A) ,

the relative Kawamata–Viehweg vanishing theorem [KMM87, Theorem 1-2-3] implies

Riµ∗(L) = 0

for i > 0, and so by Leray spectral sequence, we get that H i(X,J ) = H i(W,L). By the
Kawamata–Viehweg vanishing theorem, we also get H i(W,L) = 0 for i > 0, and so item (ii)
is proven.

Now assume that D is Cartier at x ∈ X. Then

Jx = µ∗OW

(
D̃ +

⌈∑
bkEk −BW

⌉)
x
= µ∗OW (µ∗D + ⌈−BW ⌉)x = J (X,B)x ⊗OX(D)x

by the projection formula.

The following example shows that in Lemma 3.1(iii), one cannot simply drop the condition
that D is Cartier at the point x.

Example 3.2. Let X ⊂ A3 be the affine cone over a smooth cubic curve C ⊂ P2, and let D be
a line through the vertex of X that passes through a flex of C, so that D is a Q-Cartier divisor
(3D is Cartier). Denote by µ : W → X the minimal resolution of X with exceptional curve E.
Since E2 = −3, the following hold:

µ∗D = D̃ +
1

3
E and KW = µ∗KX − E .

Since µ∗OW (⌊µ∗D⌋) = OX(⌊D⌋) = OX(D) (use [Nak04, Lemma 2.11] and the fact that D is
integral), we get

J (X;−D) = µ∗OW

(
D̃ +

⌈
1

3
E − E

⌉)
= µ∗OW

(
D̃
)
= µ∗OW (⌊µ∗D⌋) = OX(D) .

On the other hand, J (X) is the ideal sheaf of the vertex of X, which is not trivial. We also
note that the inclusion J (X;−D) ↪→ OX(D) is not strict in this case, even if the vertex is a
log canonical center (lc center for short) of X. (This example reflects the necessity of H and Hj

being Cartier at the isolated lc center Q in the proof of Proposition 4.3.)

4. Log canonical threshold computation

We start off with the following numerical lemma.
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Lemma 4.1. Let a0, . . . , an and d be positive integers such that

(i) gcd
(
a0, . . . , qai, . . . , an

)
= 1 for all i,

(ii) ai | d for all i,

(iii) d =
∑n

i=0 ai − 1.

We use the notation (∗) for the condition

(∗) d = 2a and (up to permutation) (a0, . . . , an) = (a0, . . . , an−2, 2, a) for some a ⩾ 3.

Set

c :=

{
d−2
d = a−1

a if a0, . . . , an and d satisfy (∗) ,
d−1
d otherwise .

Then, for i, j ∈ {0, 1, . . . , n} such that i ̸= j, we have

−d− 1 + ai + cd ⩽ −1 if ai = 1 , (4.1)

−d− 1 + ai + c
d

ai
⩽ −aj if (∗) holds and ai = 2, aj = a , (4.2)

−d− 1 + ai +
d

ai
⩽ −aj for all j otherwise (ai > 1) . (4.3)

We also have c ⩾ (n− 1)/n in either case. Equality holds only if (d, a0, . . . , an) = (n, 1, . . . , 1) or
(2a, 1, . . . , 1, 2, a) for some a ⩾ 3.

Proof. If ai = 1, then

−d− 1 + ai + c
d

ai
⩽ −d+

d− 1

d
d = −1 ,

where we used that if (∗) holds, then (d− 2)/d ⩽ (d− 1)/d.

Assume ai > 1. Fix j ∈ {0, . . . , n}.
Case 1: d < aiaj . Set aM := max{ai, aj}. If d ⩾ 3aM , then

d+ 1− d

ai
− ai − aj ⩾ d+ 1− 3aM ⩾ 1 .

If d < 3aM , then we must have d = 2aM by the assumption that ai | d for all i.

If ai = aj , then the condition d = 2ai together with assumption (iii) would imply that
(a0, . . . , an) = (1, ai, ai) up to permutation, which contradicts assumption (i).

If ai > aj , then d = 2ai and

d+ 1− d

ai
− ai − aj ⩾ 2ai + 1− 2− ai − (ai − 1) = 0 .

If ai < aj , then d = 2aj . We must have ai ⩾ 3 because we are in the case d < aiaj . Note that
k := 2aj/ai satisfies k ⩾ 3 since it is an integer and ai < aj . Then

d+ 1− d

ai
− ai − aj = 2aj + 1− k − ai − aj =

kai
2

+ 1− k − ai = (k − 2)
(ai
2

− 1
)
− 1 ,

which is non-negative unless k = ai = 3, which is not possible since it would give 9 = 2aj .

Case 2: d ⩾ aiaj . If aj = 1, then

d+ 1− d

ai
− ai − aj = d− d

ai
− ai =

(
d

ai
− 1

)
(ai − 1)− 1 ⩾ 0 ,
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where we used d ⩾ 2ai. So we may assume aj > 1.

Assume ai ⩾ 3.

Since we have d ⩾ aiaj , we get the required inequality from

d+ 1−
(
ai + aj +

d

ai

)
=

(
d

ai
ai − ai −

d

ai
+ 1

)
− aj =

(
d

ai
− 1

)
(ai − 1)− aj

⩾ 2(aj − 1)− aj = aj − 2 ⩾ 0 .

Now consider the case ai = 2 and recall that d ⩾ 2aj and aj | d. If d ⩾ 4aj , then the inequality
follows as

d− 1− d/2− aj = d(1− 1/2)− aj − 1 ⩾ 2aj − aj − 1 = aj − 1 > 0 .

If d = 3aj , then

d+ 1− d

ai
− ai − aj = 3aj + 1− 3aj

2
− 2− aj =

aj
2

− 1 ⩾ 0 .

If d = 2aj , then condition (∗) holds, that is, a = aj ⩾ 3, (ai = 2) and c = (a − 1)/a
since aj = 2 implies (a0, . . . , an) = (1, 2, 2) up to permutation, as before. Then we obtain the
required inequality as

d+ 1− c
d

ai
− ai − aj = 2a+ 1− ca− 2− a = a− 1− ca = a− 1− a · a− 1

a
= 0 .

Finally, we check the last statement. If condition (∗) holds, then we have 2+a+
∑n−2

i=0 ai = 2a+1.
Hence we have

a− 1 =
n−2∑
i=0

ai ⩾ n− 1 ;

thus we see that c = (a− 1)/a ⩾ (n− 1)/n if condition (∗) holds, and equality holds only when
a0 = · · · = an−2 = 1. Otherwise, we have

d =

n∑
i=0

ai − 1 ⩾ n ;

thus see that c = (d− 1)/d ⩾ (n− 1)/n. Equality holds only if a0 = · · · = an = 1.

Lemma 4.2. Let X = Xd ⊂ P(a0, . . . , an) =: P be a quasi-smooth weighted hypersurface of
degree d that is not a linear cone. Assume ai | d for any i = 0, . . . , n. Then, up to a linear
automorphism of P, we can assume Pi /∈ Xd for any i = 0, . . . , n, where Pi is the ith coordinate
point of P.

Proof. Assume that there exists an i such that Pi ∈ X. Since X is quasi-smooth, there exists a
j such that ∂F

∂zj
(Pi) ̸= 0. This implies that there exists a monomial in F of the form zjz

ci
i , that

is, d = aj + ciai, which tells us that ai | aj . We can then consider an automorphism of the form

zj 7→ zj + λz
aj/ai
i with λ ∈ C∗ general. Since λ is general, we can apply the argument for any

Pi ∈ X to obtain the statement of the lemma.

Proposition 4.3. Let X ⊂ P(a0, . . . , an) =: P be a well-formed quasi-smooth weighted hyper-
surface of degree d that is not a linear cone. LetD ∼Q H be a Q-divisor onX, whereH := OX(1).
Assume that

(i) X is Fano of index 1,
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(ii) ai|d for any i = 0, . . . , n,

(iii) the non-klt (non–Kawamata log terminal ) locus of (X,D) is at most zero-dimensional.

We use the notation (∗) for the condition

(∗) d = 2a and (up to permutation) (a0, . . . , an) = (a0, . . . , an−2, 2, a) for some a ⩾ 3.

Then the log canonical threshold of (X,D) satisfies

lct(X,D) ⩾


d−2
d = a−1

a if (∗) holds ,

1 if (∗) does not hold and ai ⩾ 2 for any i ,

d−1
d otherwise .

Remark 4.4. The second case of the inequality really occurs. For example, let X6(m+l+1) ⊂
P
(
2(2+3m), 3(1+2l)

)
be a general hypersurface of degree 6(m + l + 1) for some m, l ∈ Z>0. Then

this satisfies the condition.

Proof. The Q-divisor D is of the form D = Dm/m for some m > 0 and Dm ∈ |OX(m)|. Let c be
the log canonical threshold of (X,D). Assume toward a contradiction that c < (a− 1)/a if (∗)
holds, that c < 1 if (∗) does not hold and ai ⩾ 2 for any i and that c < (d− 1)/d otherwise.

By assumption (iii), the log canonical locus LCS(X, cD) of (X, cD) consists of a finite number
of points. By the Shokurov connectedness theorem (see for example [Che01, Theorem 2.8]), we
get that LCS(X, cD) consists of one single point Q.

By Lemma 4.2, we can assume Pi /∈ Xd for any i = 0, . . . , n, where Pi is the ith coordinate
point of P. Then we have a well-defined finite morphism of degree d/ai,

pi : Xd → Pi := P(a0, . . . , qai, . . . , an)

induced by the ith projection P 99K Pi on P. Note that the finiteness of the projection follows
from Pi ̸∈ Xd and Pi may not be well formed. Let cij := gcd(a0, . . . , qai, . . . , qaj , . . . , an) for j ̸= i
and ci :=

∏
j ̸=i cij . Then, by the operation as in [Ian00, Lemma 5.7] (cf. [Dol82, Section 1.3.1]),

we see that

Pi ≃ P
(
ci0a0
ci

, . . . ,qı, . . . ,
cinan
ci

)
= P

(
ā0, . . . ,qı, . . . , ān

)
=: P̄i ,

where āj :=
cijaj
ci

for j ̸= i (qı means that we skip the ith term). The isomorphism follows from

Pi ≃ ProjC
[
zci00 , . . . ,qı, . . . , zcinn

]
and by dividing all weights by ci.

Set

BPi := c · pi(Dm)

m
.

Claim 4.5. (i) The morphism pi is étale on X \
(
∂F
∂zi

= 0
)
∪ p−1

i (SingPi).

(ii) There exists an i ∈ {0, . . . , n} such that ∂F
∂zi

(Q) ̸= 0 and this implies that Qi := pi(Q) ∈ Pi

is an isolated lc center of the pair (Pi, BPi).

Proof of Claim 4.5. (i) Let

Q′ := [q′0 : · · · : q′n] ∈ X \
(
∂F

∂zi
= 0

)
∪ p−1

i (SingPi) .

The fiber of pi over Q′
i := pi(Q

′) = [q′0 : · · · : qq′i : · · · : q′n] is given by the zeros of the univari-
ate polynomial F (q′0, . . . , q

′
i−1, x, q

′
i+1, . . . , q

′
n). The condition ∂F

∂zi
(Q′) ̸= 0 implies that Q′ is not
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a multiple root of F (q′0, . . . , q
′
i−1, x, q

′
i+1, . . . , q

′
n), and so pi is unramified over Q′

i since p−1
i (Q′

i)
consists of deg pi points.

(ii) Since Xd = (F = 0) ⊂ P is quasi-smooth, there exists an i such that

∂F

∂zi
(Q) ̸= 0 .

Since X and Pi are smooth in codimension 1, we conclude that pi is étale in codimension 1
around Q by assertion (i), and soKX+cD = p∗i (KPi+BPi) locally around Q. Then, by a standard
lemma about discrepancies (cf. [KM98, Proposition 5.20]), we get that the pair (Pi, BPi) is log
canonical but not Kawamata log terminal, and pi(Q) is an isolated lc center.

Remark 4.6. If Q ∈ X is smooth and pi(Q) is a smooth point of Pi, then by the implicit function
theorem, the projection pi induces a local analytic isomorphism of a neighborhood of Q and one
of pi(Q). Hence BPi and cD are also locally isomorphic, and we obtain Claim 4.5 in a more direct
way.

We have

[Dm : pi(Dm)]pi(Dm) = (pi)∗(Dm) ∼ OP̄i
(md/aici) ,

where OP̄i
(1) ∈ Cl P̄i is the ample generator and [Dm : pi(Dm)] is the degree of the map pi

restricted to Dm. Note that we can calculate (pi)∗(Dm) ∼ OP̄i
(md/aici) by taking some ex-

plicit hyperplane and the fact that the push-forward preserves linear equivalence (cf. [Nak04,
Section 2.e]).

This implies that

KPi +BPi ≡ OP̄i

(
1

ci

(
−
∑
j ̸=i

cijaj + cdi

))
, (4.4)

where di := d/(ai[Dm : pi(Dm)]).

We now distinguish two cases, depending on whetherQi = pi(Q) ∈ Pi is a smooth or a singular
point.

Case 1. Assume that Qi ∈ Pi is a smooth point. Take a Weil divisor H on Pi whose class
is OP̄i

(1), and consider the multiplier ideal sheaf J = J ((Pi, BPi);H). Set Q := OP̄i
(−1)/J . By

Lemma 3.1(i), we have an inclusion J ↪→ OP̄i
(−1). Since H is Cartier at the smooth point Qi,

by Lemma 3.1(iii), we see that such an inclusion is strict at Qi. Thus the support of Q contains
Qi as a connected component and H0(Q) ̸= 0.

Claim 4.7. We have

−H − (KPi +BPi) = OP̄i

(
−1 +

1

ci

(∑
j ̸=i

cijaj − cdi

))
,

and it is ample as a Q-line bundle.

Proof of Claim 4.7. The equality follows from (4.4).

If Pi is well formed, the ampleness follows from Lemma 4.1; thus assume ci > 1, that is,
cij > 1 for some j ̸= i. Then we have

1

ci

(∑
j ̸=i

cijaj − cdi

)
>

∑
j ̸=i

cijaj
ci

− d

ciai
=

∑
j ̸=i

cijaj
ci

−
∑
j ̸=i

aj
ciai

⩾ 1

since cijaj/ci, d/(ciai) ∈ Z. This implies the required ampleness.
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Claim 4.7 and Lemma 3.1 (ii) give a surjection

H0
(
P̄i,OP̄i

(−1)
)
↠ H0(Q) ̸= 0 ,

which gives a contradiction.

Case 2. Now assume that Qi ∈ Pi is a singular point of Pi.
We first deal with the case ai = 1. Write Q = [q0 : · · · : qn]. Since Qi ∈ Pi ≃ P̄i is singular,

we have gcd{āj : j ̸= i and qj ̸= 0} > 1; thus

gcd{aj : j ̸= i and qj ̸= 0} > 1 . (4.5)

The fact that ∂F
∂zi

(Q) ̸= 0 implies that there exists a monomial G = zb00 · · · zbnn of degree d

that appears in F with non-zero coefficient and satisfies ∂G
∂zi

(Q) ̸= 0. This means that if bj > 0
for j ̸= i, then qj ̸= 0. By (4.5), we get that g := gcd{aj : j ̸= i and bj > 0} satisfies g > 1
and g | d because aℓ | d for any ℓ. Hence G must be divisible by zgi since ai = 1. This gives qi ̸= 0
since ∂G

∂zi
(Q) ̸= 0.

By (4.5), we have that qj = 0 for any j ̸= i such that aj = 1, and so from the Euler identity

0 = dF (Q) =
n∑

ℓ=0

aℓqℓ
∂F

∂zℓ
(Q) ,

we deduce that there exists a k such that ak > 1 and ∂F
∂zk

(Q) ̸= 0. We can therefore consider
pk : X → Pk. Since qi ̸= 0 and ai = 1, we see that Qk = pk(Q) is a smooth point of Pk, and we
are reduced to Case 1.

So we can assume ai > 1. Let j ̸= i be such that the jth coordinate of Q is non-zero, and note
that OP̄i

(−cijaj/ci) = OP̄i
(−āj) is invertible at Qi. Take a Weil divisor Hj on Pi whose class

is OP̄i
(āj), and consider the multiplier ideal sheaf J = J ((Pi, BPi);Hj). Set Q := OP̄i

(−āj)/J .

Claim 4.8. We have that

−Hj − (KPi +BPi) = OP̄i

(
−āj +

1

ci

(∑
k ̸=i

cikak − cdi

))
,

and this is ample as a Q-line bundle.

Proof of Claim 4.8. The equality follows from (4.4).

If ci = 1, then the required inequality is

−aj +
∑
k ̸=i

ak − cdi = d+ 1− ai − aj − cdi > 0 ,

and it follows from (4.2) and (4.3) in Lemma 4.1. Thus assume ci > 1. Note that (∗) does not
occur in this case. Then we have∑

k ̸=i

cikak − cdi >
∑
k ̸=i

cikak − di ⩾ (cij − 1)aj +
∑
k ̸=i

ak −
d

ai

= (cij − 1)aj + d+ 1− ai −
d

ai

(4.3)

⩾ (cij − 1)aj + aj = cijaj .

This implies the required ampleness.

As in Case 1, we reach a contradiction using Claim 4.8 and Lemma 3.1(ii), (iii).
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It is sometimes possible to use the above argument for the computation of the alpha invariants
without assumption (ii) of Proposition 4.3, as follows.

Example 4.9 ([KOW20, Example 7.2.2]). Consider a hypersurface X = X2a+1 ⊂ P
(
1(a+2), a

)
of

degree 2a+ 1 with a ⩾ 2 given by

X =
(
y2x1 + f(x1, . . . , xa+2) = 0

)
,

where f is general. Then the coordinate point Py = [0 : · · · : 0 : 1] ∈ X is a singular point of X,
and there is no automorphism to move it outside X. Also note that

α(X) ⩽ lctPy(X,H1) =
a+ 1

2a+ 1
,

where H1 := (x1 = 0) ⊂ X and lctPy(X,H1) denotes the log canonical threshold of the pair
(X,H1) locally around the point Py.

Claim 4.10. We have α(X) = (a+ 1)/(2a+ 1).

Proof of Claim 4.10. Let D = Dm/m ∼Q OX(1) be an effective Q-divisor as in the proof of
Proposition 4.3. Note that we have a smooth cover Y :=

(
z2ax1+f(x1, . . . , xa+2

)
= 0) ⊂ Pn and

can apply Proposition 2.6. Let c := lct(X,D) be the log canonical threshold of X with respect
to D.

Suppose c < (a+ 1)/(2a+ 1). We will obtain a contradiction as in the proof of Proposi-
tion 4.3. By Proposition 2.6, the pair (X, cD) has an isolated lc center Q = [q1 : · · · : qa+2 : r].
Let F := y2x1+f(x1, . . . , xa+2) be the defining equation of X. Note that for i = 1, . . . , a+2, the
projection pi : X → Pi ≃ P

(
1(a+1), a

)
is well defined since the ith coordinate point Pi satisfies

Pi ̸∈ X. On the other hand, since Py ∈ X, the projection py : X 99K Py ≃ Pa+1 is not defined
at Py.

Case 1. First consider the case where Q = Py = [0 : · · · : 0 : 1]. Then the first projection
p1 : X → P1 ≃ P

(
1(a+1), a

)
is étale at Q because ∂F

∂x1
(Q) ̸= 0. Let BP1 := c · p1(Dm)/m and

e1 := [Dm : p1(Dm)] be the degree of p1|Dm . Then we see that

BP1 ∼Q OP1

(
c · 2a+ 1

e1

)
.

Since p1(Q) = [0 : · · · : 0 : 1] ∈ P1 is a singularity of index a, we see that H = OP1(a) is Cartier.
Since we have

−H − (KP1 +BP1) ∼Q OP1

(
−a+ (2a+ 1)

(
1− c

e1

))
and −a+(2a+1)

(
1− c

e1

)
⩾ −a+(2a+1)(1− c) > −a+(a) = 0, we see that −H − (KP1 +BP1)

is ample. Then we can argue as in the proof of Proposition 4.3 to obtain a contradiction.

Case 2. Consider the case where Q ̸= Py. If we have ∂F
∂xi

(Q) ̸= 0 for some 1 ⩽ i ⩽ a + 2, then
we may assume that the coordinate point Pxi for xi satisfies Pxi ̸∈ X as in Lemma 4.2. We see
that the ith projection pi : X → Pi ≃ P

(
1(a+1), a

)
is étale at Q; thus we can argue as in Case 1

to obtain a contradiction.
Hence we may assume ∂F

∂xi
(Q) = 0 for i = 1, . . . , a+ 2. Note that

∂F

∂x1
= y2 +

∂f

∂x1
,

∂F

∂x2
=

∂f

∂x2
, . . . ,

∂F

∂xa+2
=

∂f

∂xa+2
.

The point Q = [q1 : · · · : qa+2 : r] satisfies r ̸= 0. Indeed, if r = 0, then ∂f
∂xi

(q1, . . . , qa+2) = 0 for
all i, and this gives a contradiction since f is general. We also see that qi ̸=0 for some i since
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Q ̸= Py. By considering an automorphism φ of P
(
1(a+2), a

)
such that φ(y)=y + λxai for some

λ ∈ C∗ and φ(xj) = xj for j = 1, . . . , a + 2, it is enough to consider the case where r ̸= 0 and
∂F
∂x1

(Q) ̸= 0. Thus, by considering the projection p1, we obtain the same contradiction as Case 1.
From these, we obtain c ⩾ (a+ 1)/(2a+ 1), thus the claim.

5. Proofs of Theorems 1.4 and 1.1

Proof of Theorem 1.4. Let X ⊂ P(a0, . . . , an) be as in the statement, and let D ∼Q H be a Q-
divisor on X, where H = OX(1).

Since ai | d for all i and Question 1.3 has a positive answer forX, we can apply Proposition 4.3
to conclude that

lct(X,D) ⩾

{
a−1
a if d = 2a, a ⩾ 3 and (up to permutation) P = P(a0, . . . , an−2, 2, a) ,

d−1
d otherwise .

We also get that α(X) ⩾ 1 if ai ⩾ 2 for any i and we are not in case (∗) (note that X is not
smooth in this case by [PS20, Lemma 3.3] or [PST17, Theorem 1.2]).

Now assume that (∗) holds and a0 = . . . = an−2 = 1. Then we have dimX2a = a−1 since the
Fano index is 1; thus we only see the K-semistability of X2a from the criterion [OS12, Theorem
1.4]. Nevertheless, we see the K-stability of X2a as follows. If a is odd, then we see that X2a is
smooth; thus X2a is K-stable by [Fuj19, Theorem 1.3]. If a is even, then X2a has only 1

2(1, . . . , 1)-
singularities. We see that the singularities are not weakly exceptional by [CS11, Corollary 3.20]
since a cyclic quotient singularity is defined by a reducible representation of a cyclic group. From
this and [LZ22, Theorem 3.1], we see that X2a is K-stable when a is even.

If (∗) holds but we do not have a0 = · · · = an−2 = 1, then d =
∑n

i=0 ai−1 > n+1 = dimX+2.
If (∗) does not hold, then we have d =

∑n
i=0 ai − 1 > n = dimX + 1 since we may assume

P(a0, . . . , an) ̸≃ Pn. In all these cases, we obtain the K-stability of Xd from [OS12, Theorem 1.4].

Since X is K-stable, we see that X admits a Kähler–Einstein metric (cf. [DK01, Section 6],
[LTW22, Li22]).

Proof of Theorem 1.1. Assume that condition (i) holds. Theorem 1.4 can be applied to any

Fermat type hypersurface X =
{
z
d/a0
0 + · · · + z

d/an
n = 0

}
⊂ P(a0, . . . , an) since it has a smooth

cover as in Lemma 2.1. Then, by the openness of (uniform) K-stability [BL22, BLX22, LXZ22],
we obtain the K-stability of general Xd. Another proof can be given following the proof of
Theorem 1.4, replacing Lemma 2.1(iii) by Lemma 2.1(i).

Now assume that one of conditions (ii), (iii) and (iv) holds. In all these cases, Lemma 2.3
assures that we have a smooth cover so that we can apply Proposition 2.6. The conclusion then
follows from Proposition 4.3.

6. Automorphism groups and Fano weighted hypersurfaces of Fermat type

Adapting the argument in [Zhu21, Corollary 4.17] using the criterion [Fuj21, Corollary 1.6], we
have the following criterion for the K-polystability of Fano weighted hypersurfaces of Fermat
type.

Theorem 6.1. Let Xd :=
(
zd00 + · · ·+ zdnn = 0

)
⊂ P(a0, . . . , an) be a quasi-smooth Fano hyper-

surface of degree d such that ai | d for all i and di := d/ai satisfies di ⩾ 2. Let IX :=
∑n

i=0 ai − d
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be the Fano index of Xd. Assume a0 ⩽ a1 ⩽ · · · ⩽ an.

Then Xd is K-polystable (respectively, K-semistable) if and only if IX < na0 (respectively,
IX ⩽ na0). In particular, Xd is K-polystable when Xd is smooth.

Remark 6.2. It is known that the condition IX ⩽ na0 is a necessary condition for the existence
of a Kähler–Einstein metric on a well-formed quasi-smooth hypersurface X ⊂ P(a0, . . . , an) (see
[GMSY07, (3.23)] and [CPS10, Example 1.8]).

Proof. We will show this by adapting [Zhu21, Corollary 4.17]. Consider Pn with coordinates [w0 :
· · · : wn]. Then Xd admits a Galois covering π : Xd → H ⊂ Pn defined by [z0 : · · · : zn] 7→

[
zd00 :

· · · : zdnn
]
, where H := (w0 + · · · + wn = 0) ⊂ Pn. Indeed, we see that the Galois group of π is⊕n

i=0 Z/(di) since it is deduced from the injection C[w0, . . . , wn] ↪→ C[z0, . . . , zn] determined by

wi 7→ zdii for i = 0, . . . , n. Let Hi := (wi = 0) ⊂ H ≃ Pn−1 for i = 0, . . . , n. Then we see that⋃n
i=0Hi ⊂ H is a simple normal crossings divisor and

KXd
= π∗

(
KH +

n∑
i=0

(
1− 1

di

)
Hi

)
.

By [Zhu21, Corollary 4.13], in order to check the K-polystability of Xd, it is enough to check
the K-polystability of the log Fano hyperplane arrangement

(
H,

∑n
i=0

(
1 − 1/di

)
Hi

)
. By the

isomorphism H ≃ Pn−1 and the criterion [Fuj21, Corollary 1.6], the above pair is K-semistable
(respectively, uniformly K-stable) if and only if

k

n∑
i=0

(
1− 1

di

)
⩾ n

k∑
j=1

(
1− 1

dij

) (
respectively, k

n∑
i=0

(
1− 1

di

)
> n

k∑
j=1

(
1− 1

dij

))
for any k = 1, . . . , n− 1 and 0 ⩽ i1 < · · · < ik ⩽ n. The difference (LHS− RHS) is equal to

k

(
n+ 1−

n∑
i=0

1

di

)
− n

(
k −

k∑
j=1

1

dij

)
= k − k

n∑
i=0

1

di
+ n

k∑
j=1

1

dij

=
k

d

(
d−

n∑
i=0

ai +
n

k

k∑
j=1

aij

)
=

k

d

(
−IX +

n

k

k∑
j=1

aij

)
.

Then the K-semistability (respectively, uniform K-stability) of the arrangement is equivalent to
the non-negativity (respectively, the positivity) of the term −IX + (n/k)

∑k
j=1 aij . Note that we

have

min

{
−IX +

n

k

k∑
j=1

aij | k = 1, . . . , n− 1, 0 ⩽ i1 < · · · < ik ⩽ n

}
= −IX + na0

since a0 = min{a0, . . . , an} and (1/k)
∑k

j=1 aij ⩾ a0. Hence the positivity is equivalent to the
positivity of −IX + na0.

When Xd is smooth, we always have the K-polystability since X ≃ Pn−1 if IX ⩾ n.

Remark 6.3. It is easy to find a quasi-smooth K-unstable hypersurface of Fermat type Xd ⊂
P(a0, . . . , an) as follows. For example, let

X6 :=
(
y31 + · · ·+ y3m + z21 + · · ·+ z2l = 0

)
⊂ P

(
2(m), 3(l)

)
for some m ⩾ 1, l ⩾ 5. Then we see that IX = 2m + 3l − 6 and n = m + l − 1, a0 = 2; thus we
have

−IX + na0 = −(2m+ 3l − 6) + 2(m+ l − 1) = −l + 4 < 0 .
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Hence we see that X6 is not K-semistable by Theorem 6.1.

One can check that H0(X6, TX6) ̸= 0 and |Aut(X6)| = ∞. Indeed, since we have z21 + z22 =(
z1 +

√
−1z2

)(
z1 −

√
−1z2

)
, we obtain automorphisms as in [PS21, Example 5.1].

Let X12 ⊂ P
(
3(m), 4(l)

)
for m ⩾ 1, l ⩾ 10. Then we see that X12 is also K-unstable by

Theorem 6.1 and the relation

−IX + na0 = −(3m+ 4l − 12) + 3(m+ l − 1) = −l + 9 .

We also see that Aut(X12) is finite by Theorem 6.5(i) and the inequality 12 > 4 + 4.

The following proposition is useful to study the infinitesimal automorphisms of weighted
complete intersections.

Proposition 6.4. Let n ⩾ 3 and X = Xd1,...,dc ⊂ P(a0, . . . , an) be a quasi-smooth weighted
complete intersection that is not a linear cone. Let CX ⊂ An+1 be the affine cone of X and
π : C ′

X → X be the quotient morphism from C ′
X := CX \ {0}. Let R := H0(CX ,OCX

) be the
coordinate ring of CX .

(i) We have a surjection H0(CX , TCX
)C

∗
↠ H0(X, TX), where TCX

and TX are tangent sheaves
and MC∗ ⊂ M is the C∗-invariant part of an R-module M with a C∗-action.

(ii) We have a surjection {
∧n−c

( n⊕
i=0

R(ai)

)}
IX

↠ H0(CX , TCX
)C

∗
,

where R(ai) = R is a free R-module with a C∗-action such that λ · sj = λai+jsj for
a homogeneous sj ∈ Rj of degree j and, for an R-module M with a C∗-action, we set
MIX :=

{
x ∈ M | λ · x = λIXx

}
.

Proof. (i) Note that C ′
X ≃ SpecX

⊕
i∈ZOX(i) and that we have an exact sequence

0 →
(
TC′

X/X

)∨∨ → TC′
X
→ (π∗TX)∨∨ → 0 .

Also note that (TC′
X/X)∨∨ ≃ (π∗OX(1))∨∨ by the above description of C ′

X . By taking π∗ and its
C∗-invariant part, we obtain an exact sequence

H0
(
C ′
X , TC′

X

)C∗
→ H0(X, TX) → H1(X,OX(1)) .

Since TCX
is reflexive and H0(CX , TCX

) ≃ H0(C ′
X , TC′

X
), the required surjectivity follows from

H1(X,OX(1)) = 0 because dimX = n− 1 ⩾ 2 (cf. [Dol82] and [Ian00, Lemma 7.1]).

(ii) Note that dimCX = n− c+1 and that we have TCX
≃ TCX

⊗ωCX
⊗ω−1

CX
≃ Ωn−c

CX
⊗ω−1

CX
.

Since the generator s ∈ H0
(
ω−1
CX

)
satisfies λ · s = λ−IXs, we see that

H0
(
CX , TCX

)C∗
≃ H0

(
CX ,Ωn−c

CX
⊗ ω−1

CX

)C∗
≃ H0

(
CX ,Ωn−c

CX

)
IX

.

The surjection Ωn−c
An+1 |CX

↠ Ωn−c
CX

induces a surjection

H0
(
CX ,Ωn−c

An+1 |CX

)
IX

→ H0
(
CX ,Ωn−c

CX

)
IX

.

Since we have H0
(
CX ,Ωn−c

An+1 |CX

)
≃ ∧n−c

(⊕n
i=0R(ai)

)
, we obtain the required surjection.

We now give a sufficient condition for the finiteness of the automorphism groups of quasi-
smooth weighted complete intersections as follows. This is a generalization of [PS19, Theo-
rem 1.3], which is based on the calculations in [Fle81].
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Theorem 6.5. Let X = Xd1,...,dc ⊂ P(a0, . . . , an) be a quasi-smooth Fano weighted complete
intersection that is not a linear cone with a0 ⩽ · · · ⩽ an. Then we have the following:

(i) The automorphism group Aut(X) is finite if
∑c

j=1 dj > an−c + · · ·+ an.

(ii) In particular, Aut(X) is finite if IX < dimX.

Proof. (i) To prove the first statement, it is enough to show that H0(X, TX) = 0 when a0+ · · ·+
an−c−1 > IX . Let L := ∧n−c

(⊕n
i=0R(ai)

)
and L =

⊕
i∈Z Li be the eigen-decomposition with

respect to the C∗-action on L. We see that Li = 0 if i < a0 + · · · + an−c−1 by the construction
of L. In particular, we obtain LIX = 0; thus the first statement follows by Proposition 6.4.

(ii) This follows from the inequality a0 + · · ·+ an−c−1 ⩾ n− c = dimX.

Proof of Corollary 1.5. If Xd is a Fermat hypersurface, then Xd is K-stable since Xd is K-
polystable by Theorem 6.1 and its automorphism group is finite by Theorem 6.5. This im-
plies that general hypersurfaces are K-stable by the openness of uniform K-stability (see [BL22,
Theorem A] and [BLX22]) and the equivalence of uniform K-stability and K-stability [LXZ22,
Theorem 1.5].
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