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Azumaya algebras with involution and

classical semisimple group schemes

Srinivasan Srimathy

Abstract

Let S be a non-empty scheme with 2 invertible. In this paper, we present a functor
F : AZn′

∗ → GSn∗ , where AZn′
∗ and GSn∗ are fibered categories over SchS given, respec-

tively, by degree n′ Azumaya algebras with an involution of type ∗ and rank n adjoint
group schemes of classical type ∗ with absolutely simple fibers. Here n′ is a function
of n. We show that this functor is an equivalence of fibered categories using étale de-
scent, thus giving a classification of adjoint (as well as simply connected) group schemes
over S, generalizing the well-known case when the base scheme is the spectrum of a field.
In particular, this implies that every adjoint group scheme of classical type with abso-
lutely simple fibers is isomorphic to the neutral component of the automorphism group
scheme of a unique (up to isomorphism) Azumaya algebra with involution. We also
show interesting applications of this classification such as a specialization theorem for
isomorphism classes of Azumaya algebra with involution over Henselian local rings and
the uniqueness of an integral model for groups with good reduction over discrete val-
ued fields, and we discuss its implications for the Grothendieck–Serre conjecture over
certain domains.

1. Introduction

It is well known that the category of rank n (with some n excepted) absolutely simple adjoint
(or simply connected) algebraic groups of a given classical type over any field F (charF ̸= 2) is
equivalent to the category of degree n′ central simple algebras with involution of analogous type
over F . Here n′ is a function of n. Moreover, the functor which gives this equivalence is obtained
by taking a given central simple algebra with involution over F to the identity component of its
automorphism group (or its simply connected cover for the simply connected case). This result is
originally due to Weil [Wei60], and the proof of this equivalence can also be found in [KMRT98,
§VI.26]. This gives neat classification results for groups of classical types in terms of central simple
algebras with involution which can be translated to the well-understood language of sesquilinear
forms over division algebras. This kind of classification is very useful for studying many properties
of algebraic groups and the projective homogeneous varieties associated with them.
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In this paper, we show a similar classification for adjoint (as well as simply connected) group
schemes over an arbitrary scheme where is 2 invertible. Since we are in the general case of arbi-
trary base scheme, we use the language of stacks and gerbes to prove that the fibered category of
degree n′ Azumaya algebras with an involution of a given type is equivalent to the fibered cate-
gory of rank n classical adjoint group schemes with absolutely simple fibers of the corresponding
type via étale descent. As before, n′ is a function of n with some n excepted. This implies that
an adjoint group scheme of classical type (see Definition 3.2) with absolutely simple fibers is
isomorphic to the neutral component of the automorphism group scheme of a unique (up to
isomorphism) Azumaya algebra with involution. We also give a few applications of this classifi-
cation such as a specialization theorem for Azumaya algebras with involution and the uniqueness
of an integral model for group schemes with good reduction. Another interesting corollary is that
the Grothendieck–Serre conjecture on principal G-bundles holds whenever G is an adjoint group
scheme with absolutely simple fibers over R, where R is a regular local ring containing a field of
characteristic different from 2 or R is a semilocal Bézout domain with 2 invertible.

2. Notation

Throughout this paper, S denotes a non-empty scheme with 1/2 ∈ OS(S). The category of
schemes over S will be denoted by SchS . Given a scheme X over S and a point s in S, we denote
by k(s), Xs, Xs, respectively, the residue field, fiber and geometric fiber at s. For a presheaf F
over a scheme X, we denote by Fx its stalk at the point x ∈ X. The ring of n × n matrices is
denoted by Mn. The identity matrix of size n is denoted by In. For a sheaf of algebras A, we
denote by Aop the sheaf of opposite algebras given by U → A(U)op.

3. Group schemes over an arbitrary scheme

In this section, we recall the necessary results from the literature on group schemes over an
arbitrary scheme. The main sources of reference are [SGA3] and [Dem65].

A group scheme G over S is called reductive (respectively, semisimple, adjoint, simply con-
nected) if G is affine, smooth over S and for every s ∈ S, the geometric fiber Gs is a connected re-
ductive (respectively, semisimple, adjoint, simply connected) group (see [Dem65, Définition 2.1.2]
and [SGA3, XXII, Définition 4.3.3]).

Let G be an adjoint (or simply connected) group scheme G over S. The type (respectively,
rank) of G at s ∈ S is the type (respectively, rank) of Gs (see [SGA3, XXII, Définition 2.7]).
The type and rank of G are locally constant functions over S (see [SGA3, XXII, Proposition 2.8
and XIX, Corollaire 2.6]).

Remark 3.1. Any adjoint (respectively, simply connected) group scheme over S is isomorphic to
the Weil restriction RS′/S(G

′) of an adjoint (respectively, simply connected) group scheme G′

with absolutely simple fibers over S′, where S′ → S is a finite étale cover. Moreover, the pair
(S′, G′) is uniquely determined up to a unique S-isomorphism (see [Con14a, Proposition 6.4.4 and
Remark 6.4.5]). Therefore, classification of adjoint group schemes over S reduces to classification
of adjoint group schemes with absolutely simple fibers.

Definition 3.2. Let G be an adjoint group scheme over S with absolutely simple fibers. We say
that G is of type A (respectively, B, C, D) and rank n if every fiber Gs, s ∈ S, is of type A
(respectively, B, C, D) and rank n. In general, we say that G is of classical type if it is of type
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A, B, C or D.

Proposition 3.3. Let G and H be adjoint group schemes over S with absolutely simple fibers of
a given type and rank. Then locally for the étale topology on S, the group schemes G and H are
isomorphic. In fact, any reductive group scheme with root datum R is étale locally isomorphic
to a unique Chevalley group over SpecZ with root datum R.

Proof. See [Dem65, Corollaire 5.1.4.I and Proposition 5.1.6].

Let G be any group scheme of locally finite type over S. In [SGA3, VIB, Définition 3.1], the
notion of the neutral component of G, denoted by G0, is defined by the functor

T → G0(T ) =
{
u ∈ G(T ) | ∀s ∈ S, us(Ts) ⊂ (Gs)

0
}
.

We refer the reader to [SGA3, VIB, § 3] for more details. It can be shown that the neutral
component of G is stable under base change. We restate it below.

Proposition 3.4 ([SGA3, VIB, Proposition 3.3]). Let G be group scheme over S. Then for any
scheme S′ → S, we have (

G×S S′)0 = G0 ×S S′ ; (3.1)

that is, the functor G → G0 commutes with base change.

We will be using the following result about G0.

Proposition 3.5 ([Con14a, Proposition 3.1.3]). Let G be a smooth separated group scheme of
finite presentation such that G0

s is reductive for all s ∈ S. Then G0 is a reductive group scheme
over S that is open and closed in G.

With a group scheme G over S, we associate the automorphism functor Aut(G) on SchS
defined by

Aut(G) : S′ 7→ AutS′-grp(GS′) .

Proposition 3.6. Let G a semisimple group scheme over S. Then the functor Aut(G) is repre-
sented by a smooth, affine scheme over S.

Proof. See [SGA3, XXIV, Théorème 1.3(i) and Corollaire 1.6].

Remark 3.7. A representable functor on SchS is a sheaf for the fpqc topology [Vis05, Theo-
rem 2.55]. Therefore, if G is semisimple, by Proposition 3.6, Aut(G) is a sheaf for the fpqc
topology and hence for the étale topology on SchS .

4. Azumaya algebras with involution over an arbitrary scheme

Recall that an Azumaya algebra A over S is an OS-algebra that is locally free and of finite type
as an OS-module such that the canonical homomorphism

A⊗Aop → EndOS-mod(A) , a⊗ b 7→ (x 7→ a · x · b)

is an isomorphism. This implies that there is an étale covering {Ui → S} such that A⊗OS
OUi ≃

Mni(OUi) for some ni. If ni = n for all i (this happens for example when S is connected), we
call A an Azumaya algebra of degree n over S. Also recall that for an Azumaya algebra A over S,
As⊗k(s) is a central simple algebra over k(s) for every s ∈ S (see [Mil80, § IV.2, Proposition 2.1]).
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Involutions on central simple algebras are well studied in the literature [KMRT98]. In a similar
fashion, one can also define involution on Azumaya algebras over the scheme S. This is discussed
in detail in [KPS90, PS92]; we briefly recall it now. A classification of involutions on Azumaya
algebras in a more general setting can be found in [FW20, § 5].

An involution of first kind σ on A is an isomorphism of OS-algebras

σ : A → Aop

such that σop◦σ is the identity. The involution σ on A is said to be of orthogonal type (respectively,
symplectic type) if étale locally on S, it corresponds to a non-degenerate symmetric (respectively,
skew-symmetric) bilinear form on a locally free OS-module with values in a line bundle over S
(see [PS92, § 1.1]).

Now let π : T → S be an étale covering of degree 2. Let A be an Azumaya algebra over T .
An involution σ of second kind (also known as unitary type) on A is an anti-automorphism on A
of order 2 which on OT restricts to the non-trivial element of the Galois group of the covering.
Locally for the étale topology on S, unitary involutions correspond to hermitian forms on locally
free OT -modules [PS92, § 1.2].

The data of an Azumaya algebra A with a involution σ over S is denoted by (A, σ). A
homomorphism between Azumaya algebras with involution is a homomorphism between the
algebras which respects the involution structure.

Definition 4.1. In the case above where A is an Azumaya algebra over a quadratic étale
extension T of S and σ is unitary, we will make a slight abuse of notation and call (A, σ) an
Azumaya algebra with unitary involution over S even though the center of A is not OS . This
agrees with the corresponding notion of central simple algebras with unitary involution defined
in [KMRT98, § I.2.B].

Remark 4.2. If (A, σ) is a degree n Azumaya algebra with involution over S where σ is of a given
type, then for any s ∈ S, the pair (As⊗ k(s), σs⊗ k(s)) is a degree n central simple algebra with
involution of the same type over k(s).

We now give an étale local description of Azumaya algebras with involution.

Proposition 4.3. Let (A, σ) be a degree n Azumaya algebra with involution over S. Then
locally for the étale topology on S, we have

(1) (A, σ) ≃ (Mn, tr) when σ is of orthogonal type, where tr : A → Atr is the transpose involu-
tion;

(2) (A, σ) ≃ (M2m, sp) when σ is of symplectic type, where sp is the involution on M2m given
by A → JmAtrJ−1

m with Jm =
[

0 Im
−Im 0

]
the standard matrix associated with an alternating

form;

(3) (A, σ) ≃
(
Mn × Mop

n , ϵ
)
when σ is of unitary type, where ϵ :

(
A,Bop

)
→

(
B,Aop

)
is the

exchange involution.

Proof. All of the above are well known if the base scheme S is the spectrum of a field (see
[KMRT98]). For the general case, proofs of statements (1) and (2) can be easily derived and can
also be found in the literature. See for example [PS92, § 1.1] and [Knu91, § III.8.5]. We could not
find a proof of statement (3) anywhere in the literature, so we give one here.

In this case, A an Azumaya algebra with center OT , where T → S is a degree 2 étale cover
of S with the non-trivial element in its Galois group denoted by τ . Consider the degree 2 étale
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cover p : T ×S T → T obtained via the étale base change π : T → S. It follows from Galois
theory of schemes that (T ×S T, π∗τ) ≃

(
T
∐

T, ex
)
(see the proof of [Len08, Theorem 5.10]),

where ex: (x, y) → (y, x). Now p∗A is an Azumaya algebra over T
∐

T . Therefore, the center
OT ×OT of p∗A contains the idempotent i = (1, 0), where ex(i) = 1− i. Note that B = i(p∗A)
is an Azumaya algebra over T , and we have an isomorphism of Azumaya algebras with unitary
involution given by

(p∗A, p∗σ)
≃−→

(
B ×Bop, ϵ

)
, a 7→

(
i · a, (i · (p∗σ(a)))op

)
.

By taking a suitable étale covering of T which splits B, we obtain statement (3).

Definition 4.4. With notation as in Proposition 4.3, we say that a degree n Azumaya algebra
with unitary (respectively, orthogonal, symplectic) involution over S is split if it is isomorphic
to

(
Mn ×Mop

n , ϵ
)
(respectively, (Mn, tr), (Mn, sp)).

5. The group scheme of automorphisms of Azumaya algebras with involution

Let (A, σ) be a degree n Azumaya algebra with involution of any type over S. Consider the
functor

Aut(A, σ) : SchS → Groups ,
(
U

i−→ S
)
7→ AutOU -alg(i

∗A, i∗σ) ,

where AutOU -alg(i
∗A, i∗σ) is the group of OU -algebra automorphisms of i∗A compatible with the

involution i∗σ.

Notation. If a functor F on SchS is representable, let us denote the representing scheme by F .

Theorem 5.1. The functor Aut(A, σ) is representable by a smooth, affine group scheme over S.

Proof. Let S′ → S be an fpqc morphism. Recall that the category of affine S-schemes is equivalent
to the category of affine S′-schemes with descent data. To see this, use [BLR90, Chapter 6,
Theorem 4] and the fact that for any schemeX, the category of affineX-schemes is anti-equivalent
to the category of quasi-coherent sheaves of OX -algebras (see [Sta20, Tag 01S5, Lemma 29.11.5]
or [Vis05, Theorem 4.33]). Moreover, the properties smooth and affine are fpqc local over the base
(see [Sta20, Tag 02YJ] or [EGAIV2, Propositions 2.7.1 and 6.8.3]). Therefore, by Proposition 4.3,
it suffices to prove the theorem when (A, σ) is split. So assume that (A, σ) is split. Note that in
this case, the functor

Aut(A) :
(
U

i−→ S
)
7→ AutOU -alg(i

∗A)

is representable by a closed subscheme of the affine Z-scheme EndOS-mod(A) ≃ Mr, where
r = dimOS

(A) (see [Mil80, § IV.2]). Module homomorphisms of A that respect the involution
can be expressed as vanishing of polynomials, and hence the set of such homomorphisms is
representable by a closed subscheme of Mr2 . The intersection of these two subschemes represents
Aut(A, σ) and hence is an affine scheme over S.

Now we prove that this affine scheme is smooth. For the unitary case, consider the functor

AutOS×OS

(
Mn ×Mop

n , ϵ
)
:
(
U

i−→ S
)
7→ AutOU×OU -alg

(
Mn(OU )×Mn(OU )

op, ϵ
)

≃ AutOU -alg(Mn(OU )) .

This functor is representable by a smooth affine Z-scheme GLn (see [Mil80, § IV.2] for affineness
and [DG70, § II.5, Proposition 2.7] for smoothness). The functor AutOS

(OS×OS) is representable
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by the finite group scheme Z/2Z. Since representable functors on Schs are sheaves for the fpqc
topology [Vis05, Theorem 2.55], we have the following exact sequence of sheaves over S:

1 → AutOS×OS

(
Mn ×Mop

n , ϵ
)
→ Aut

(
Mn ×Mop

n , ϵ
)
→ AutOS

(OS ×OS) → 1 . (5.1)

The smoothness of Aut(Mn ×Mop
n , ϵ) now follows from [SGA3, VIB, Proposition 9.2].

For the other cases, note that Aut(Mn, sp) ≃ Spn/Z and Aut(Mn, tr) ≃ On/Z (as fpqc
quotients), where Spn, On denote, respectively, the symplectic group and orthogonal group and Z
denotes their respective centers. The required smoothness results for these group schemes follow
from [DG70, § II.5, 2.7] and [SGA3, VIB, Proposition 9.2].

Remark 5.2. By [Vis05, Theorem 2.55] and Theorem 5.1, the functor Aut(A, σ) is a sheaf for
the fpqc topology.

Definition 5.3. Let Aut0(A, σ) := Aut(A, σ)0 denote the neutral component of Aut(A, σ)
defined in Section 3.

Theorem 5.4. Let (A, σ) be a degree n Azumaya algebra with involution over S, where n ̸= 2, 4
whenever σ is orthogonal. Then Aut0(A, σ) is an adjoint group scheme over S with absolutely
simple fibers. Moreover, Aut0(A, σ) is of type A if σ is unitary, type B if σ is orthogonal and n
is odd, type C if σ is symplectic and type D if σ is orthogonal and n is even.

Proof. By Lemma 7.1 below, for every s ∈ S, we have

Aut0(A, σ)s =
(
Aut(A, σ)s

)0 ≃ Aut
(
Ak(s), σk(s)

)0
= Aut0

(
Ak(s), σk(s)

)
. (5.2)

Now Aut0(Ak(s), σk(s)) is an absolutely simple adjoint algebraic group over k(s) (see [KMRT98,

§VI.26]). This together with Theorem 5.1 and Proposition 3.5 shows that Aut0(A, σ) is a reduc-
tive group scheme over S. The rest of the claim follows from (5.2), unraveling the definitions in
Section 3 and [KMRT98, §VI.26].

Remark 5.5. In the above theorem, when n = 2, Aut0(A, σ) is not adjoint, and when n = 4, the
fibers of Aut0(A, σ) are not absolutely simple.

Definition 5.6. Based on Theorem 5.4, we say that the pair (A, σ) is of type ∗, where ∗ is

• A if σ is unitary,

• B if σ is orthogonal and the degree of A is odd,

• C if σ is symplectic,

• D if σ is orthogonal and the degree of A is even.

6. The fibered categories Azn∗ and GSn
∗

We will now construct the fibered categories of degree n Azumaya algebras with involution of
a given type and the fibered category of rank n adjoint group schemes with absolutely simple
fibers of a given type over SchS and show that they are stacks (in fact gerbes) with respect to
the étale topology. The classical reference for stacks and gerbes is [Gir71]. Other references are
[Vis05, Moe02] and the appendix in [DM18].
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Definition 6.1. Given a scheme U in the category SchS , let Azn∗ (U) denote the groupoid of
degree n Azumaya algebras with involution of type ∗ (where ∗ is A, B, C orD) over U (morphisms
are isomorphisms of Azumaya algebras over U that respect the involution structures). For any
morphism f : V → U in SchS , we have a pullback functor

Azn∗ (U) → Azn∗ (V ) , (A, σ) 7→ f∗(A, σ) :=
(
f∗A, f∗σ

)
,

which makes the assignment U → Azn∗ (U) a pseudo-functor on SchS (see [Vis05, Chapter 3]).

Definition 6.2. The fibered category of degree n Azumaya algebras with involution of type ∗
associated with the above pseudo-functor is denoted by Azn∗ → SchS .

Definition 6.3. The fibered category GSn∗ → SchS of rank n adjoint group schemes with ab-
solutely simple fibers of type ∗ (where ∗ is A, B, C or D) is defined in a similar way, where
morphisms in every fiber GSn∗ (U) are isomorphisms.

Proposition 6.4. The fibered categories Azn∗ → SchS and GSn∗ → SchS are stacks for the étale
topology. In fact, they are gerbes.

Proof. By standard arguments from decent theory, it is easy to see that GSn∗ → SchS is a stack
for the étale topology. It is a gerbe by Proposition 3.3. For the case of Azn∗ , we note from
descent theory that quasi-coherent sheaves (as well as the morphisms) satisfy descent for the
fpqc topology [BLR90, Chapter 6, Theorem 4] and hence also for the étale topology. Quasi-
coherent sheaves together with additional structure such as an algebra structure and involutions
also descend (see for example [Vis05, § 4.2.2 and § 4.2.3] or [KO74, Theorem II.3.4]). This shows
that Azn∗ → SchS is a stack for the étale topology. It is a gerbe by Proposition 4.3.

7. Equivalence of Azn
′

∗ and GSn
∗

Let Azn∗ → SchS and GSn∗ → SchS be the fibered categories defined in the previous section. In
this section, we describe a morphism between Azn

′
∗ and GSn∗ (where n′ is determined by n) that

will yield the required equivalence of fibered categories. We will need the following lemma.

Lemma 7.1. Let (A, σ) be an Azumaya algebra with involution over a scheme X. The assignment
(A, σ) → Aut0(A, σ) respects pullbacks; that is, for f : Y → X, we have a canonical isomorphism

f∗(Aut0(A, σ)
)
≃ Aut0(f∗(A, σ)) .

Proof. We note that f∗(Aut(A, σ)) = Aut(f∗(A, σ)). Hence by the Yoneda lemma, there is
a canonical isomorphism f∗(Aut(A, σ)) ≃ Aut(f∗(A, σ)). This together with Proposition 3.4
proves the claim.

Theorem 7.2. The functor

Aut0 : Azn
′

∗ → GSn∗ , (A, σ) 7→ Aut0(A, σ) ,
(
(A, σ)

i−→ (B, τ)
)
7→

(
ϕ → i ◦ ϕ ◦ i−1

)
is an equivalence of fibered categories, where

• n > 1 and n′ = n+ 1 if ∗ is of type A;

• n′ = 2n+ 1 if ∗ is of type B;

• n′ = 2n if ∗ is of type C;

• n > 2, n ̸= 4 and n′ = 2n if ∗ is of type D.
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Proof. The functor Aut0 defines a morphism of fibered categories by Lemma 7.1. Since Azn
′

∗ →
SchS and GSn∗ → SchS are gerbes by Proposition 6.4, to show that Aut0 is an equivalence, it
suffices to show that for any object (A, σ) in Azn

′
∗ (S) (say the split object), Aut0 induces an iso-

morphism between the sheaves Aut(A, σ) and Aut
(
Aut0(A, σ)

)
(see [Gir71, § IV.3.1] or [Moe02]).

Now by Theorem 5.1 and Proposition 3.6, both Aut(A, σ) and Aut
(
Aut0(A, σ)

)
are represented

by smooth affine group schemes over S denoted by Aut(A, σ) and Aut
(
Aut0(A, σ)

)
, respectively.

So it suffices to check that Aut0 induces an isomorphism at every fiber [Sta20, Tag 039E], [Sta20,
Tag 025G]. Again by the proof of Lemma 7.1, we see that for every s ∈ S, the functor Aut0

induces morphism of schemes over k(s):

Aut0k(s) : Aut
(
Ak(s), σk(s)

)
→ Aut

(
Aut0

(
Ak(s), σk(s)

))
.

Now we are in the case of fields, and the fact that Aut0k(s) is an isomorphism follows from
[KMRT98, §VI.26].

Remark 7.3. In the case n = 1 for type A, the above equivalence holds if Az2A is defined to be the
fibered category of Azumaya algebras of degree 2 (see [KMRT98, § 26.A, p. 366]). Similarly, in the
case n = 2 for type D, since the corresponding root system is not irreducible, one has to remove
the phrase “with absolutely simple fibers” in the definition of GSD2 for the above equivalence to
hold. The proofs are similar.

Remark 7.4. The classification of simply connected group schemes with absolutely simple fibers
over S is similar to the adjoint case. The functor in this case is given by

Aut0 : (A, σ) → Aut0(A, σ) ,

where for a semisimple group scheme G over S, we denote by G its unique simply connected
cover (see [Con14a, Exercise 6.5.2]).

Remark 7.5. Recall that when the base scheme is the spectrum of a field of characteristic 2, the
groups Aut0(A, σ) are not smooth when σ is orthogonal [KMRT98, § 23, p. 347]. Hence when 2
is not invertible in S, things look a little different for types B and D. One could possibly work
fppf locally instead of étale locally for these types to get a similar classification as in the case of
fields [Con14b, Lemma C.2.1]. We did not want to deal with these subtle technicalities in this
paper that will take away the nice picture when 2 is invertible.

8. Applications

In this section, we show some interesting consequences of Theorem 7.2.

For a ring R, let Pn′(R, ∗) denote the isomorphism classes of degree n′ Azumaya algebras
with involution of type ∗ over R.

Corollary 8.1. Let R be a Henselian local ring with residue field k. Assume char k ̸= 2. Then
the restriction map Pn′(R, ∗) → Pn′(k, ∗) is bijective for every (n′, ∗) listed in Theorem 7.2.

Proof. This follows from Lemma 7.1, Theorem 7.2 and [SGA3, XXIV, Proposition 1.21].

Remark 8.2. The above corollary is a generalization of a similar statement about isomorphism
classes of Azumaya algebras; see [Gro95, Theorem 6.1].

We will recall the concept of good reduction for algebraic groups defined in [CRR19]. Let k be
a discrete valued field with valuation v. Let kv, Ov and k(v) denote, respectively, the completion
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of k, the valuation ring of kv and the residue field. An absolutely almost simple linear algebraic
group G over k is said to have good reduction at v if there exists a reductive group scheme G
over Ov such that G ⊗Ov kv ≃ G ⊗k kv. In this case, let us call G an Ov-model for G. Studying
good reduction of G has many applications such as computing the genus of algebraic group and
proving Hasse principles. We refer the reader to [CRR19] for more details.

Corollary 8.3. Let G be a rank n absolutely simple adjoint (or simply connected) algebraic
group of classical type (n ̸= 4 if G is of type D) over a discrete valued field k with valuation v.
Assume that the characteristic of the residue field k(v) is different from 2. Suppose that G has
good reduction at v. Then any two Ov-models of G are isomorphic. In other words, an Ov-model
of G if it exists is unique up to isomorphism.

Proof. This follows from Lemma 7.1, Theorem 7.2 and [BVG14, Theorem 3.7].

Remark 8.4. The classification in Theorem 7.2 can be used to translate the notion of good
reduction of absolutely simple adjoint (or simply connected) classical algebraic groups to the
notion of good reduction of the underlying sesquilinear forms over division algebras. See for
example [Sri20, Remark 4.3].

Let R be a regular local ring, and let G be a reductive groups scheme over R. A conjecture
of Grothendieck and Serre ([Gro58, § 5, Remarque 3, pp. 26–27], [Gro68, Remarque 1.11(a)] and
[Ser58, § 5.5, Remarque, p. 31]) states that rationally trivial principal G-homogeneous spaces are
trivial; that is, the kernel of the canonical map

H1(R,G) → H1(K,G) , (8.1)

where K is the fraction field of R, is trivial. While the conjecture is still open to be proved
in complete generality, the proofs for various cases of R and G have been established since
Ye.A. Nisnevich’s thesis (Harvard, 1982). If R is a regular local ring containing a field of char-
acteristic different from 2 or if R is a semilocal Bézout domain with 2 invertible, Panin [Pan03,
Theorem 1.1] and Beke [BVG14, Theorem 3.7], respectively, have proved that any two Azumaya
algebras with involutions over R that are rationally isomorphic (that is, isomorphic over the
fraction field of R) are already isomorphic. This implies that for the above cases of R, the kernel
of the map in (8.1) is trivial when G ≃ Aut(A, σ), the automorphism scheme of an Azumaya
algebra with involution over R. Since any rank n adjoint group scheme of classical type (n ̸= 4
if the group is of type D) over R with absolutely simple fibers is isomorphic to Aut0(A, σ) for
some (A, σ) by Theorem 7.2, we conclude the following.

Corollary 8.5. Let R be a integral domain with 2 invertible that satisfies the property that
any Azumaya algebra with involution over R that is split over the fraction field of R is already
split. Then the Grothendieck–Serre conjecture is true for any rank n adjoint group scheme of
classical type (n ̸= 4 if the group is of type D) with absolutely simple fibers over R. In particular,
this happens when R is a regular local ring containing a field of characteristic different from 2
or when R is a semilocal Bézout domain with 2 invertible.
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Synthèses, vol. 42 (Soc. Math. France, Paris, 2014), 93–444.

Con14b , Reductive group schemes, 2014, available at https://math.stanford.edu/~conrad/
papers/luminysga3.pdf.

DM18 P. Deligne and J. Milne, Tannakian categories, 2018, available at https://www.jmilne.org/
math/xnotes/tc2018.pdf.
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in Math., vol. 389 (Springer, Berlin, 1974); doi:10.1007/BFb0057799.

KPS90 M.-A. Knus, R. Parimala and V. Srinivas, Azumaya algebras with involutions, J. Algebra 130
(1990), no. 1, 65–82; doi:10.1016/0021-8693(90)90100-3.

Len08 H.W. Lenstra, Galois theory for schemes, 2008, Preprint, Universiteit Leiden, available at
https://websites.math.leidenuniv.nl/algebra/GSchemes.pdf.

172

https://doi.org/10.1007/s10468-013-9463-6
https://doi.org/10.1007/978-3-642-51438-8
https://doi.org/10.1112/S0010437X1900705X
https://math.stanford.edu/~conrad/papers/luminysga3.pdf
https://math.stanford.edu/~conrad/papers/luminysga3.pdf
https://www.jmilne.org/math/xnotes/tc2018.pdf
https://www.jmilne.org/math/xnotes/tc2018.pdf
https://doi.org/10.24033/bsmf.1629
https://doi.org/10.1007/BFb0058993
https://doi.org/10.1007/BFb0059005
https://doi.org/10.1007/BFb0059027
https://doi.org/10.1007/BFb0059027
https://doi.org/10.25537/dm.2020v25.527-633
https://doi.org/10.1007/978-3-662-62103-5
http://www.numdam.org/item/SCC_1958__3__A5_0
http://www.numdam.org/item?id=PMIHES_1965__24__5_0
https://doi.org/10.1007/978-3-642-75401-2
https://doi.org/10.1090/coll/044
https://doi.org/10.1007/BFb0057799
https://doi.org/10.1016/0021-8693(90)90100-3
https://websites.math.leidenuniv.nl/algebra/GSchemes.pdf


Azumaya algebras and semisimple group schemes

Mil80 J. S. Milne, Étale cohomology, Princeton Math. Ser., vol. 33 (Princeton Univ. Press, Princeton,
NJ, 1980).

Moe02 I. Moerdijk, Introduction to the language of stacks and gerbes, 2002, arXiv:math.AT/0212266.

Pan03 I. Panin, Purity for similarity factors, 2003, arXiv:math.AG/0309054.

PS92 R. Parimala and V. Srinivas, Analogues of the Brauer group for algebras with involution, Duke
Math. J. 66 (1992), no. 2, 207–237; doi:10.1215/S0012-7094-92-06606-3.

Ser58 J.-P. Serre, Espaces fibrés algébriques, Séminaire Claude Chevalley 3 (1958), Talk no. 1; http:
//www.numdam.org/item/SCC_1958__3__A1_0.

Sri20 S. Srinivasan, A finiteness theorem for special unitary groups of quaternionic skew-hermitian
forms with good reduction, Doc. Math. 25 (2020), 1171–1194; doi:10.1177/1081286520905059.

Sta20 The Stacks Project Authors, Stacks Project, 2020, https://stacks.math.columbia.edu.

Vis05 A. Vistoli, Grothendieck topologies, fibered categories and descent theory, in Fundamental Al-
gebraic Geometry, Math. Surveys Monogr., vol. 123 (Amer. Math. Soc., Providence, RI, 2005),
1–104.

Wei60 A. Weil, Algebras with involutions and the classical groups, J. Indian Math. Soc. (N.S.) 24
(1960), 589–623.

Srinivasan Srimathy srimathy@math.tifr.res.in
School of Mathematics, Tata Institute of Fundamental Research, Mumbai 400005, India

173

https://arxiv.org/abs/math.AT/0212266
https://arxiv.org/abs/math.AG/0309054
https://doi.org/10.1215/S0012-7094-92-06606-3
http://www.numdam.org/item/SCC_1958__3__A1_0
http://www.numdam.org/item/SCC_1958__3__A1_0
https://doi.org/10.1177/1081286520905059
https://stacks.math.columbia.edu
mailto:srimathy@math.tifr.res.in

	Introduction
	Notation
	Group schemes over an arbitrary scheme
	Azumaya algebras with involution over an arbitrary scheme
	The group scheme of automorphisms of Azumaya algebras with involution
	The fibered categories Az_*^n and GS_*^n
	Equivalence of Az_*^n' and GS_*^n
	Applications
	References

