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On the relative motive

of a commutative group scheme

Giuseppe Ancona, Annette Huber and Simon Pepin Lehalleur

Abstract

We prove a canonical Künneth decomposition of the relative motive with rational co-
efficients of a smooth commutative group scheme over a noetherian finite-dimensional
base.

1. Introduction

Let S be a noetherian scheme of finite dimension, and let G be a smooth commutative S-group
scheme of finite type. The main objective of this paper is to establish the following canonical
Künneth decomposition of the motive MS(G) associated with G in the triangulated category of
motives over S with rational coefficients (see Theorems 4.3 and 4.7):

MS(G)
∼−→

kd(G/S)⊕
n>0

SymnM1(G/S)

⊗M(π0(G/S)) , (1.1)

where M1(G/S) is the rational 1-motive of G (that is, the motive induced by the étale sheaf rep-
resented by G⊗Q), the motive M(π0(G/S)) is a fibrewise Artin motive related to the connected
components of fibres of G and kd(G/S) is a non-negative integer. This decomposition is natural
in G, it respects the structure of Hopf objects and it is compatible with pullback for morphisms
f : T → S.

This level of generality makes it possible to treat examples like degenerating families of abelian
or semi-abelian varieties, in particular Néron models or the universal family over toroidal com-
pactifications of mixed Shimura varieties of Hodge type. Note also that there are no assumptions
on regularity or on the residual characteristics of S. Moreover, we show that this Künneth decom-
position also holds when G is a commutative group in the category of smooth algebraic spaces
over S. However, the argument uses rational coefficients in many places. One does not expect
such a direct-sum decomposition with integral coefficients, even when S is the spectrum of a field.

This result has several interesting consequences. First, the motive M1(G/S) is geometric and
the motives MS(G) and M1(G/S) are of finite Kimura dimension in the sense of [Kim05]. Second,
the Chow groups of G with rational coefficients decompose into finite sums of eigenspaces with
respect to the multiplication by n (Theorem 4.9); this generalizes the result of Beauville for
abelian varieties [Bea86]. Third, it is now possible to construct the motivic polylog on G\{eG}
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On the relative motive of a commutative group scheme

for all S and G as above (with eG the zero section). This is a tremendous generalization from the
cases G = Gm or G an abelian scheme over a regular base available before. At the same time,
the systematic use of motives over G simplifies the construction even in the classical case; for
details, see the upcoming paper [HK15].

The motive M1(G/S) is a prime example of a relative homological 1-motive, that is, a motive
in the triangulated subcategory generated by the relative homology of curves over S. In fact,
the results of Section 6 suggest that M1(G/S)[−1] is in the heart of the conjectural standard
motivic t-structure on homological 1-motives. The upcoming thesis [PL] will make this statement
rigorous.

Some special cases of the main theorem are already known. The case of abelian schemes over
a regular base was treated in the setting of Chow motives by Künnemann in [Kün94]. Building
on this, the case where S is the spectrum of a perfect field and G is general was treated by
the first two authors together with Enright-Ward in [AEWH15]. We refer to the introduction
of [AEWH15] for a more complete discussion of earlier work.

Indeed, the present note is a follow-up to [AEWH15]. The idea of the proof is simple: once
the morphism (1.1) is written down, we can check that it is an isomorphism after pullback to
geometric points of S, where we are back in the perfect field case.

However, a number of difficulties arise. First, there are technical advantages to working in
the setting of motives without transfers (see Remark 3.4) and it is in this setting that we define
the morphism (1.1). So we will be forced to compare our approach to that of [AEWH15], which
uses Voevodsky’s category of motives with transfers. Second, the sheaf represented by G is not
cofibrant for the A1-model structure, hence it is not obvious how to compute the left-derived
pullback f∗M1(G/S). This is overcome by an explicit resolution defined by rational homotopy
theory. Finally, the crucial reduction that allows to check that a morphism is an isomorphism
after restriction to geometric fibres (Lemma A.6) is only available in the stable case.

All these technical difficulties give rise to results that have their own interest. In particular,
we show that the sheaf represented by G⊗Q admits transfers (Theorem 3.8).

We will (mostly) work with stable categories of motives with rational coefficients. There are
several version of such categories available in the literature, namely:

(i) the original definition of Voevodsky of DM(S,Q) based on finite correspondences and
sheaves with transfers;

(ii) the étale motives without transfers DAét(S,Q), introduced by Morel and studied in [Ayo07a,
Ayo07b, Ayo14a];

(iii) the h-motives DMh(S,Q), originally introduced by Voevodsky and studied in [CD09, CD16];

(iv) the Beilinson motives DMB(S) introduced in [CD09].

All these categories are related by functors, and moreover are equivalent for good base schemes
(for example, S regular) by [CD09, Theorems 16.1.2, 16.1.4, 16.2.18].

We have several reasons here to work with DAét(S,Q); for instance, the morphism (1.1) is
easiest to write in this context (again, see Remark 3.4). The comparison functors mentioned
above allow us to transpose the main theorem to the other categories (see Theorem 4.7 and
Remark 4.8).
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Organization of the paper

Section 2 deals with generalities on commutative group schemes. Section 3 introduces the motive
M1(G/S) and gives its basic properties. Section 4 states the main theorem and its consequences.
The proof is then given in Section 5. We study the Betti, `-adic and Hodge realizations of the
Künneth components in Section 6. In Section 7 we present the straightforward generalization of
our results to the setting of smooth commutative algebraic group spaces.

The reader who is not familiar with the triangulated categories of mixed motives over
a base [Ayo14a, CD09] may find Appendix A useful. The three other appendices deal with
technical points of the proof of the main theorem explained above. In Appendix B we develop
the tools needed to translate the main result of [AEWH15] to motives without transfers. In Ap-
pendix C we establish qfh descent for the presheaf given by a commutative group. Appendix D
deals with the construction of a functorial cofibrant resolution for the sheaf G⊗Q.

Conventions

Throughout, let S be a noetherian scheme of finite dimension. Let Sm/S be the category of
smooth S-schemes of finite type, and let Sch/S be the category of S-schemes of finite type. We
also write Sm and Sch when there is no ambiguity on the base. By sheaf we mean an étale sheaf
on Sm/S, unless specified otherwise. By G, we denote either a group scheme or an algebraic
group space that is always assumed to be commutative, smooth of finite type over S. In this
situation, we often write G/S for conciseness. For any morphism f : T −→ S we will write

GT /T = G×S T/T

for the base change of G/S along f . We write cGrpS for the category of smooth commutative
group schemes of finite type over S.

Throughout, we write G/S or more briefly G for the presheaf of abelian groups on Sch/S or
Sm/S defined by G. We write G/S

Q
(or GQ) for the presheaf tensor product G/S ⊗Z Q.

We use the cohomological indexing convention for complexes, except in Appendix D where
we follow the homological convention of [Bre69] for ease of reference.

As discussed in the introduction, we need to consider various triangulated categories of mixed
motives with rational coefficients. See the Appendices A and B for the set-up we use. In particular,
we write DA(S) for DAét(S,Q).

At several points, we have parallel statements in effective and stable categories of motives.
They are indicated by an (eff) in the notation.

2. Group schemes

Let S be a noetherian scheme of finite dimension, and let G/S be a smooth commutative group
scheme of finite type.

Since G/S is smooth, the union of the neutral components G0
s for s ∈ S is open in G

by [SGA3, VIB, Théorème 3.10]. We write G0 for the corresponding open subscheme of G and
π0(G/S) := G/G0 for the quotient étale sheaf on Sch/S. We also write π0(G/S) for its restriction
to Sm/S. By definition of G0, the formation of G0 and π0(G/S) for G/S smooth commutes with
base change.

The following statement uses the notion of an algebraic space. For basics on algebraic spaces,
see Section 7.
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Lemma 2.1. The scheme G0 is a smooth S-group scheme of finite type, and π0(G/S) is an
étale algebraic group space. If G0 is closed in G (for instance, if S is the spectrum of a field),
then π0(G/S) is a scheme. Moreover, there is a canonical short exact sequence of étale sheaves

0 −→ G0 −→ G
pG−→ π0(G/S) −→ 0 .

Proof. Since G/S is smooth of finite type and S is noetherian, G0 is also smooth and of finite
type.

As the quotient of the smooth equivalence relation G0 ×G (G ×S G), the sheaf G/G0 is an
S-algebraic group space (see, for example, [LMB00, Corollaire 10.4]).

The algebraic group space π0(G/S) is locally of finite presentation (because both G and G0

are locally of finite presentation) and formally étale (let T 0 → T be an infinitesimal thickening;
then (G/G0)(T ) → (G/G0)(T 0) is surjective because G is smooth, and injective because G0 is
open in G). We conclude that π0(G/S) is an étale algebraic space.

If G0 is open and closed in G, then π0(G/S) is separated. A quasi-finite separated algebraic
space of finite presentation is a scheme by [Knu71, II, Theorem 6.15].

The function s 7→ |π0(Gs̄/s̄)| (where s̄ is any geometric point above s) is locally constructible
on S by [EGAIV-3, Corollaire 9.7.9]. In particular, it is bounded since S is quasi-compact. This
justifies the following definition.

Definition 2.2. The order of π0(G/S), denoted o(π0(G/S)), is defined as the least common
multiple of the orders of all the elements of the groups π0(Gs̄/s̄) (with s̄ a geometric point of S).

Definition 2.3. For any point s ∈ S, we write Gs for the fibre, gs for its abelian rank and rs
for its torus rank. The Kimura dimension of G/S is

kd(G/S) := max{2gs + rs | s ∈ S} .

This terminology will be justified by Theorem 4.3.

Lemma 2.4. The value kd(G/S) is the maximum of 2gs+rs for s varying over the generic points
of S.

Proof. After replacing G by G0, we can suppose that G is fibrewise connected. Let us fix t ∈ S.
After base changing to the strict henselization of the local ring at t, we can assume that S is
strictly henselian. It is enough to show that under this hypothesis 2gs + rs > 2gt + rt for all
s ∈ S.

Let us fix a prime ` which is coprime to the residual characteristic of S and, for all natural n,
consider the multiplication map [`n] : G→ G. The integer 2gs + rs is the rank of the `-adic Tate
module of Gs. By [BLR90, § 7.3, Lemma 2(b)], the group scheme ker[`n] is étale over S. So, by
Hensel’s lemma, any section of this étale morphism at t extends to a section over S. In particular,
the rank of the Tate module of Gs has its minimum at s = t.

3. The 1-motive M1(G)

Definition 3.1. Let G/S be the étale sheaf of abelian groups on Sm/S defined by G, that is,

G/S(Y ) = MorSm/S(Y,G)

for Y ∈ Sm/S. Let

aG/S : ZMorS(·, G)→ G/S
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be the morphism of presheaves of abelian groups on Sm/S induced by the addition map

We may omit S from this notation if the base scheme is clear.

Remark 3.2. By étale descent, G/S is a sheaf; G/S
Q

is then also a sheaf by a quasi-compactness

argument [AEWH15, Lemma 2.1.2]. However, the presheaves ZMorS(·, G) and QMorS(·, G) are
not sheaves.

Definition 3.3. (i) Define

M eff
1 (G/S) ∈ DAeff(S)

to be the motive induced by the sheaf G/S
Q

, and let

M1(G/S) = LΣ∞M eff
1 (G/S) ∈ DA(S) .

(ii) Define

αeff
G/S : M eff

S (G) −→M eff
1 (G/S)

to be the morphism in DA(S) induced by the sheafification of aG/S ⊗Q, and let

αG/S = LΣ∞αeff
G/S : MS(G) −→M1(G/S) .

Remark 3.4. The reader should compare this with [AEWH15, Definition 2.1.4], which is an
effective analogue with transfers over a perfect field. A comparison between the two morphisms
will be made in Section 5.1. The definition in loc. cit. cannot be generalized over a general S,
because it is not yet known whether finite correspondences from X to Y are related to morphisms
from X to a symmetric power of Y . This point is studied in the upcoming PhD thesis of Daniel
Harrer (Freiburg).

Remark 3.5. The assignment G/S 7→M1(G/S) naturally extends to a functor

M1 : cGrpS −→ DA(S) .

Lemma 3.6. (i) The functor M1 is Z-linear. Moreover, it sends short exact sequences in cGrpS
to exact triangles in DA(S).

(ii) The inclusion G0 → G induces an isomorphism M1(G) 'M1(G0).

(iii) The morphism αG/S is natural in G ∈ cGrpS .

Proof. (i) The functor from cGrpS to the category of étale sheaves of Q-vector spaces on Sm/S
which sends G to G/S

Q
is Z-linear and exact. The statement then follows from the construction

of DA(S).

(ii) As the quotient G/G0 is a torsion sheaf, the map G0 → G induces an isomorphism of
sheaves G0/S

Q
∼→ G/S

Q
.

(iii) The morphism aG/S ⊗Q is natural in G ∈ cGrpS , and so is its sheafification.

Proposition 3.7. Let f : T → S be a morphism, and let G → S be a smooth commutative
group scheme. Then with the notation of Definition 3.3 there are canonical isomorphisms

f∗M
(eff)
1 (G/S) 'M (eff)

1 (GT /T )

and, modulo these isomorphisms, we have equalities of morphisms

f∗
(
α

(eff)
G/S

)
= α

(eff)
GT /T

.
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Proof. Since pullbacks commute with suspension (Lemma A.5(iii)), it is enough to treat the
effective case. In this proof, we write for clarity f∗ for the underived pullback on complexes of
sheaves and Lf∗ : DAeff(S)→ DAeff(T ) for the triangulated pullback functor.

By the universal property of fibre products, we have

f∗G = G×S T .

By applying Theorem D.1 to the sheaf G and switching to cohomological indexing, we obtain a
complex A(G) ∈ Cpl60(Shét(Sm/S,Z) together with a map

r : A(G)→ G

with the following properties:

(i) For all i ∈ N, the sheaf A(G)−i is of the form
⊕d(i)

j=0 Z(Ga(i,j)) for some d(i), a(i, j) ∈
N. In particular, AQ(G) := A(G) ⊗ Q is a chain complex bounded from above of sums
of representable sheaves of Q-vector spaces; hence it is cofibrant in the projective model
structure that we use to define DAeff(S).

(ii) There is a morphism ãG/S : Z(G)→ A(G) lifting aG/S .

(iii) The map rQ := r ⊗Q is a quasi-isomorphism.

There are a complex A(GT ) ∈ Cpl60(Shét(Sm/T,Z)) and a map rT : A(GT )→ GT with the
same properties, and all those objects are compatible with pullbacks. Putting all of this together,
we obtain canonical isomorphisms of objects

Lf∗M1(G/S)
Lf∗(rQ)

←−−−−
∼

f∗(AQ(G)) ' AQ(GT )
rQ

−−−−→
∼

M1(GT /T )

and, modulo these isomorphisms, equalities of morphisms

Lf∗αeff
G/S = f∗(ãG/S ⊗Q) = ãGT /T ⊗Q = αeff

GT /T
.

This finishes the proof.

The rest of the section is devoted to studying the 1-motive with transfers of G and to com-
paring it to M1(G). It will be used only in Section 5 and can be skipped at a first reading.

Theorem 3.8. Let G be a smooth commutative group scheme over an excellent (noetherian and
finite-dimensional) scheme S. The étale sheaf G/S

Q
on Sm/S represented by G has a unique

structure of étale sheaf with transfers, which we denote G/Str

Q
. Moreover, there is a unique map

atr
G/S : Q(G)tr → G/Str

Q

of sheaves of transfers extending aG/S .

Proof. This comes from the fact that G/S
Q

is a qfh sheaf (Proposition C.2) and that such sheaves

have a unique structure of sheaves with transfers (as follows from Theorem B.3 and the Yoneda
lemma). The morphism atr

G/S is defined by taking the qfh sheafification of aG/S and using the
natural isomorphisms of Theorem B.3 and Proposition C.2. Uniqueness follows again from the
Yoneda lemma.

We can then proceed as in the case of M1(G).
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Definition 3.9. (i) Define the (effective) 1-motive of G

M
(eff)
1 (G/S)tr ∈ DM(eff)(S)

to be the motive induced by the sheaf G/S
Q

(analogously to Definition 3.3).

(ii) Define

αtr
G/S : MS(G)tr −→M1(G/S)tr

to be the morphism in DM(S) induced by atr
G/S .

Recall the adjoint pairs of functors (see Appendices B.1 and B.2)

γ∗ : Shét(Sm)� Shét(Smtr) : γ∗

Lγ∗ : DAeff(S)� DMeff(S) : γ∗ .

Proposition 3.10. Let S be excellent. Let G be a smooth commutative group scheme over S.

(i) The natural morphism induced from the counit of γ∗ a γ∗ for étale sheaves

γ∗γ∗G/S
tr

Q
→ G/Str

Q

is an isomorphism of sheaves with transfers.

(ii) The natural morphism (induced from the counit of Lγ∗ a γ∗ for effective motives, fol-
lowed by infinite suspension in the stable case)

Lγ∗M
(eff)
1 (G/S)→M

(eff)
1 (G/S)tr

is an isomorphism.

Proof. We have

Lγ∗M1(G) = Lγ∗LΣ∞M eff
1 (G) ' LΣ∞tr Lγ

∗M eff
1 (G)

by Lemma B.9(ii). Since this isomorphism is compatible with the counit maps of the adjunctions
Lγ∗ a γ∗, it is thus enough to treat the effective case in statement (ii). We first reduce to
statement (i) as follows.

We apply Theorem D.1 to the sheaf on Sch/S represented by G (that we also denote by G
for simplicity). This yields a resolution

rQ : AQ(G) −→ γ∗(GQ)tr ,

where AQ(G) is a bounded above complex of sheaves of Q-vector spaces whose terms are finite
sums of sheaves represented by smooth S-schemes. Hence (rQ)|Sm is a cofibrant resolution of GQ
in the projective model structure on complexes of sheaves on Sm/S. By definition of the de-
rived counit of a Quillen adjunction, the counit map ηMeff

1 (G/S)tr is the image of the following
composition at the model-category level:

γ∗AQ(G)|Sm
γ∗(rQ)Sm−→ γ∗γ∗(GQ)tr

η(GQ)tr

−→ (GQ)tr .

The assumptions of Lemma B.4 are satisfied for AQ
rQ→ GQ. By point i of that lemma, the first

map in this composition is a quasi-isomorphism. It thus remains to show that the second map is
an isomorphism, which is precisely statement (i).

The functor γ∗ at the level of sheaves with transfers is conservative, so it is enough to show
that γ∗η(GQ)tr is an isomorphism. By Lemma B.4(ii) and the triangular identity of adjunctions
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we have the following commutative diagram:

γ∗γ
∗GQ

id
++

γ∗η
// GQ ε

//

ε′ %%

γ∗γ
∗GQ

(GQ)qfh|Sm .

∼
OO

Proposition C.2 shows that the map ε′ is an isomorphism. Together with the diagram, this finishes
the proof.

Proposition 3.11. Let S be excellent. Modulo the isomorphisms of Proposition 3.10, the functor
γ∗ sends the morphism aG/S to atr

G/S and Lγ∗ sends the morphism αG to αtr
G, the morphism φG

to φtr
G and the morphism ψG to ψtr

G.

Proof. The construction of φG and ψG from αG together with the fact that Lγ∗ is monoidal
(Lemma B.9(iv)) shows that it is enough to prove the statement for αG. As in the proof of
Proposition 3.10, it is then enough to treat the effective statement.

We have a natural commutative diagram of sheaves without transfers

Q(G)
αG //

��

GQ

∼
��

γ∗Q(G)tr
γ∗αtr

G // γ∗(GQ)tr ,

where the left vertical map is the unit map εQ(G). This diagram induces a commutative diagram

in DAeff(S) whose left vertical map is the derived unit map εMeff
S (G). We apply the functor Lγ∗

and stack the resulting diagram with a diagram coming from the naturality of the derived counit
maps:

M eff
S (G)tr Lγ∗αG //

Lγ∗ε
Meff

S
(G)

��

Lγ∗M eff
1 (G)

∼
��

Lγ∗γ∗M
eff
S (G)tr

Lγ∗γ∗αtr
G //

η
Meff

S
(G)tr

��

Lγ∗γ∗M
eff
1 (G)tr

η
Meff

1 (G/S)tr ∼
��

M eff
S (G)tr

αtr
G //M eff

1 (G)tr .

The left vertical composition is the identity by the triangular identity for the object M eff
S (G), and

the right vertical composition is the isomorphism of Proposition 3.10. This finishes the proof.

4. Statement of the main theorem

Definition 4.1. Let M
(eff)
1 (G/S) and α

(eff)
G/S be as in Definition 3.3. For any integer n > 0 write

∆n
G for the n-fold diagonal immersion.

(i) We define ϕ
(eff)
n,G to be the morphism

ϕ
(eff)
n,G : M

(eff)
S (G)

M
(eff)
S (∆n

G)
−−−−−−−→M

(eff)
S (G)⊗n

α
(eff)⊗n
G/S−−−−−→M

(eff)
1 (G/S)⊗n .
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As ∆n
G is invariant under permutations, this factors uniquely:

M (eff)(G)
α

(eff)⊗n
G/S

◦M(eff)
S (∆n

G)
//

ϕ
(eff)
n,G

''

M
(eff)
1 (G)⊗n

Symn(M
(eff)
1 (G)) .

66

(ii) Let kd(G/S) be the integer in Definition 2.3. Define the morphism

ϕ
(eff)
G/S =

kd(G/S)∑
n=0

ϕ
(eff)
n,G : M

(eff)
S (G) −→

kd(G/S)⊕
n=0

Symn
(
M

(eff)
1 (G/S)

)
.

(iii) Let pG be as in Lemma 2.1. Define the morphism

ψ
(eff)
G/S : M

(eff)
S (G) −→

kd(G/S)⊕
n=0

SymnM
(eff)
1 (G/S)

⊗M (eff)
S (π0(G/S))

to be ψ
(eff)
G/S =

(
ϕ

(eff)
G/S ⊗M

(eff)
S (pG)

)
◦M (eff)

S (∆2
G).

Remark 4.2. The Künneth formula holds by Proposition A.5(i). This is used in the definition
above to get a morphism

M
(eff)
S (∆n

G) : M
(eff)
S (G)→M

(eff)
S (G×S · · · ×S G) = M

(eff)
S (G)⊗n ,

as well as to define ψ
(eff)
G/S .

The morphisms ϕ
(eff)
G and ψ

(eff)
G/S are the unique extensions of αG compatible with the natural

comultiplication on both sides; see [AEWH15, Section 3.2] for a more detailed discussion.

The main result of the paper is the following theorem.

Theorem 4.3. Let S be a noetherian finite-dimensional scheme, and let G/S be a smooth
commutative group scheme of finite type over S.

For m ∈ Z, let [m] : G → G be the morphism of multiplication by m. Then the following
statements hold:

(i) The relative motive M1(G/S) is odd of Kimura dimension kd(G/S) (that is, SymnM1(G/S)
is zero for n > kd(G/S) and non-zero otherwise).

(ii) The map

ψG/S : MS(G) −→

kd(G/S)⊕
n=0

SymnM1(G/S)

⊗M(π0(G/S))

is an isomorphism of motives. It is natural in G ∈ cGrpS , it commutes with base change
(in S) and it respects the natural structures of Hopf algebras.

(iii) The motives M1(G) and M(π0(G/S)) are geometric motives and the motive MS(G) is finite
dimensional in the sense of Kimura [Kim05].

(iv) The direct factor

hn(G/S) = ψ−1
G/S

(
SymnM1(G/S)⊗MS(π0(G/S))

)
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of MS(G) is intrinsically characterized as follows: for m ∈ Z that is equal to 1 modulo
o(π0(G/S)), the map MS([m]) operates on hn(G/S) as mnid.

Remark 4.4. The motives MS(G) and M(π0(G/S)) carry a Hopf algebra structure because G/S
and π0(G/S) are group objects. The Hopf algebra structure on

⊕
n>0 SymnM1(G/S) is that of

the symmetric coalgebra; see [AEWH15, Appendix B]. It is isomorphic but not identical to the
symmetric Hopf algebra.

Remark 4.5. We expect the morphism ψeff
G/S to already be an isomorphism. Most steps of the

proof take place in DAeff(S). When S is of characteristic zero, the result of [Ayo14b, Annexe B]
can be used to show that ψeff

G/S is an isomorphism; since this requires some extensions of results
from stable to effective motives, which are easy but not in the literature, we do not write the
proof here. An effective proof in general would require a comparison between effective étale
motives with and without transfers over an arbitrary field; see the discussion in Appendix B.
An alternative approach would be to try to redo [AEWH15] in the category of motives without
transfers. There, the missing ingredient is a special case of the comparison, namely a transfer-free
computation of the effective motivic cohomology of curves.

Remark 4.6. The theorem above holds in the more general context of commutative algebraic
group spaces; see Section 7.

As a consequence, we also get a version of the theorem for motives with transfers. The
functor Lγ∗ is defined in Appendix B.2.

Theorem 4.7. Let S be an excellent (noetherian and finite-dimensional) scheme, and let G/S
be a smooth commutative group scheme of finite type over S. Then

Lγ∗ψG/S : MS(G)tr ∼−→

kd(G/S)⊕
n=0

SymnM1(G/S)tr

⊗MS(π0(G/S))tr

is an isomorphism and the analogue of Theorem 4.3 holds.

Proof. First, apply Lγ∗ to the isomorphism in Theorem 4.3. Then, note that by Proposition 3.10
we have Lγ∗M1(G/S) ∼= M1(G/S)tr and by Lemma B.9(iii) we have Lγ∗MS(G) ∼= MS(G)tr and
Lγ∗MS(π0(G/S)) ∼= MS(π0(G/S))tr.

Remark 4.8. (i) Using Theorem B.3 one can give an alternative description of Lγ∗ψG/S using
qfh sheafification. Recall that the morphism ψG/S is formally constructed from a morphism of
sheaves aG/S ⊗Q (Definition 3.1). If one replaces in this formal construction aG/S ⊗Q by its qfh
sheafification and DA(S) by DM(S), one ends up with Lγ∗ψG/S .

(ii) By the work of Cisinski and Déglise, the different categories of motives are related by
functors. By replacing Lγ∗ by those functors one obtains analogous results in the other categories
of motives.

More precisely, for the category DMh(S,Q) of h-motives use [CD09, Theorem 16.1.2] (one
needs to suppose that S is excellent, noetherian and finite-dimensional) and for the category
DMB(S) of Beilinson motives use [CD09, Theorem 16.2.18] (with S noetherian and finite-dimen-
sional).

Theorem 4.9. Suppose that S is regular. The ith Chow group of G with rational coefficients
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decomposes as

CHi(G)Q =

kd(G/S)⊕
j=0

CHi
j(G) ,

where

CHi
j(G) =

{
Z ∈ CHi(G)Q | [m]∗Z = mjZ , ∀m ≡ 1 (mod o(π0(G/S)))

}
.

Proof. Since S is regular and noetherian, by [CD09, Corollary 14.2.14] (and [Ful98, 20.1] for the
comparison between Chow groups and K-theory), there is a canonical isomorphism

HomDMB(S)(MS(G),Q(i)[2i]) ∼= CHi(G)Q .

Moreover, there is a canonical equivalence between DMB(S) and DA(S), by [CD09, Theo-

rem 16.2.18]. Hence the decomposition MS(G) =
⊕kd(G/S)

i=0 hn(G/S) of Theorem 4.3 implies the
one in the statement.

Remark 4.10. (i) In the same way one has a decomposition of the higher Chow groups and of
the Suslin homology.

(ii) Some of the eigenspaces CHi
j(G) above should be zero. For example, if S is the spectrum

of a field and G is an abelian variety of dimension g, then Beauville [Bea86] proved that CHi
j(G)

is zero if j < i or j > g+ i, and that, in general, CHi
j(G) is non-zero for i 6 j 6 2i. Conjecturally

CHi
j(G) should be zero if j > 2i; this is part of the (still open) Bloch–Beilinson–Murre conjecture.

In our general setting one can hope to show similar vanishings of some of the eigenspaces CHi
j(G)

following the methods of Sugiyama [Sug14] for semiabelian varieties.

5. Proof of the main theorem

5.1 The case over a perfect field

In this section let S = Spec(k) be the spectrum of a perfect field. Recall that in this case π0(G/k)
is a group scheme by Lemma 2.1, so we do not have to consider motives of algebraic spaces in
this section. We prove Theorem 4.3 for all commutative group schemes of finite type G over k.
This is essentially the main result of [AEWH15], with exception that there, the authors work in
the effective category of motives with transfers and in this paper we primarily work in the stable
category of motives without transfers. The point is then to compare the two approaches.

Proposition 5.1. Let G be a smooth commutative group scheme over k. Then M1(G) is odd
of Kimura dimension kd(G/k) and the morphism ψG/k is an isomorphism.

Proof. By Theorem B.6 and Proposition 3.10 it suffices to show that

Lγ∗Symn(M1(G)) = Sym∗(LγnM1(G)) = Symn(M1(G)tr)

vanishes for n > kd(G) and that Lγ∗ψG/k = ψtr
G/k is an isomorphism.

As LΣ∞tr is monoidal (see Lemma B.9(i)) and commutes with direct sums, we have an iso-
morphism

k⊕
n=0

SymnM1(G)tr ' LΣ∞tr

(
k⊕

n=0

SymnM1(G)eff,tr

)
.
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Modulo this isomorphism, ψtr
G agrees with the morphism deduced by applying LΣ∞tr to

ψeff,tr
G/k : M eff

k (G)tr −→

(⊕
n>0

SymnM eff
1 (G/k)tr

)
⊗M eff

k (π0(G/k))tr .

On the other hand, by the uniqueness part in Theorem 3.8, the morphism ψeff,tr
G/k is exactly the

morphism considered in [AEWH15, § 7.4] (although with different notation). We are now able to
apply [AEWH15, Theorem 7.4.6], which concludes the proof.

5.2 The general case

We return to an arbitrary base scheme S.

Proof of Theorem 4.3. (i) We consider the Kimura dimension kd(G/S) of M1(G/S). We claim
that

Symn(M1(G/S)) = 0

for n > kd(G/S). By Lemma A.6 we can test this after pullback to all geometric points is̄ : s̄→ S.
The functor i∗s̄ commutes with taking tensor products and hence with Symn. By Proposition 3.7
we have i∗s̄M1(G/S) = M1(Gs̄). By definition kd(G/S) > kd(Gs̄). Hence the vanishing holds by
Proposition 5.1.

(ii) By Lemma 3.6(i) the morphism αG/S is natural inG ∈ cGrpS . This implies naturality for
the morphism ψG/S . Naturality implies that the morphism ψG/S is a morphism of Hopf algebras
by the same argument as in the absolute case; see [AEWH15, Proposition 3.2.9, Theorem 7.4.6].
By Proposition 3.7 the morphism αG/S commutes with base change. As the pullback on motives
is a monoidal functor (Lemma A.5(iv)), the morphism ϕG/S also commutes with base change.
Since the formation of π0(G/S) commutes with base change, so does ψG/S .

We turn to the claim that ψG/S is an isomorphism. By Lemma A.6 it suffices to check the
assertion after pullback via is̄ : s̄ → S for all geometric points s̄ of S. On the other hand,
i∗s̄ψG/S = ψGs̄/s̄, as the map ψG/S commutes with base change. This is an isomorphism by
Proposition 5.1.

(iii) If π0(G/S) = S, then M1(G) is geometric because it is a direct summand of a geometric
object by part (ii). This also implies the general case because M1(G/S) = M1(G0/S). Finally,
M(π0(G/S)) is geometric because it is a direct factor of MS(G) by part (ii).

Finite dimensionality is a notion that is stable under taking the tensor product, finite sums
and direct factors [And05, Lemme 3.7(3)], hence MS(G) is finite dimensional.

(iv) By Lemma 3.6(i) we have M1([m]) = m · id for all integers m, so SymnM1([m]) = mnid
for all n ∈ N. To conclude, note that if m is equal to 1 modulo o(π0(G/S)), the multiplication
by m is the identity on the space π0(G/S).

6. Realizations

We want to study the image of our decomposition under realization functors. We use the exis-
tence of realization functors compatible with the six-functor formalism. We have decided against
axiomatizing the statement and rather treat the explicit cases of Betti and `-adic realization.
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6.1 Betti realization

In this section, we assume that all schemes are of finite type over C. For such a scheme S we
denote by San the associated complex analytic space, equipped with its natural topology. Let
D(San,Q) be the derived category of sheaves of Q-vector spaces on San, and let Db

c(S
an,Q) be the

subcategory of bounded complexes with constructible cohomology. By [Ayo10] (see also [CD09,
17.1.7.6] for an elaboration in terms of ring spectra) there is a system of covariant functors

RB : DA(S)→ D(San,Q)

compatible with the six-functor formalism on both sides (note that some commutativity mor-
phisms are shown to be isomorphisms only when applied to constructible motives). The functor
RB maps the Tate object Q(j) to Q. Moreover, as the relative Betti homology of a smooth
S-scheme lies in Db

c(S
an,Q), constructible motives are sent to Db

c(S,Q).

Proposition 6.1. Let π : G→ S be a smooth commutative group scheme of relative dimension d
with connected fibres. Then:

(i) RB(MS(G)) = πan
! (πan)!QS = πan

! QG[2d];

(ii) we have RB(M1(G)[−1]) = R2d−1πan
! QG with fibre in s ∈ San given by H1(Gs,Q); we set

H1(G/S,Q) = RB(M1(G)[−1]);

(iii) πan
! QG(d)[2d] =

⊕kd(G/S)
i=0 (

∧iH1(G/S))[i].

Proof. First notice that π is separated by [SGA3, VIB, Corollaire 5.5], so that the exceptional
operations π! and π! are well defined. We have

MS(G) = π#QG = π!π
!QS ,

because π is smooth. The first assertion then follows from the same statement in DA(S) and
the compatibility theorem [Ayo10, Théorème 3.19].

By our main Theorem 4.3, we know that RBM1(G) is a direct factor of RB(MS(G)) ' π!π
!QS .

Its fibre over s ∈ San is given by RB(M1(Gs)). This was computed in [AEWH15, Proposi-
tion 7.2.2] via a Hopf algebra argument which also applies in our setting with the difference that
in loc. cit. the realization functor was assumed to be contravariant, that is, M(Gs) was mapped
to π∗π

∗Q. In that language, the realization of M1(Gs) was concentrated in degree 1 and equal
to H1(Gs,Q) as a direct factor of H∗(Gs,Q). Hence in the present setting, the realization is
concentrated in degree −1 and equal to H1(Gs,Q).

This shows that indeed RB(M1(G)[−1]) ' R2d−1πan
! QG.

The last statement follows by the functoriality of RB.

Remark 6.2. (i) The group H1(G/S) has an explicit description as

H1(G/S) = Ker
(

Lie(Gan)
exp−−→ Gan

)
⊗Q .

A similar description holds integrally. This can be shown directly in the setting of constructible
sheaves or from an explicit computation of RB(M1(G)); see the upcoming thesis [PL] of the third
author.

(ii) The assumption on the connectness of fibres is not needed, but simplifies the notation
for the result.

Remark 6.3. (i) The statement in Proposition 6.1(iii) means that our canonical motivic decom-
position is a decomposition into relative Künneth components with respect to the conjectural
standard motivic t-structure.
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(ii) If G has constant abelian rank and torus rank over a regular scheme S, then H1(G/S,Q)
is a local system and thus (up to a shift) a perverse sheaf. We do not know if this is true in
general and expect it to be false; however, see the following example.

Example 6.4. Let S be regular of dimension 1, and let G/S be a degenerating family of elliptic
curves with multiplicative or additive reduction. In both cases RB(M1(G/S)) is a perverse sheaf.

6.2 `-adic realization

In this section, we fix a prime ` and assume that all schemes are Z[1
` ]-schemes. For such

a scheme S, let Dc(S,Q`) be the subcategory of complexes with constructible cohomology in
the derived category of Q`-sheaves S in the sense of Ekedahl [Eke90]. By [Ayo14a, Section 9]
there are covariant functors

R` : DAc(S,Q)→ Dc(S,Q`)

compatible with the six-functor formalism on both sides. The functor R` maps the Tate ob-
ject Q(j) to Q`(j).

For a smooth group scheme G/S with connected fibres we can deduce an analogous decom-
position for R`(MS(G)) by the same argument as in Proposition 6.1. The corresponding object
H1(G/S,Q`) has fibre over s ∈ S given by the rational Tate module V`(Gs). The analogues of
Remark 6.3(i) and (ii) also hold in this setting.

Remark 6.5. The `-adic sheaf H1(G/S,Q`) is given by the system of constructible torsion
sheaves G[`n]. This also holds integrally. Again this can be seen either directly in `-adic co-
homology or via a computation of the realization of M1(G); see [PL].

6.3 Hodge realization

Let S be separated of finite type over C. We expect the existence of Hodge realization functors

RH : DAc(S)→ Db(MHM(S))

(where MHM(S) is Saito’s category of mixed Hodge modules over S) compatible with the six-
functor formalism and such the forgetful functor to the underlying derived category of sheaves
is equal to RB. This would yield a refinement of Proposition 6.1. Note that RH(M1(G/S)) is
a mixed Hodge module (up to shift) if and only if RB(M1(G/S)) is a perverse sheaf (up to shift).

Ivorra has constructed a functor RH for S/C smooth quasi-projective [Ivo14], but the compa-
tibility with the six functors (in particular the tensor functor) is still open. Hence we get a partial
result. There is also upcoming work of Drew [Dre13a, Dre13b] defining a Hodge realization R′H
with values in some triangulated category DHdg(S) compatible with the six-functor formalism. It
is known that DHdg(C) ' Db(MHS) (so that the objects of DHdg(S) are in some sense “families of
mixed Hodge structures”), but the comparison with mixed Hodge modules over a more general S
is still not understood.

7. Algebraic group spaces

We extend our main result from commutative group schemes to commutative algebraic group
spaces. First, we discuss generalities and some examples.

Recall (see, for example, [LMB00, Chapter 1]) that an algebraic space Y is an étale sheaf of
sets over the site Sch/S with the étale topology induced by a scheme X and an étale equivalence
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relation R. This means that Y is the cokernel of the diagram of étale sheaves of sets

R⇒ X .

It is smooth (respectively, étale) if X is smooth (respectively, étale) over S. An algebraic group
space is defined to be a group object in the category of algebraic spaces (which does not mean
that we can find a presentation as above with X a group and R a subgroup).

Algebraic group spaces are closer to schemes than general algebraic spaces.

Proposition 7.1 ([Art69, Lemma 4.2]). If S is the spectrum of a field and G/S is an algebraic
group space of finite type over S, then G is a scheme.

By a spreading-out argument, one deduces the following seemingly stronger result.

Corollary 7.2. Let S be a noetherian scheme, and let G/S be an algebraic group space of
finite type. Then there exists a stratification of S such that G restricted to any stratum is a
scheme.

Commutative algebraic group spaces that are not group schemes appear naturally in algebraic
geometry. We have already seen the example of the étale algebraic space π0(G/S) in Lemma 2.1,
which was an instance of a very general result of Artin of representability of quotients [LMB00,
Corollaire 10.4]. In the same vein, we have the following useful fact.

Lemma 7.3 ([FK88, Proposition 4.6]). Let S be a scheme. The constructible étale sheaves of
sets (respectively, of abelian groups) are exactly the étale algebraic spaces (respectively, étale
algebraic group spaces) of finite type over S.

A fundamental source of examples are Picard functors of proper flat cohomologically flat
morphisms [BLR90, 8.3]; they are not of finite type, smooth or separated in general, but see
[BLR90, 8.4].

Finally, the Weil restriction along a finite flat morphism sends (smooth) algebraic group
spaces to (smooth) algebraic group spaces (see [BLR90, 7.6] and [Ols06, Theorem 1.5]).

For the rest of this section, we adopt the following shorthand.

Definition 7.4. A group space is a smooth commutative algebraic group space of finite type.

Lemma 7.5. Let G be a group space. Then there is a short exact sequence of group spaces

0→ G0 → G→ π0(G/S)→ 0

such that all fibres of G0 are connected and π0(G/S) is an étale group space. The formation of
this sequence commutes with base change.

Proof. The union G0 of neutral connected components of fibres is an open subset of the set
of points of the algebraic space G by applying [Rom11, Proposition 2.2.1] to the zero section
of G. Hence G0 corresponds to an open group subspace of G. One then defines π0(G/S) as the
quotient étale sheaf G/G0 and proceeds as in the proof of Lemma 2.1. (The paper [Rom11]
describes an étale group space π0(G/S) via its functor of points; see [Rom11, Definition 2.1.1(1)]
and [Rom11, 2.5.2(i)]. One can show that it coincides with the one in the lemma above using
[Rom11, 2.5.2(ii)].)

We define the Kimura dimension kd(G) of G and the order of π0(G/S) as in Section 2. The
Kimura dimension is well defined: assume that G is represented by a smooth scheme X with
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relations in R. Then the fibre dimension of G is bounded by the fibre dimension of X and hence
kd(Gs) is bounded by 2 dimS X. The order is well defined by Lemma 7.5 and the fact that the
sheaf π0(G/S) is constructible by Lemma 7.3.

Remark 7.6. We do not know if Lemma 2.4 holds in this more general setting. If G/S is sepa-
rated, the proof given there works because the group spaces G[ln] are then schemes by [Knu71,
II, Theorem 6.15]. There are non-separated group spaces over discrete valuation rings, but in
standard examples the non-separatedness comes from removing connected components in the
special fibre, which does not affect kd(G/S).

Let M eff
S (G) (respectively, MS(G)) be the effective motive (respectively, motive) of G as in

Appendix A.

Lemma 7.7. The motive MS(G) is geometric.

Proof. By Corollary 7.2 we have a stratification such that for any stratum i : T → S, the restric-
tion GT is a scheme. We have i∗MS(G) = MT (GT ) by Proposition 3.7. The result then follows
by induction on strata and localization.

In analogy with the scheme case, we define M eff
1 (G/S) to be the image of G|Sm/S ⊗ Q in

DMeff(S) and M1(G/S) to be the object LΣ∞M eff
1 (G/S) in DM(S). The definitions of αG/S ,

φG/S and ψG/S in Definitions 3.3 and 4.1 work without changes.

Theorem 7.8. Let G be a group space. Then all assertions of Theorem 4.3 hold true.

Proof. Let f : T → S be a morphism of schemes. By Proposition A.8 the pullback of MS(Y )
is given by MT (YT ) when Y is an algebraic space. Hence the same argument as in the proof
of Proposition 3.7 shows that f∗M1(G/S) = M1(GT /T ). Indeed, we use again the resolution
of M1(G/S) obtained by Theorem D.1. This time it is not clear if its terms are cofibrant.
However, by the initial remark we understand their pullbacks. The pullback of the resolution
agrees with the resolution of M1(GT /T ).

Now all steps in the proof work in the same way as in the scheme case, that is, by reducing
to the case of S = Spec k with k an algebraically closed field. By Proposition 7.1 we are then
back in the case of group schemes settled by Proposition 5.1 (in particular, we do not need to
consider transfers on algebraic group spaces).

Remark 7.9. Applying the realization functors RB or R`, we also obtain a computation of the
Künneth components. In particular, RBM1(G) and R`M1(G) are concentrated in degree −1.
Conceptually this means that M1(G) should still be a homological 1-motive when G is a group
space. Note, however, that the results are a bit weaker than in Section 6, because there are not as
yet categories of triangulated motives over algebraic spaces satisfying the six-functor formalism.

Appendix A. Generalities on relative motives

Let S be noetherian and finite dimensional. There are various approaches to the theory of mixed
motivic sheaves over S, even when working with rational coefficients. We refer to the end of
the introduction for a brief discussion. We use the category of étale motives without transfers
introduced originally by Morel and studied by Ayoub with the notation DAét(S,Q). In the
work of Cisinski and Déglise (see [CD09, 16.2.17]) DAét(S,Q) is the category DA1,ét(Sm/S,Q).
By [CD09, Theorem 16.2.18] it is equivalent to their category of Beilinson motives. Since we
systematically use the étale topology and rational coefficients, we simply write DA(S).
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Definition A.1. Let X be a smooth S-scheme. We write Q(X) ∈ Shét(Sm) for the sheafification
of the presheaf

QMorS(−, X) ,

which associates with each smooth S-scheme Y the Q-vector space with basis the set of S-
morphisms from Y to X.

Write T for the sheaf cokernel of the unit section Q(S)→ Q(Gm,S); we view T as a convenient
model for the Tate motive. The category DA(S) is defined to be the homotopy category of
a certain stable A1-local model category of symmetric T -spectra of complexes in the abelian
category Shét(Sm) of étale sheaves in Q-vector spaces on Sm/S. For simplicity, we refer to an
object in this model category as a motivic spectrum. The analogous construction without spectra
leads to the category DAeff(S) of effective triangulated motives, which can be viewed as an A1-
localization of the derived category of Shét(Sm). For simplicity, we refer to an object in this
category as a motivic complex.

Recall that to compute derived functors in this setting, one chooses a specific model category
structure on (spectra of) complexes of sheaves representing the categories of motives such that
the functors of interest are Quillen functors. For this paper, we use indifferently the projective
model structures (adapted from presheaves to sheaves) of [Ayo14a, Section 3] or the descent
model structures of [CD09, 5.1.11].

There is a sequence of functors (see [CD09, 5.3.23.2] for more details on the last one, the
infinite T -suspension functor)

Shét(S)→ D(Shét(Sm))→ DAeff(S)
LΣ∞→ DA(S) . (A.1)

Definition A.2. Let X be a smooth S-scheme.

(i) The (relative, homological) effective motive M eff
S (X) is defined as the image of Q(X) in

DAeff(S).

(ii) The motive MS(X) is defined as LΣ∞M eff
S (X) in DA(S).

Motivic complexes (respectively, spectra) of the form Q(X) (respectively, Σ∞Q(X)) are called
representable.

The category DAgm(S) of constructible or geometric motives over S is defined as the thick
triangulated subcategory of DA(S) generated by the motives of the form MS(X)(i) for any
smooth S-scheme X and any integer i ∈ Z.

Remark A.3. The projective model structures that we are using have relatively few cofibrant
objects—as they should, since we want to use them to compute left-derived functors—but cru-
cially representable objects are cofibrant (by definition for the descent model structure of [CD09,
5.1.11], and as they have the left lifting property with respect to surjective quasi-isomorphisms
for the projective one).

Remark A.4. A motive is constructible if and only if it is a compact object of the triangulated
category DA(S) (see [Ayo14a, Proposition 8.3]).

By [Ayo07a] and [Ayo07b] (see also [CD09]), the categories DA(S) satisfy a full six-functor
formalism. We are only going to use explicitly the tensor product and the pullback f∗ for mor-
phisms f : T → S. The following proposition sums up the computational properties we need.

Lemma A.5. Let f : S → T be a morphism of noetherian schemes of finite dimension.
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(i) All functors in the sequence (A.1) are monoidal. In particular, if X,Y are objects in
Sm/S, then

Q(X)⊗Q(Y ) ' Q(X × Y ) ,

M
(eff)
S (X)⊗M (eff)

S (Y ) 'M (eff)
S (X × Y ) .

(ii) For X ∈ Sm/S, we have canonical isomorphisms

f∗Q(X) ' Q(XT ) and f∗M
(eff)
S (X) 'M (eff)

T (XT ) .

(iii) There is a canonical 2-isomorphism LΣ∞f∗ ' f∗LΣ∞.

(iv) The pullback functor f∗ is monoidal.

Proof. Assertion (i) follows from the universal property of fibre products, the fact that the tensor
product on sheaves of Q-vector spaces is exact, and [Ayo07b, Corollaire 4.3.72].

Let us prove assertion (ii). The formula for the pullback of Q(X) follows from the universal
property of the fibre product. As the functors f∗ on motivic complexes and spectra are left Quillen
(by combining [CD09, 5.1.14] and [CD09, 5.3.28]) and representable objects are cofibrant, the
same formula also holds in the categories of effective and non-effective motives.

Assertion (iii) holds by [CD09, Section 5.23].

Assertion (iv) follows from the analogous property for the pullback on motivic complexes
(spectra), for which we refer to the proofs of [Ayo07b, Propositions 4.5.16 and 4.5.19].

Lemma A.6. (i) Let M ∈ DA(S) be a motive. Then M is zero if and only if the pullback i∗s̄M
to any geometric point

is̄ : s̄ −→ S

is zero.

(ii) Let f be a morphism in DA(S). Then f is an isomorphism if and only if the pullback
i∗s̄(f) to any geometry point s̄→ S is an isomorphism.

Proof. The second statement follows from the first by the axioms of a triangulated category.

We turn to the proof of the first. By [Ayo14a, Proposition 3.24] the family i∗s for all points
s ∈ S is conservative. Hence, we may now assume that S = Spec k is the spectrum of a field.
Let ki be the inseparable closure of k. It is well known that pullback induces an equivalence of
categories between the category of étale sheaves on Spec k and the category of étale sheaves on
Spec ki. It is much more difficult, but nonetheless true, that it induces an equivalence between
the categories of motives (see [CD09, Proposition 2.1.9 and Theorem 14.3.3]).

We may now assume that k is perfect. Let k̄ be an algebraic closure of k. Let P ∈ DA(Spec k)
such that the pullback i∗ to Spec k̄ vanishes. As the category DA(S) is compactly generated by
[Ayo14a, Proposition 3.19], it suffices to show that all morphisms f : M → P with M compact
vanish. By assumption, the morphism i∗(f) vanishes. By [Ayo14a, Proposition 3.20] this implies
that the pullback of f to some finite separable extension of k vanishes. By [Ayo14a, Lemme 3.4]
such a restriction is conservative and so f = 0.

We need to consider motives of algebraic spaces. The definition follows the method of Choud-
hury [Cho12], who considered the case of stacks over a field. We only develop the minimal number
of results necessary.

Let Y be an algebraic space presented by a scheme X and an étale equivalence relation R;
that is, Y is the cokernel of the diagram of sheaves of sets over the site Sch/S with the étale
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topology

R⇒ X .

Definition A.7. Let Y be a smooth algebraic space. Let Q(Y ) be the sheaf associated with
the presheaf QY|Sm/S(·). We define the relative motive M eff

S (Y ) ∈ DAeff(S) as the image of the

sheaf Q(Y ) and MS(Y ) ∈ DA(S) as LΣ∞M eff
S (Y ).

If Y is a scheme, this agrees with the definition given before.

Proposition A.8. Let f : T → S be a morphism, and let Y/S be a smooth algebraic space.
Then there are canonical isomorphisms

f∗M
(eff)
S (Y ) 'M (eff)

T (YT ) .

Proof. By Lemma A.5(iii) it is enough to settle the effective statement.

We follow the method of [Cho12, Corollary 2.14], which was considering Deligne–Mumford
stacks. Let (X,R) be a presentation of Y , and let X• be the Cech nerve of the cover X → Y . By
general principles, the covering map

X• → Y

is a weak equivalence of simplicial sheaves. Hence it induces a quasi-isomorphism of complexes
of sheaves of Q-vector spaces

Q(X•)→ Q(Y ) .

We are going to show that Xn is a smooth S-scheme. Assuming this, we compute f∗MS(X) as

f∗Q(X•) = Q((X•)T ) .

The simplicial scheme (X•)T is the Cech nerve of the cover XT → YT , hence the latter is quasi-
isomorphic to Q(YT ).

By definition, Xn is the (n+ 1)-fold fibre product of sheaves of sets

Xn = X ×Y ×X · · · ×Y X = (X ×Y X)×X · · · ×X (X ×X X) .

Since X ×Y X ' R, we see that Xn is a smooth X-scheme. As X is smooth, this makes Xn

a smooth S-scheme.

Appendix B. Motives with and without transfers

Let S be a noetherian scheme of finite dimension.

B.1 Sheaves with and without transfers

Definition B.1. (i) Let Smtr be the category of smooth correspondences over S. Its objects
are the objects of Sm and its morphisms are finite Q-correspondences in the sense of [CD09,
Definition 9.1.2].

(ii) Let Shét(Smtr) be the category of additive presheaves of Q-vector spaces on Smtr whose
restriction to Sm is an étale sheaf. We call these objects étale sheaves with transfers.

(iii) Let X ∈ Sm. Then Q(X)tr is defined as the representable presheaf with transfers cS(·, X)
(which is in fact a sheaf).

The category Shét(Smtr) is monoidal. The tensor product is characterized by the formula

Q(X)tr ⊗Q(Y )tr = Q(X × Y )tr
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for X,Y ∈ Sm.

By [CD09, Corollary 10.3.11], there is an adjoint pair of functors

γ∗ : Shét(Sm)� Shét(Smtr) : γ∗ ,

where γ∗ is simply the restriction from sheaves with transfers to sheaves without transfer, and γ∗

verifies the properties given in the following lemma.

Lemma B.2. Let γ∗ and γ∗ be the functors defined above. Then, for all S-smooth schemes
p : X → S and all sheaves with transfers F , the following statements hold:

(i) γ∗Q(X) = Q(X)tr.

(ii) The functor γ∗ is monoidal.

Proof. By [CD09, Corollary 10.3.11], the functor γ∗ induces an adjunction of abelian P-premoti-
vic categories [CD09, Definition 1.4.6]. This implies both properties of the statement. Indeed, by
definition, γ∗ is in particular a morphism of monoidal P-fibered categories [CD09, Definition 1.2.7]
(which implies part (ii)) and commutes with the functors p# (which implies part (i)).

There is an alternative description of γ∗ via the category of qfh sheaves. Let Sch be the
category of schemes of finite type over S. The inclusion of categories induces a morphism of sites
p : Schét → Smét and a pair of adjoint functors

p∗ : Shét(Sm)� Shét(Sch) : p∗ ,

where p∗ is simply the restriction. We also write more suggestively F |Sm = p∗F . Recall the
qfh topology on Sch from [SV00, Section 4.1] . Roughly, it is the topology generated by open
covers and finite surjective morphisms. As the qfh topology refines the étale topology, there are
a morphism of sites r : Schqfh → Schét and a pair of adjoint functors

r∗ : Shét(Sch)� Shqfh(Sch) : r∗ .

We also write more suggestively Fqfh = r∗F . In particular, Q(X)qfh is the sheafification of the
presheaf Q(X) on Sch. As usual we denote by Q(X)tr ∈ Shét(Smtr) the representable sheaf with
transfers defined by X.

The following result is due to Suslin and Voevodsky [SV00, Proposition 4.2.7 and Theo-
rem 4.2.12].

Theorem B.3. For X ∈ Sm, the canonical map Q(X) → γ∗Q(X)tr factors through the qfh
sheafification and induces an isomorphism

Q(X)qfh|Sm
∼→ γ∗Q(X)tr .

This implies that any qfh sheaf has canonical transfers; see [CD09, Proposition 10.5.8].

A priori, the functor γ∗ is only right exact. (The above theorem suggests that γ∗ should be
equal to p∗r∗r

∗p∗, the source of non-exactness being r∗.) It is not clear whether it is also left
exact. However, we have the following criterion.

Lemma B.4. Assume that S is normal. Let F be an étale sheaf of Q-vector spaces on Sch, and let

C∗ → F

be a resolution in the same category such that every Ci is of the form Q(Xi) for some smooth
Xi. Then the following holds:
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(i) The complex

γ∗(C∗|Sm)→ γ∗(F |Sm)→ 0

of objects in Shét(Smtr) is exact.

(ii) There is a canonical isomorphism

(Fqfh)|Sm
∼−→ γ∗γ

∗(F |Sm) ,

and this isomorphism identifies the unit map F |Sm → γ∗γ
∗(F |Sm) and the unit map F |Sm →

(Fqfh)|Sm.

Proof. The complex C∗qfh → F ∗qfh → 0 is an exact complex of qfh sheaves on Sch. We claim
that its restriction to Sm is an exact complex of étale sheaves. Since S (and hence every scheme
in Sm) is normal and we work with sheaves of Q-vector spaces, this follows from a trace argument
(see [Voe96, Theorem 3.4.1]).

Because of the assumption on the Ci, Theorem B.3 implies that the natural map C∗|Sm →
γ∗γ
∗(C∗|Sm) factors through C∗qfh|Sm and that we get an isomorphism of complexes in Shét(Sm):

δ : C∗qfh|Sm
∼−→ γ∗γ

∗(C∗|Sm) .

This implies that the complex γ∗γ
∗(C∗|Sm) is exact. Since γ∗ is right exact and γ∗ is exact,

the complex

γ∗γ
∗(C−1|Sm

)
→ γ∗γ

∗(C0|Sm
)
→ γ∗γ

∗(F |Sm)→ 0

is also exact. Put together, this implies that γ∗γ
∗(C∗|Sm)→ γ∗γ

∗(F |Sm)→ 0 is exact. Since γ∗ is
exact and faithful, this proves point (i). Now, the isomorphism δ induces an isomorphism on H0,
which proves the first part of point (ii). The second part is formal from the definition of the
map.

B.2 Triangulated categories with and without transfers

We now consider the triangulated categories of motives with transfers DMeff(S) and DM(S),
which are defined in a completely parallel manner to DAeff(S) and DA(S) by replacing sheaves
with sheaves with transfers. They also occur as homotopy categories of model structures, for
which we do not go into details and refer to [CD09, Definition 11.1.1].

We have a sequence of functors for motives with transfers

Shtr
ét(S)→ D(Shét(Smtr))→ DMeff(S)

LΣ∞tr→ DM(S) . (B.1)

The functors γ∗ and γ∗ between abelian categories of sheaves induce Quillen adjunctions at
the level of the model categories on motivic complexes and spectra (see [CD16, 2.2.6] for the case
of the descent model structures):

Lγ∗ : DAeff(S)� DMeff(S) : γ∗ , Lγ∗ : DA(S)� DM(S) :Rγ∗ .

The notation reflects the following result.

Lemma B.5. The functor γ∗ on motivic complexes preserves A1-equivalences.

Proof. The proof of [Ayo14b, Lemme 2.111] also works in our setting.

Theorem B.6 ([CD09, Theorems 16.2.18 and 16.1.4]). Let S be noetherian, finite-dimensional,
excellent and geometrically unibranch. Then the functor

Lγ∗ : DA(S)� DM(S) : γ∗
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is an equivalence of categories.

Remark B.7. (i) There is an integral version of this in [Ayo14a, Théorème B.1] (there the
functor Lγ∗ is denoted Latr.)

(ii) In the effective case, the optimal comparison result is not known. For the state of the
art in the effective case, see [Ayo14b, Annexe B] (for a base of characteristic zero) and [Vez14,
Theorem 3.19] (a weaker version over a perfect base).

Definition B.8. Let X be a smooth S-scheme.

(i) The (relative, homological) effective motive with transfers M eff
S (X)tr is defined as the image

of Q(X)tr in DMeff(S).

(ii) The motive with transfers MS(X)tr is defined as LΣ∞tr M
eff
S (X)tr in DM(S).

We collect some useful computational properties.

Lemma B.9. The following statements hold:

(i) All functors in the sequence (B.1) are monoidal.

(ii) There is a functorial 2-isomorphism Lγ∗Σ∞ ' Σ∞tr Lγ
∗.

(iii) For all X ∈ Sm, we have Lγ∗MS(X) 'MS(X)tr.

(iv) In both the effective and non-effective cases, the functor Lγ∗ is monoidal.

Proof. Assertion (i) follows from [CD09, Proposition 10.1.2] and the general machinery of mo-
noidal P-fibered categories of [CD09], together with the fact that the tensor product of sheaves
with transfers with Q-coefficients is exact.

Assertion (ii) is contained in [CD09, Corollary 10.3.11 and 5.3.28].

For assertion (iii), the motivic spectrum Σ∞Q(X) is cofibrant for the model structure on
motivic spectra by Remark A.3. Moreover, the functor γ∗ on motivic spectra is left Quillen (this
is also in [CD09, Corollary 10.3.11 and 5.3.28]) and commutes with suspensions by assertion (ii).
To conclude we apply Lemma B.2(i).

Assertion (iv) is a formal consequence of Lemma B.2(ii).

Appendix C. qfh descent for smooth group schemes

Let S be a noetherian excellent scheme. In this section we study the qfh sheafification of smooth
commutative group schemes over S.

Remark C.1. Let Nor be the full subcategory of S-schemes of finite type which are normal. Let
T be an S-scheme of finite type. Then there are a normal S-scheme T ′ and a finite surjective
morphism (hence a qfh cover) T ′ → T : take the normalization of the reduction of the union
of irreducible components of T . In particular, the subsite Nor equipped with the induced qfh
topology is dense in Sch, and by [SGA4-3, III, Théorème 4.1] the inclusion induces an equivalence
of topoi.

Let G/S be a smooth group scheme, and let G be the étale sheaf on Sch/S defined by G.
The main result of this appendix is the following.

Proposition C.2. Let G be a smooth commutative group scheme over S. Then GQ|Nor is a qfh
sheaf and the natural morphism

GQ → (GQ)qfh
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induces isomorphisms when evaluated on normal schemes.

The second statement is a reformulation of the first by Remark C.1. The proof of the fact
that GQ|Nor is a qfh sheaf will take the rest of this appendix.

Lemma C.3. Let f : X → Y be a dominant morphism with Y reduced. Then G(Y ) → G(X) is
injective. In particular, the presheaf G|Nor is separated with respect to the qfh topology.

Proof. The morphism f is schematically dominant since Y is reduced [EGAIV-3, Proposi-
tion 11.10.4]. Take g : Y → G such that g ◦ f = 0 ∈ G(X). Since the scheme G is separated, we
can now apply [EGAIV-3, Proposition 11.10.1d)] to g and the constant zero morphism X → G,
which shows that g = 0 ∈ G(Y ). The qfh separation property then follows from [Voe96, Proposi-
tion 3.1.4].

Lemma C.4. Let π : U → X be a finite surjective morphism of normal irreducible schemes. Then
GQ satisfies the sheaf condition for the qfh cover π.

Proof. Let V be the normalization of the reduction of U×XU . We have to show that the sequence

0→ G(X)⊗Q→ G(U)⊗Q→ G(V )⊗Q

is exact (the map G(U) ⊗ Q → G(V ) ⊗ Q is induced by the difference of the two projections
V → U).

As X and U are normal, there exists π′ : Y → U finite surjective such that π′π factors as πsπi
with πs, πi finite surjective, πs generically Galois and πi generically purely inseparable. Because
of Lemma C.3, a diagram chase shows that the sheaf condition for π is implied by the sheaf
condition for πs and πi separately. In other words, we can assume π to be either generically
Galois or generically purely inseparable.

We first assume π to be generically Galois with Galois group Γ. Note that U , being normal,
is the normalization of X in κ(U), so the action of Γ on the generic fibre extends to U by the
functoriality of normalization. Moreover, the monomorphism of coherent sheaves OX → (π∗OY )Γ

is an isomorphism, as can be checked on affine charts using the generic Galois property and
normality. Hence by [SGA1, V, Proposition 1.3], the scheme X is the categorical quotient of U
by Γ. In particular, we have

G(X) = G(U)Γ ⊂ G(U) .

Let x be in the kernel of G(U) → G(V ). Then by Lemma C.3 it is also in the kernel of
G(k(U))→ G(k(U)⊗k(X)k(U)) (recall that k(U)⊗k(X)k(U) is a product of fields, hence normal).

By étale descent we have x ∈ G(k(U))Γ; in particular, our element is Γ-invariant, hence in G(X)
by the above.

Consider now the case π generically inseparable. By Zariski’s connectedness theorem, a finite
surjective morphism to a normal scheme which is generically purely inseparable is purely insep-
arable. In particular, the diagonal morphism of π is a surjective closed immersion, hence after
reduction is an isomorphism. Hence the map G(U)⊗Q→ G(V )⊗Q is the zero map (the identity
minus the identity), and we have to show that π∗⊗Q : G(X)⊗Q→ G(U)⊗Q is surjective. For
this we will reduce to the case where π is a relative Frobenius.

Let us recall some notation. For p prime, q a prime power and Z an S-scheme, we write Z(q)

for the base change of Z along the absolute Frobenius of S, and Frob
(q)
Z/S : Z → Z(q) for the

relative Frobenius.
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We can assume that π is not an isomorphism. Let then p > 0 be the generic characteristic
of X. Since X is irreducible, it is an Fp-scheme. By [Kol97, Proposition 6.6] there exist a power q

of p and a morphism π−q : X → U (q) such that π−qπ = Frob
(q)
U/S . Hence we are reduced to the

Frobenius case as surjectivity of (Frob
(q)
U/S)∗ ⊗Q implies surjectivity of π∗ ⊗Q.

Let f ∈ G(U). By the functoriality of the Frobenius we get a morphism

f (q) ∈ G(q)
(
U (q)

)
such that f (q)Frob

(q)
U/S = Frob

(q)
G/Sf . The commutative S-group scheme G is flat, so by [SGA3, VII,

4.3] there exists a Verschiebung morphism Ver
(q)
G/S : G(q) → G such that Ver

(q)
G/S ◦Frob

(q)
G/S = qidG.

Put

g = Ver
(q)
G/Sf

(q) ∈ G
(
U (q)

)
.

Then π∗(g) = pf . We conclude that π∗ ⊗Q is surjective.

Proof of Proposition C.2. Let X ∈ Nor, and let {pi : Yi → X}i∈I be a qfh cover in Nor. We
have to check the sheaf condition for GQ.

The presheaf GQ satisfies the sheaf condition for the covering of a scheme by the union of
its connected components so that we can assume X to be connected, hence integral. By [SV96,
Lemma 10.3], the cover {pi} admits a refinement to a cover {Zi → Z → X}j∈J , where Z → X
is finite surjective and {Zi → Z} is a Zariski cover of Z. Because of Lemma C.3, a diagram
chase shows that the sheaf condition for GQ is implied by the sheaf condition for Z → X and
{Zi → Z} separately.

By Lemma C.4 the presheaf GQ satisfies the sheaf condition for the morphism Z → X. As GQ
is a Zariski sheaf, the sheaf condition is also satisfied for the cover {Zi} of Z. This concludes the
proof.

Appendix D. Eilenberg–MacLane complexes for sheaves

The main object of study in this paper is the sheaf G on Sm/S associated with a commutative
algebraic group space G/S. In the course of the proof of the main theorem, we need to compute
several left-derived functors applied to the object M eff

1 (G) it represents in DMeff(S). For this,
we need a cofibrant resolution of G⊗Q. We use a construction of Breen [Bre69] that is based on
the work of Eilenberg and Maclane [EML53].

The following theorem is the main result of this appendix.

Theorem D.1. Let (S, τ) be a Grothendieck site. We denote Z(−) the functor “free abelian
group sheaf” (the sheafification of the sectionwise free abelian group functor).

There is a functor

A : Shτ (S,Z)→ Cpl>0Shτ (S,Z)

(where by Cpl>0 we mean homological complexes in non-negative degrees) together with a nat-
ural transformation

r : A→ (−)[0]

satisfying the following properties:

(i) For all G ∈ Shτ (S,Z) and i > 0, the sheaf A(G)i is of the form
⊕d(i)

j=0 Z(Ga(i,j)) for some d(i),
a(i, j) ∈ N.
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(ii) There is a natural transformation ã : Z(−)[0]→ A which lifts the addition map a : Z(−)→
id; that is, one has a[0] = rã.

(iii) The functor A and the transformations r and ã are compatible with pullbacks by morphisms
of sites.

(iv) The map r ⊗Q is a quasi-isomorphism.

We give a sketch of the proof of Theorem D.1 based on [Bre69] and [EML53].

Construction of A(G)

The construction of the chain complex A(G) is done in four steps:

(i) The chain complex A(G, 0) is defined as Z(G)[0], equipped with its natural ring structure.

(ii) To define recursively A(G, n+ 1) from A(G, n), one applies the normalized bar construction
BN defined in [EML53, Chapter II] (see also Remark D.3):

A(G, n+ 1) = BN (A(G, n)) .

(iii) For all n > 1, we define An(G) by taking the canonical truncation (intuitively passing to
the reduced homology) and shifting:

An(G) = (τ>0A(G, n))[−n] .

(iv) The bar construction comes together with a functorial suspension map

S : A(G, n)[1]→ A(G, n+ 1) .

For all n > 1, up to a change of sign in the differential, the suspension S induces a morphism
of complexes

S : An(G)→ An+1(G) .

The maps are well defined by the vanishing properties in Lemma D.2 below, and they are
inclusions. Define the chain complex A(G) as

A(G) =
⋃
n>1

An(G) .

Lemma D.2 ([Bre69]). Let A(G, n)j be the jth term of the chain complex A(G, n); then

A(G, n)j =


Z , n > 1 , j = 0 ,

0 , n > 1 , 0 < j < n ,

Z(G) , n > 1 , j = n .

Moreover, the map A(G, 1)1 → A(G, 1)0 is zero. In particular, for all n > 1 the chain complex
An(G) is concentrated in the non-negative degrees and can also be described via the stupid
truncation

An(G) = (σ>0A(G, n)[−n] ,

which is still concentrated in the non-negative degrees.

Remark D.3. Recall that the bar construction BN takes an augmented differential graded-chain
algebra (dg-algebra for short) and produces another; intuitively, if D is an augmented dg-algebra
computing the homology of a space X, the dg-algebra BN (D) should be thought of as an algebraic
model for the homology of the loop space of X. Note that since we work with sheaves, the correct
construction is to apply the bar construction sectionwise and then sheafify.

174



On the relative motive of a commutative group scheme

Construction of r and end of the proof

We first recall a qualitative version of Cartan’s computation of the stable homology of A(G, n),
as extended to the sheaf case by Breen (see [Bre69, Theorem 3]).

Lemma D.4. Let n > 1. Then:

Hi(An(G)) '


0 , i < 0 ,

G , i = 0 , n > 1 ,

is a torsion sheaf, 0 < i < n .

(D.1)

Moreover, the isomorphisms H0(An(G)) ' G for n > 1 can be chosen such that

(i) they are compatible with the suspension maps;

(ii) the composition of maps of complexes

Z(G)[0]→ A1(G)→ H0(A1(G)) ' G[0]

is the addition map aG (here the map Z(G)[0]→ A1(G) is the inclusion of the term in degree
zero).

Proof. The computation of Hi(A(G, n)) is contained in [Bre69, Theorem 3]. It reads

Hi(A(G, n)) '


0 , 0 < i < n ,

G , i = n ,

is a torsion sheaf, n < i < 2n .

(D.2)

The computation of Hi(An(G)) follows from this and the vanishing properties of Lemma D.2.
Compatibility with suspensions is a consequence of [Bre69, equation (1.16), p. 22]. The second
assertion follows by a small computation from the following description of the first terms of
A(G, 1) (see [Bre69, I, § 1, p. 19]):

. . . // Z(G × G) // Z(G)
0 // Z ,

[g, h] � // [g] + [h]− [g + h] .

This finishes the proof of the lemma.

Definition D.5. We define the map

r : A(G) =
⋃
n>1

An(G)→ G

via the compatible system of

An(G)→ H0(An(G)) ∼= G
of Lemma D.4.

Proof of the Theorem D.1. Property (i) follows from [Bre69, equations (3.8) and (3.9), p. 31].

The morphism r satisfies property (ii) by construction and Lemma D.4. It induces an isomor-
phism H0(r) : H0(A(G)) ' G. The construction is sufficiently canonical to make property (iii)
clear.

Finally, as the computation of homology commutes with filtered colimits and Q is flat over Z,
we have for all i > 0

Hi(A(G))⊗Q ' colimn∈N(Hi(An(G))⊗Q) .
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By equation (D.1), the last term vanishes for n > i. This proves property (iv) and concludes the
proof.
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Fabio Tonini for discussions. The first two authors are particularly thankful to Frédéric Déglise
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monde motivique. II, Astérisque no. 315 (Soc. Math. France, Paris, 2008).

Ayo10 , Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math.
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